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1 Introduction

The IEEE Standard Glossary of Software Engineering Terminology [13] defines
three terms, mistake, fault, and failure, that bear in themselves the idea of a
bugging process. In this process, a programmer, through incompetency, distrac-
tion, mental strain, etc., makes one or several mental mistakes, which lead to
one or several faults in the program, which remain undetected until an exe-
cution fails. Observing a failure yields an anomaly report, which triggers the
debugging process, that consists in going upstream from the failure, to some
fault, and ideally to a mistake. The whole thing is made even more tricky if one
considers that there does not generally exist a single programmer, but several
programmers, that a programmer may commit several mistakes, that a mistake
may cause several faults (eg. a systematic programming fault), and that a fault
is not necessarily something that causes a failure when executed, but may also
be something lacking, whose non-execution causes a failure (eg. a missing ini-
tialization). In the latter case, the fault will appear under the form of reading
a non-initialized variable.

The debugging process is really a difficult one, with a lot of trials and errors.
The debugging person (as opposed to the debugging tool) will try to reproduce
the signaled failure (if the failure is not reproducible, things are getting even
worse), most probably to simplify the circumstances under which it happens,
then try to localize the fault, and try to understand the mistake at its origin, and
finally try to correct the fault. Having understood the mistake, the debugging
person may also try to correct still undetected faults, that are consequences of
the same mistake. All this represents a complex network of causes and effects,
of test inputs and outputs, of hypotheses and refutations or confirmations. The
complexity is made worse by the size of the problem, e.g. dealing with programs
of ever increasing size. Thus, it is tempting to assist this process with automated
tools.

The automated tool envisioned in this chapter is fairly rustic; it analyzes
traces of the execution of passed and failed test cases and returns trace ele-
ments as fault hints. The events are then checked by a debugging oracle that
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deduces fault locations from the hints. We assume that the debugging oracle is
the debugging person. We also assume that the debugging oracle is competent,
namely that presented with a set of hints that indicate a fault, she will correctly
deduce the fault; we call this the competent debugger hypothesis. This hypoth-
esis parallels the competent programmer hypothesis, which is familiar in testing
theory [9].

Software engineering processes generate a lot of data, and several authors
advocate the use of data mining methods to deal with it (eg. in Int. Conf.
on Software Engineering and Knowledge Discovery and Int. Conf. on Software
Engineering and Knowledge Engineering). There exist many data mining meth-
ods, with different merits, but very often the very first progress is to simply
consider as data what was previously considered as mere by-product of a pro-
cess. As one of the first historical example of uncovering new knowledge from
pre-existing data is Florence Nightingale’s (1820-1910) demonstration that sol-
diers died more often from bad sanitary conditions in military hospitals than
from battle wounds. For her demonstration, she gathered previously ignored
data and presented it in revealing graphics. This example demonstrates that
data mining is itself a process with important questions, from the selection and
gathering of data, to the presentation of the results. In the fault localization
context the questions are: Which existing data can be leveraged to improve
the localization? Which presentation of the results is the best suited to the
debugging process?

Among the data mining approaches which one can oppose numeric methods
and symbolic methods. As software engineering data are symbolic by nature,
we propose to use symbolic methods. Furthermore, symbolic methods tend
to lend themselves naturally to give explanations, and this is exactly what we
are looking for in fault localization. Indeed, we prefer a system with the ca-
pacity of saying “The failure has to do with the initialization of variable x”
to a system limited to saying “The fault is in this million lines with probabil-
ity 0.527”. Therefore, we propose to use Association Rules (AR) and Formal
Concept Analysis (FCA) as data mining techniques (see a survey on software en-
gineering applications of FCA in [28]). Formal concept analysis and association
rules deal with collections of objects and their features. The former extracts
contextual truth, like “In this assembly, all white-haired female wear glasses”,
while the latter extracts relativized truth, like “In this assembly, carrying an
attaché-case increases the chance of wearing a tie”. In a fault localization con-
text, the former could say that “all failed tests call method m”, and the latter
could discover that “most failed tests call method m, which is very seldom called
in passed tests”.

In the sequel, we will explain our running example for the Fault Localization
Problem in Section 2, give a brief introduction to Formal Concept Analysis and
Association Rules in Section 3, present our proposition in Section 4, and refine
it to the case of multiple faults in Section 5. Experiments are presented in
Section 6, and discussion and further works in Section 7.
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public int Trityp(){
[57] int trityp ;

[58] if ((i==0) || (j==0) ||

(k == 0))

[59] trityp = 4 ;

[60] else

[61] {
[62] trityp = 0 ;

[63] if ( i == j)

[64] trityp = trityp + 1 ;

[65] if ( i == k)

[66] trityp = trityp + 2 ;

[67] if ( j == k )

[68] trityp = trityp + 3 ;

[69] if (trityp == 0)

[70] {
[71] if ((i+j <= k) ||

(j+k <= i) ||

(i+k <= j))

[72] trityp = 4 ;

[73] else

[74] trityp = 1 ;

[75] }
[76] else

[77] {
[78] if (trityp > 3)

[79] trityp = 3 ;

[80] else

[81] if ((trityp == 1)

&& (i+j > k))

[82] trityp = 2 ;

[83] else

[84] if ((trityp == 2)

&& (i+k > j))

[85] trityp = 2 ;

[86] else

[87] if((trityp == 3)

&& (j+k > i))

[88] trityp = 2 ;

[89] else

[90] trityp = 4 ;

[91] }
[92] }
[93] return(trityp) ;}
static public

string conversiontrityp(int i){
[97] switch (i){
[98] case 1:

[99] return "scalen";

[100] case 2:

[101] return "isosceles";

[102] case 3:

[103] return "equilateral";

[104] default:

[105] return "not a ";}}

Figure 1: Source code of the Trityp program

2 Running Example

2.1 The program

Throughout this chapter, we use the Trityp program (partly given in Figure 1)
to illustrate our method. It is a classical benchmark for test generation methods.
Its specification is to classify sets of three segment lengths into four categories:
scalene, isosceles, equilateral, not a triangle, according to whether a given kind
of triangle can be formed with these dimensions, or no triangle at all. The
program contains one class with 130 lines of code.

We use this benchmark to explain the ability of data mining process for
localizing faults (for more advanced experiments see Section 6). We do so by in-
troducing faults in the program, in order to form slight variants, called mutants,
and by testing them through a test suite [9]. The data mining process starts
with the output of the tests, i.e., execution traces and pass/fail verdicts. The
mutants can be found on the web1, and we use them to illustrate our localization
method.

Table 1 presents the eight mutants of the Trityp program that are used in
Section 4. The first mutant is used to explain in details the method. For mu-

1http://www.irisa.fr/lis/cellier/Trityp/Trityp.zip
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Mutant Faulty line
1 [84] if ((trityp == 3) && (i+k > j))

2 [79] trityp = 0 ;

3 [64] trityp = i+1 ;

4 [87] if ((trityp != 3) && (j+k > i))

5 [65] if (i >= k)

6 [74] trityp = 0 ;

7 [90] trityp == 3 ;

8 [66] trityp = trityp+20 ;

Table 1: Mutants of the Trityp program

tant 1, one fault has been introduced at Line 84. The condition (trityp == 2)

is replaced by (trityp == 3). That fault causes a failure in two cases:

1. The first case is when trityp is equal to 2; execution does not enter this
branch and goes to the default case, at Lines 89 and 90.

2. The second case is when trityp is equal to 3; execution should go to
Line 87, but due to the fault it goes to Line 84. Indeed, if the condition
(i+k>j) holds, trityp is assigned to 2. However, (i+k>j) does not
always imply (j+k>i), which is the real condition to test when trityp is
equal to 3. Therefore, trityp is assigned to 2 whereas 4 is expected.

The faults of mutants 2, 3, 6 and 8 are on assignments. The faults of
mutants 4, 5 and 7 are on conditions. We will also develop our method for
multiple faults situations in Section 5. In this case, we simply combine several
mutations to form new mutants.

2.2 The testing process

We assume the program is passed through a test suite. For the Trityp program,
400 test cases have been generated with the Uniform Selection of Feasible Paths
method of Petit and Gotlieb [23]. With that method, all feasible execution
paths are uniformly covered.

Other testing strategies, like non-regression tests [20] or test-driven develop-
ment [3] are possible. However, for the sake of illustration we simply assume we
have a program and a test suite, without knowing how they have been produced.

3 Formal Concept Analysis and Association Rules

Formal Concept Analysis (FCA [12]) and Association Rules (AR [1]) are two
well-known methods for symbolic data mining. In their original inception, they
both consider data in the form of an object-attribute table. In the FCA world, the
table is called a formal context. In the AR world, objects are called transactions,
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size sun distance moons
small medium large near far with without

Mercury × × ×
Venus × × ×
Earth × × ×
Mars × × ×
Jupiter × × ×
Saturn × × ×
Uranus × × ×
Neptune × × ×

Table 2: The Solar system context

attributes are called items, so that a line represents the items present in a given
transaction. This comes from one of the first application of AR, namely the
basket analysis of retail sales. We will use both vocabularies interchangeably
according to context.

Definition 1 (formal context and transactions) A formal context, K, is
a triple (O,A, d) where O is a set of objects, A is a set of attributes, and d is
a relation in O ×A. We write (o, a) ∈ d or o d a equivalently.

In the AR world, A is called a set of items, or itemset, and each
{i ∈ A | o d i} is the o-th transaction.

For visualization sake, we will consider objects as labeling lines, and attributes
as labelling columns of a table. A cross sign at the intersection of line o and
column a indicates that object o has attribute a.

Table 2 is an example of context. The objects are the planets of the Solar sys-
tem, and the attributes are discretized properties of these planets: size, distance
to sun, and presence of moons. One can observe that all planets withoutmoons
are small, but that all planets withmoons except two are far from sun. The diffi-
culty is to make similar observations in large data sets.

Both FCA and AR try to answer questions such has “Which attributes en-
tails these attributes?”, or “Which attributes are entailed by these attributes?”.
The main difference between FCA and AR is that FCA answers these questions
to the letter, i.e., the mere exception to a candidate rule kills the rule, though
association rules are accompanied by statistical indicators. In short, association
rules can be almost true. As a consequence, in FCA rare events are represented
as well as frequent event, whereas in AR, frequent events are distinguished.

3.1 Formal Concept Analysis

FCA searches for sets of objects and sets of attributes with equal significance,
like {Mercury,Venus} and {withoutmoons}, and then order the significances by
their specificity.
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Figure 2: Concept lattice of the Solar system context (see Table 2)

Definition 2 (extent/intent/formal concept) Let K = (O,A, d) be a for-
mal context.
{o ∈ O | ∀a ∈ A. o d a} is the extent of a set of attributes A ⊆ A. It is

written extent(A).
{a ∈ A | ∀o ∈ O. o d a} is the intent of a set of objects O ⊆ O. It is written

intent(O).
A formal concept is a pair (O,A) such that A ⊆ A, O ⊆ O, intent(O) = A

and extent(A) = O. A is called the intent of the formal concept, and O is called
its extent.

Formal concepts are partially ordered by set inclusion of their intent or ex-
tent. (O1, A1) < (O2, A2) iff O1 ⊂ O2. We say that (O2, A2) contains (O1, A1).

In other words, (O,A) forms a formal concept iff O and A are mutually optimal
for describing each others; i.e., they have same significance.

Lemma 1 (basic FCA results) It is worth remembering the following re-
sults:

extent(∅) = O and intent(∅) = A.
extent(intent(extent(A))) = extent(A) and intent(extent(intent(O))) =

intent(O). Hence, extent ◦ intent and intent ◦ extent are closure operators.
(O1, A1) < (O2, A2) iff A1 ⊃ A2.
(extent(intent(O)), intent(O)) is always a formal concept, it is written

concept(O). In the same way, (extent(A), intent(extent(A))) is always a for-
mal concept, which is written concept(A). All formal concepts can be constructed
this way.

Theorem 1 (fundamental theorem of FCA, [12]) Given a formal con-
text, the set of all its partially ordered formal concepts forms a lattice called
the concept lattice.
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Given a concept lattice, the original formal context can be reconstructed.

Figure 2 shows the concept lattice deduced from the Solar system context.
It is an example of the standard representation of a concept lattice. In this rep-
resentation, concepts are drawn as colored circles with an optional inner label
that serves as a concept identifier, and 0, 1 or 2 outer labels in square boxes.
Lines represent non-transitive containment; therefore, the standard representa-
tion displays a Hasse diagram of the lattice [25]. The figure is oriented such
that higher concepts (higher in the diagram) contain lower concepts.

The upper outer label of a concept (e.g. large for concept G), when present,
represents the attributes that are new to this concept intent compared with
higher concepts; we call it an attribute label. It can be proven that if A is the
attribute label of concept c, then A is the smallest set of attributes such that
c = concept(A). Symmetrically, the lower outer label of a concept (e.g. Jupiter,
Saturn for concept G), when present, represents the objects that are new to this
concept extent compared with lower concepts; we call it an object label. It can
be proven that if O is the object label of concept c, then O is the smallest set of
objects such that c = concept(O). As a consequence, the intent of a concept is
the set of all attribute labels of this concept and higher concepts, and the extent
of a concept is the set of all object labels of this concept and lower concepts.
E.g., the extent of concept A is {Jupiter,Saturn,Uranus,Neptune}, and its intent
is {far from sun,withmoons}. In other words, an attribute labels the highest
concept to which intent it belongs, and an object labels the lowest concept to
which extent it belongs.

It is proven [12] that such a labelling where all attributes and objects are
used exactly once is always possible. As a consequence, some formal concepts
can be named by an attribute and/or an object, eg. concept G can be called
either concept large, Jupiter, or Saturn, but some others like concepts D and ⊥
have no such names. They are merely unions or intersections of other concepts.

In the standard representation of concept lattice, “a1 entails a2” reads as
an upward path from concept(a1) to concept(a2). Attributes that do not entail
each others label incomparable concepts, e.g., attributes small and withmoons.
Note that there is no purely graphical way to detect that “a1 nearly entails a2”.

The bottom concept, ⊥, has all attributes, and usually 0 objects unless some
objects have all attributes. The top concept, >, has all objects, and usually
0 attributes, unless some attributes are shared by all objects.

The worst-case time complexity of the construction of a concept lattice is
exponential, but we have shown that if the size of the problem can only grow with
the number of objects, i.e. the number of attributes per object is bounded, then
the complexity is linear [11]. Moreover, though the mainstream interpretation
of FCA is to compute the concept lattice at once and use it as a means for
presenting graphically the structure of a dataset, we have shown [11, 21] that
the concept lattice can be built and explored gradually and efficiently.
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3.2 Association rules

FCA is a crisp methodology that is sensitive to every details of the dataset.
Sometimes one may wish for a method that is more tolerant to exceptions.

Definition 3 (association rules) Let K be a set of transactions, i.e., a formal
context seen as a set of lines seen as itemsets. An association rule is a pair
(P,C) of itemsets. It is usually written as P −→ C.

The P part is called the premise, and the C part the conclusion.

Note that any P −→ C forms an association rule. It does not mean it is a
relevant one. Statistical indicators give hints at the relevance of a rule.

Definition 4 (support/confidence/lift) The support of a rule P −→ C,
written sup(P −→ C), is defined as2

‖extent(P ∪ C)‖ .

The normalized support of a rule P −→ C is defined as

‖extent(P ∪ C)‖
‖extent(∅)‖

.

The confidence of a rule P −→ C, written conf (P −→ C), is defined as

‖sup(P −→ C)‖
‖sup(P −→ ∅)‖

=
‖extent(P ∪ C)‖
‖extent(P )‖

.

The lift of a rule P −→ C, written lift(P −→ C), is defined as

‖conf (P −→ C)‖
‖conf (∅ −→ C)‖

=
‖sup(P −→ C)‖
‖sup(P −→ ∅)‖

/‖sup(∅ −→ C)‖
‖sup(∅ −→ ∅)‖

=
‖extent(P ∪ C)‖ × ‖extent(∅)‖
‖extent(P )‖ × ‖extent(C)‖

.

Support measures the prevalence of an association rule in a data set. E.g., the
support of near sun −→ withmoon is 2. Normalized support measures its preva-
lence as a value in [0, 1], i.e. as a probability of occurrence. E.g., the normalized
support of near sun −→ withmoon is 2/8 = 0.25. It can be read as the proba-
bility of observing the rule in a random transaction of the context. It would
seem that the greater the support the better it is, but very often one must
be happy with a very small support. This is because in large contexts with
many transactions and items, any given co-occurrence of several items is a rare
event. Efficient algorithms exist for calculating all ARs with a minimal support
(e.g. [2, 4, 22, 27]).

Confidence measures the “truthness” of an association rule as the ratio of the
prevalence of its premise and conclusion together on the prevalence of its premise

2where ‖.‖ is the cardinal of a set; how many elements it contains.
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alone. Its value is in [0, 1], and for a given premise the bigger is the better; in
other words, the less exceptions to the rule considered as a logical implication is
the better. E.g., the confidence of near sun −→ withmoon is 2/4 = 0.5. This can
be read as the conditional probability of observing the conclusion knowing that
the premise holds. However, there is no way to tell whether a confidence value
is good in itself. In other words, there is no absolute threshold above which a
confidence value is good.

Lift also measures “truthness” of an association rule, but it does so as the
increase of the probability of observing the conclusion when the premise holds
wrt. when it does not hold. In other words, it measures how the premise of a
rule increases the chance of observing the conclusion. A lift value of 1 indicates
that the premise and conclusion are independent. A lower value indicates that
the premise repels the conclusion, and an higher value indicates that the premise
attracts the conclusion. E.g., the lift of near sun −→ withmoon is 0.5/0.75, which
shows that attribute near sun repels attribute withmoon; to be near the sun
diminishes the probability of having a moon. On the opposite, rule near sun −→
withoutmoon has support 0.25, confidence 0.5, but lift 0.5/0.25, which indicates
an attraction; to be near the sun augments the probability of not having a moon.
The two rules have identical supports and confidences, but opposed lifts. In the
sequel, we will use support as an indicator of the prevalence of a rule, and lift
as an indicator of its “truthness”.

4 Data Mining for Fault Localization

We consider a debugging process in which a program is tested against differ-
ent test cases. Each test case yields a transaction in the AR sense, in which
attributes correspond to properties observed during the execution of the test
case, say executed line numbers, called functions, etc. (see Section 7.2 on Fu-
ture works for more on this), and two attributes, PASS and FAIL represent the
issue of the test case (again see Future works for variants on this). Thus, the set
of all test cases yields a set of transactions that form a formal context, which
we call a trace context. The main idea of our data mining approach is to look
for a formal explanation of the failures.

4.1 Failure rules

Formally, we are looking for association rules following pattern P −→ FAIL. We
call these rules failure rules. A failure rule propose an explanation to a failure,
and this explanation can be evaluated according to its support and lift.

Note that failure rules have a variable premise P and a constant conclu-
sion FAIL. This simplifies a little bit the management of rules. For instance,
relevance indicators can be specialized as follows:
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Definition 5 (relevance indicators for failure rules)

sup(P −→ FAIL) = ‖extent(P ∪ {FAIL})‖ ,

conf (P −→ FAIL) =
‖extent(P ∪ {FAIL})‖

‖extent(P )‖
,

lift(P −→ FAIL) =
‖extent(P ∪ {FAIL})‖ × ‖extent(∅)‖
‖extent(P )‖ × ‖extent({FAIL})‖

.

Observe that ‖extent(∅)‖ and ‖extent({FAIL})‖ are constant for a given test
suite. Only ‖extent(P )‖ and ‖extent(P ∪ {FAIL})‖ depend on the failure rule.

It is interesting to understand the dynamics of these indicators when new
test cases are added to the trace context.

Lemma 2 (dynamics of relevance indicators wrt. test suite) Consider
a failure rule P −→ FAIL:

A new passed test case that executes P will leave its support unchanged (nor-
malized support will decrease slightly3), will decrease its confidence, and will
decrease its lift slightly if P is not executed by all test cases.

A new passed test case that does not execute P will leave its support and con-
fidence unchanged (normalized support will decrease slightly), and will increase
its lift.

A new failed test case that executes P will increase its support and confidence
(normalized support will increase slightly), and will increase its lift slightly if P
is not executed by all test cases.

A new failed test case that does not execute P will leave its support and con-
fidence unchanged (normalized support will decrease slightly), and will decrease
its lift.

In summary, support and confidence grow with new failed test cases that ex-
ecute P , and lift grows with failed test cases that execute P , or passed test
cases that do not execute P . Failed test cases that execute P increase all the
indicators, but passed test cases that do not execute P only increase lift4.

Another interesting dynamics is what happens when P increases.

Lemma 3 (dynamics of relevance indicators wrt. premise) Consider a
failure rule P −→ FAIL, and replacing P with P ′ such that P ′ ) P :

Support will decrease (except if all test cases fail, which should not persist).
One says P ′ −→ FAIL is more specific than P −→ FAIL.

Confidence and lift can go either ways, but both in the same way because
‖extent(∅)‖

‖extent({FAIL})‖ is a constant.

3Slightly: if most test cases pass, which they should do eventually.
4Observing more white swans increases the belief that swans are white, but observing

non-white non-swans increases the interest of the white swan observations. Observing a non-
white swan does not change the support of the white swan observations, but it decreases its
confidence and interest. But still the interest can be great if there are more white swans and
non-white non-swans that non-white swans.
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Test case Executed lines Verdict
57 58 . . . 105 PASS FAIL

t1 × × × ×
t2 × × × ×
. . . . . . . . . . . . . . . . . . . . .

Table 3: A trace context

For the sequel of the description or our proposal, we assume that the at-
tributes recorded in the trace context are line numbers of executed statements.
Since the order of the attributes in a formal context does not matter, neither
their multiplicities, this forms an abstraction of a standard trace (see a frag-
ment of such a trace context in Table 3). Thus, explanations for failures will
consist in line numbers; lines that increase the risk of failure when executed.
Had other trace observations be used, and the explanations would have been
different (see Section 7.2). For faults that materialize in faulty instructions,
it is expected that they will show up as explanation to failed test cases. For
other faults that materialize in missing instructions, they will still be visible in
actual lines that would have been correct if the missing lines where present. For
instance, a missing initialization will be seen as the faulty consultation of a non
initialized variable5. It is up to the competent debugger to conclude from faulty
consultations that an initialization is missing. Note finally that the relationships
between faults and failures are complex:

• executing a faulty line does not necessarily cause a failure- e.g. a fault
in a line may not be stressed by a case test (e.g. faulty condition i > 1

instead of the expected i > 0, tested with i equals to 10), or a faulty line
that is “corrected” by another one.

• absolutely correct lines can apparently cause failure- e.g. lines of the same
basic block [29] as a faulty line (they will have exactly the same distribution
as the faulty line), or lines whose precondition a distant faulty part fails
to establish.

Failure rules are selected according to a minimal support criteria. However,
there are too many such rules, and it would be inconvenient to list them all. We
have observed in Lemma 3 that more specific rules have less support. However,
it does not mean that less specific rules must be preferred. For instance, if the
program has a mandatory initialization part, which always executes a set of
lines I, rule I −→ FAIL is a failure rule with maximal support, but it is also
the less informative. On the contrary, if all failures are caused by executing a
set of lines F ⊃ I, rule6 F\I −→ FAIL will have same support as F −→ FAIL,
but it will be the most informative. In summary, maximizing support is good,
but it is not the definitive criteria for selecting informative rules.

5Sir, it’s not my fault! It was your responsibility to check for initialization!
6where .\. is set subtraction; the elements of a first set that do not belong to a second set.
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Rule id Executed lines
17 58 66 81 84 87 90 105 93 · · · 113

r1 × × × × × × × × × ×
r2 × × × × × × × ×
· · · · · ·
r8 × × × × ×
r9 × × × ×

Table 4: Failure context for mutant 1 of the Trityp program with
min lift = 1.25 and min sup = 1 (fault for mutant 1 at Line 84, see Table 1)

Another idea is to use the lift indicator instead of support. However, lift
does not grow monotonically with premise inclusion. So finding rules with a
minimal lift cannot be done more efficiently than by enumerating all rules, and
then filtering them.

4.2 Failure lattice

We propose to use FCA to help navigating in the set of explanations. The idea
is as follows:

Definition 6 (failure lattice) Form a formal context with the premises of
failure rules. The rules identifiers are the objects, and their premises are the
attributes (in our example line numbers) (see an example in Table 4). Call it
the failure context.

Observe that the failure context is special in that all premises of failure rules
are different from each others7. Thus, they are uniquely determined by their
premises (or itemsets). Thus, it is not necessary to identify them by objects
identifiers.

Apply FCA on this formal context to form the corresponding concept lat-
tice. Call it the failure lattice. Its concepts and labelling display most specific
explanations to groups of failed tests.

Since object identifiers are useless, replace object labels by the support and
lift of the unique rule that labels each concept. This forms the failure lattice (see
Figure 3). The overall trace mining process is summarized in Figure 4.

Observe the following:

Lemma 4 (properties of the failure lattice) The most specific explana-
tions (i.e. the largest premises) are at the bottom of the lattice. On the contrary,
the least specific failure rules are near the top. For instance, line numbers of a
prelude sequence executed by every test cases will label topmost concepts.

7This is a novel property with respect to standard FCA where nothing prevents two dif-
ferent objects to have the same attributes.

12



Figure 3: Failure lattice associated to the failure context of Table 4 (for mutant
1, the fault is at line 84)

Figure 4: The trace mining process
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The explanations with the smallest support are at the bottom of the lattice.
E.g. line numbers executed only by specific failed test cases will label concepts
near bottom.

Support increases when going upstream, from bottom to top. This we call
the global monotony of support ordering. This is a theorem [5].

Lift does not follow any global monotony behaviour.
Concepts form clusters of comparable concepts with same support; eg. con-

cepts 2, 4, and 7 in Figure 3 form a cluster of rules with support 60. We call
them support clusters. This means that explanations of increasing size represent
the same group of failures.

In a support cluster a unique concept has the largest extent. We call it the
head concept of the support cluster. It corresponds to the explanation with the
highest lift value in the support cluster. More generally, lift decreases when going
bottom-up in a support cluster. We call this behaviour the local monotony of lift
ordering, and it is also a theorem [5].

It is useless to investigate other explanations than the head concepts. This
can be done by a bottom-up exploration of the failure lattice.

In the lattice of Figure 3, only concepts 2 (head of support cluster with value 60),
3 (head of support cluster with value 52), and 5 (head of support cluster with
value 112) need be presented to the debugging oracle. Concept 5 has Line 84 in
its attribute label, which is the location of the fault in this mutant. The local
monotony of lift ordering shows that the lift indicator can be used as a metric,
but only inside support clusters.

The process that we have presented is dominated by the choice of a minimal
value for the support indicator. Recall that the support of an explanation
is simply the number of simultaneous realizations of its items in the failure
context, and that normalized support is the ratio of this number on the total
number of realizations. In this application of ARs, it is more meaningful to
use the non normalized variant because it directly represents the number of
failed test cases covered by an explanation. So, what is a good value for the
minimal support? First, it cannot be larger than the number of failed test cases
(= ‖extent(FAIL)‖), otherwise no P −→ FAIL rule will show up. Second, it
cannot be less that 1. The choice in between 1 and ‖extent(FAIL)‖ depends
on the nature of the fault, but in any case, experiments show that acceptable
minimum support are quite low, a few percents of the total number of test cases.

A high minimal support will filter out all faults that are the causes of less
failures than this threshold. Very singular faults will require a very small sup-
port, eventually 1, to be visible in the failure lattice. This suggests to start with
a high support to localize the most visible faults, and then decrease the sup-
port to localize less frequently executed faults. So doing, the minimal support
acts as a resolution cursor; a coarse resolution will show the largest features at
low cost, and a finer resolution will be required to zoom in smaller features, at
higher cost.

We have insisted using lift instead of confidence as a “truthness” indicator,
because it lends itself more easily to an interpretation (recall Definition 4 and
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Figure 5: The global debugging process

subsequent comments). However, in the case of failure rules the conclusion is
fixed (= FAIL), and both indicators increase and decrease in the same way
when the premise changes (recall Lemma 3). The only difference is that the
lift indicator yields a normalized value (1 is independence, bellow 1 is repulsion,
over 1 is attraction). So, what is the effect of a minimum lift value? Firstly, if it is
chosen larger or equal to 1, it will eliminate all failure rules that show a repulsion
between the premise and conclusion. Secondly, if it is chosen strictly greater
than 1, it will eliminate failure rules that have a lower lift, thus compressing
the representation of support clusters, and eventually eliminating some support
clusters. So doing, the minimal lift also acts as a zoom.

This suggests a global debugging process in which the results of an increas-
ingly large test suite are examined with increasing acuity (see Figure 5). Given a
test suite, an inner loop computes failure rules, i.e. explanations, with decreasing
support, from a fraction of ‖extent(FAIL)‖ to 1, and build the corresponding
failure lattice. In the outer loop, test cases are added progressively, to cope with
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added functionality (e.g. test driven development), or to cope with new failure
reports. Thus, the global debugging process zooms into the failed test cases to
find explanations for more and more specific failures.

5 The failure lattice for multiple faults

This section extends the analysis of data mining for fault localization for the
multiple fault situation. From the debugging process point of view there is
nothing special with multiple faults. Some software engineering life cycle like
test-driven development tend to limit the number of fault observed simultane-
ously, but one can never assume a priori that there is a single fault. Thus, we
assume there are one or several faults.

5.1 Dependencies between faults

In the multiple fault case, each failure trace accounts for one or several faults.
Conversely, faulty lines are suspected in one or several failure trace. Thus, the
inner loop of the global debugging process cannot just stop because a fault is
found. The process must go on until all failures are explained. How can this
been done without exploring the entire failure lattice?

Consider any pair of two faults F1 and F2, and FailF1
and FailF2

the sets
of failed test cases that detect F1 and F2, respectively. We identify 4 types of
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possible dependency between the two faults.

Definition 7 (dependencies between faults) If FailF1
= FailF2

we say
that they are mutually strongly dependent (MSD).

Otherwise, if FailF1
( FailF2

we say F1 is strongly dependent (SD) from F2

(and vice-versa).
Otherwise, if FailF1 ∩ FailF2 6= ∅, we say that they are loosely dependent

(LD).
Otherwise, FailF1

∩ FailF2
= ∅, we say that they are independent (ID).

Note that this classification is not intrinsic to a pair of faults; it depends on the
test suite. However, it does not depend arbitrarily from the test suite.

Lemma 5 (how failure dependencies depend on growing test suites)
Assume that the test suite can only grow, then an ID or SD pair can only
become LD, and an MSD pair can only become SD or LD.

This can be summarized as follows:

ID −→ LD ←− SD ←− MSD .

Note also that this knowledge, there being several faults, and the dependen-
cies between them, is what the debugging person is looking for, whereas the
trace context only gives hints at this knowledge. The question is: How does it
give hints at this knowledge?

The main idea is to distinguish special concepts in the failure lattice that we
call failure concepts.

Definition 8 (failure concept) A failure concept is a maximally specific con-
cept of the failure lattice whose intent (a set of lines) is contained in a failed
execution.

Recall that the failure rules are an abstraction of the failed execution. For
instance, choosing minimal support and lift values eliminates lines that are
seldom executed or that do not attract failure. Thus the failure lattice describes
exactly the selected failure rules, but only approximately the failed executions.
That is why it is interesting; it compresses information, though with loss. The
failure concepts in the failure lattice are those concepts that best approximate
failed executions. All other concepts contain less precise information. For the
same reasons, there are much less failure concepts than failed executions; each
failure concept accounts for a group of failures that detects some fault.

The main use for failure concepts is to give a criteria for stopping the explo-
ration of the failure lattice. In a few words,

• the bottom-up exploration of the failure lattice goes from support clusters
to support clusters as above,

• the line labels of the traversed concepts are accumulated in a fault context
sent to the competent debugger,
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Figure 7: Failure lattice associated to program Trityp with ID faults of mutants
1, 2 and 6.

• any time the competent debugger finds a hint at an actual fault, all the
failure concepts under the concept that gave the hint are deemed explained.

• the process continues until all failure concepts are explained.

The fault context is the part of the program that the debugging person is sup-
posed to check. We consider its size as a measure of the effort imposed on the
debugging person (see also Section 6 on comparative experiments).

Dependencies between faults has an impact on the way failure concepts are
presented in the failure lattice.

Lemma 6 (ID faults wrt. failure concepts) If two faults are ID their lines
can never occur in the same failed trace, then no rule contains the two faults, the
no concept in the failure lattice contains the two faults. Thus, the two faults will
label failure concepts in two different support clusters that have no subconcepts
in common except ⊥ (e.g. see Figure 7).

Concretely, when exploring the failure lattice bottom up, finding a fault in the
label of a concept explains both the concept and the concepts underneath, but
the faults in the other upper branches remain to be explained. Moreover, the
order with which the different branches are explored does not matter.
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Figure 8: Failure lattice associated to program Trityp with SD faults 1 and 7

Lemma 7 (LD faults wrt. failure concepts) If two faults are LD some
failed traces contain both faults, while other failed traces contain either one or
the other fault. They may label concepts in two different support clusters that
share common subconcepts.

Concretely, when exploring the failure lattice bottom-up, finding a fault for a
failure concept does not explain the other LD failure concept. Once a fault is
found, shared concepts must be re-explored in direction of other superconcepts.

Lemma 8 (SD faults wrt. failure concepts) If two faults are SD, say F1

depends on F2, a failure concept whose intent contains LineF1 will appear as
a subconcept of a failure concept whose concept contains LineF2 in a different
support cluster (e.g. see Figure 8).

Therefore, fault F1 will be found before F2, but the debugging process must
continue because there is a failure concept above.

Lemma 9 (MSD faults wrt. failure concepts) Finally, if two faults are
MSD, they cannot be distinguished by failed executions, and their failure con-
cepts belong to the same support cluster. However, they can sometimes be dis-
tinguished by passed executions (e.g., one having more passed execution than the
other), and this can be seen in the failure lattice through the lift value.

All this can be formalized in an algorithm that searches for multiple faults in
an efficient traversal of the failure lattice (see Algorithm 1). The failure lattice
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Algorithm 1 Failure lattice traversal

1: CtoExplore := FAILURE CONCEPTS
2: Cfailure toExplain := FAILURE CONCEPTS
3: while Cfailure toExplain 6= ∅ ∧ CtoExplore 6= ∅ do
4: let c ∈CtoExplore in
5: CtoExplore := CtoExplore \ {c}
6: if the debugging oracle(label(c), fault context(c)) locates no fault then
7: CtoExplore := CtoExplore ∪ {upper neighbours of c}
8: else
9: let Explained = subconcepts(c) ∪ cluster(c) in

10: CtoExplore:= CtoExplore \ Explained
11: Cfailure toExplain:= Cfailure toExplain \ Explained
12: end if
13: end while

is traversed bottom-up, starting with the failure concepts (step 1). At the end
of the failure lattice traversal, Cfailure toExplain, the set of failure concepts not
explained by a fault (step 2), must be empty or all concepts must be already
explored (step 3). When a concept, c (step 4), is chosen among the concepts to
explore, CtoExplore, the events that label the concept are explored. Note that the
selection of that concept is not determinist. If no fault is located, then the upper
neighbours of c are added to the set of concepts to explore (step 7). If, thanks
to those new clues, the debugging oracle understands mistakes and locates one
or several faults then all subconcepts of c and all concepts that are in the same
support cluster are “explained”. Those concepts do not have to be explored
again (step 10). It means that the failure concepts that are subconcepts of c
are explained (step 11). The exploration goes on until all failed executions in
the failure lattice are explained by at least one fault or all concepts have been
explored.

Note that at each iteration, Cfailure toExplain can only decrease or remain
untouched. It is the competent debugger hypothesis that makes sure that
Cfailure toExplain ends at empty when min sup is equal to 1. In case of an
incompetent debugging oracle or a too high min sup, the process would end
when CtoExplore becomes empty, namely when all concepts have been explored.

5.2 Example

For the example of Figure 7, the min sup value is equal to 4 failed executions
(out of 400 executions, of which 168 failed executions) and the min lift value
is equal to 1. There are four failure concepts: 5, 13, 12 and 9. Table 5 presents
the values of CtoExplore and Cfailure toExplain at each iteration of the explo-
ration. We choose to explore the lattice with a queue strategy, it means first in
CtoExplore, first out of CtoExplore. However, the algorithm does not specify one
strategy.

At the begining, CtoExplore and Cfailure toExplain are initialized as the set
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Iteration CtoExplore Cfailure toExplain

0 {c5, c13, c12, c9} {c5, c13, c12, c9}
1 {c13, c12, c9} {c13, c12, c9}
2 {c12, c9} {c12, c9}
3 {c9, c7, c11} {c12, c9}
4 {c7, c11, c8} {c12, c9}
5 {c11, c8} {}

Table 5: Exploration of the failure lattice of Fig. 7.

of all failure concepts (Iteration 0 in Table 5). At the first iteration of the
while loop, concept 5 is selected (c = c5). That concept is labelled by line 74.
Line 74 actually corresponds to fault 6. Thanks to the competent debugging
hypothesis, fault 6 is located. Concept 5, 4 and 14 are thus tagged as explained.
The new values of CtoExplore and Cfailure toExplain are presented at iteration 1
in Table 5.

At the second iteration, concept 13 is selected (c = c13). That concept
is labelled by lines 64 and 79. Line 79 actually corresponds to fault 2; the
competent debugging oracle locates fault 2. Concept 13 is tagged as explained.

At the third iteration, concept 12 is selected. That concept is labelled by
lines 87 and 90. No fault is found. The upper neighbours, concepts 7 and 11,
are added to CtoExplore and Cfailure toExplain is unchanged.

At the next iteration, concept 9 is selected. As in the previous iteration no
fault is found. The upper neighbour, concept 8, is added to CtoExplore.

Finally, concept 7 is selected. That concept is labelled by lines 81 and 84. By
exploring those lines (new clues) in addition with the fault context, i.e. lines that
have already been explored: 87, 90, 101 and 85, the competent debugging oracle
locates fault 1 at line 84. The fault is the substitution of the test of trityp = 2

by trityp = 3. Concepts 12 and 9 exhibit two concrete realizations (failures)
of the fault at line 84 (Concept 7). Concepts 7, 12, 9 are tagged as explained.
The set of failure concepts to explain is empty, thus the exploration stops. All
four faults (for failures above support and lift threshold) are found after the
debugging oracle has inspected nine lines.

6 Experiments

We have implemented our approach in a system called DeLLIS, which we com-
pare with existing methods on the Siemens suite. Then, we show that the
method scales up for the Space program. DeLLIS combines a set of tools devel-
oped independently: e.g., the programs are traced with gcov8, and the associa-
tion rules are computed with the algorithm proposed in [6].

8http://gcc.gnu.org/onlinedocs/gcc/Gcov57.html
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Program Description ‖Mutants‖ LOC ‖Tests‖
print tokens lexical analyzer 7 564 4130
print tokens2 lexical analyzer 10 510 4115
replace pattern replacement 32 563 5542
schedule priority scheduler 9 412 2650
schedule2 priority scheduler 10 307 2710
tcas altitude separation 41 173 1608
tot info information measure 23 406 1052

Table 6: Siemens suite programs

6.1 Total localization effort

In this section, we quantitatively compare the effort required for localizing faults
using DeLLIS and other methods for which effort measures are available regard-
ing the Siemens suite. These methods are Tarantula [16], Intersection Model
(Inter Model), Union Model, Nearest Neighbor (NN) [24], Delta Debugging
(DD) [7] and χDebug [30]. There is a total of 132 mutants of 7 programs (Ta-
ble 6), each containing a single fault on a single line. Let Fm denotes the fault
of mutant m. Each program is accompanied by a test suite (a list of test cases).
Some mutants do not fail for the test suites or fail with a segmentation fault.
They are not considered by other methods, thus we do not consider them. Thus,
there remains 121 usable mutants.

For the experiments, we set statistical indicator values such that the lattices
for all the debugged programs are of similar size. We have chosen, arbitrarily,
to obtain about 150 concepts in the failure lattices. That number makes the
failure lattices easy to display and check by hand. Nevertheless, in the process of
debugging a program, it is not essential to display rule lattices in their globality.

6.1.1 Experimental Settings

We evaluate two strategies. The first strategy consists in starting from the bot-
tom and traversing the lattice to go straightforwardly to the right fault concept.
This corresponds to the best case of our approach. This strategy assumes a
super competent debugging oracle, who knows at each step the best way to
go and find the fault with clues. The second strategy consists in choosing a
random path from the bottom in the lattice until a fault is located. This strat-
egy assumes a debugging oracle who has little knowledge about the program,
but is still able to recognize the fault when presented to her. Using a “Monte
Carlo” approach and thanks to the law of large numbers, we compute an average
estimation of the cost of this strategy.

Definition 9 (Jones et al. metric [15])

Expense(Fm) = ‖fault context(Fm)‖
size of program ∗ 100

where fault context(Fm) is the set of lines explored before finding Fm.
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The Expense metric measures the percentage of lines that are explored to find
the fault.

For both strategies, the best strategy and the random strategy, Expense is
thus as follows:
ExpenseB(Fm) = ‖fault contextBest(Fm)‖

size of program ∗ 100.

ExpenseR(N,Fm) = 1
N ∗

N∑
i=1

‖fault contexti(Fm)‖∗100
size of program .

ExpenseR is the arithmetic mean of the percentages of lines needed to find the
fault during N random explorations of the failure lattice.

A random exploration is a sequence of random paths in the rule lattice. A
random path of the failure lattice is selected. If the fault is found on that path,
the execution stops and returns the fault context. Otherwise a new path is
randomly selected, the previous fault context is added to the new fault context
and so on until the fault is found. In the experiments, if after 20 selections the
fault stays unfound, the returned fault context consists of all the lines of the
lattice. We have noted that between 10 and 50, the computed results are not
significantly different, so we have chosen 20. Number N is chosen so that the
confidence on ExpenseR is about 1%.

For any method M , ExpenseM allows to compute FreqM (cost) which mea-
sures how many failures are explained by M for a given cost:

FreqM (cost) = ‖{m|ExpenseM (Fm)≤cost}‖
total number of mutants ∗ 100.

6.1.2 Results

FreqM (cost) can be plotted on a graph, so that the area under the curve indi-
cates the global efficiency of method M . Figure 9 shows the curves for all the
methods 9. The DeLLIS strategies are represented by the two thick lines. For
DeLLIS Best Strategy about 21% of mutant faults are found when inspecting
less than 1% of the source code, and 100% when inspecting less than 70%. The
best strategy of DeLLIS is as good as the best methods, Tarantula and χDebug,
and the random strategy of DeLLIS is not worse than the other methods. We
conjecture that the strategy of a human debugger is between both strategies. A
very competent programmer with a lot of knowledge will choose relevant con-
cepts to explore, and will therefore be close to the best strategy measured here.
A regular programmer will still have some knowledge and will be in any case
much better than the random traversal of the random strategy.

Note finally that this comparison ignores the multiple fault capacity of DeL-
LIS.

6.2 The impact of relevance indicators

In this section, we study the impact of the choice of minimal values for the
lift indicator on a program of several thousands lines, the Space program. In

9The detailed results of the experiments can be found on:
http://www.irisa.fr/LIS/cellier/publis/these.pdf
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Figure 9: Frequence values of the methods

Figure 10: Expense values
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Figure 11: Size of failure lattice

particular, we present how the Expense value and the number of concepts of
the best strategy vary with respect to the min lift value.

6.2.1 Experimental Settings

Space has 38 associated mutants, of which 27 are usable, and 1000 test suites.
For the experiment, we randomly choose one test suite such that for each of the
27 mutants, at least one test case of the test suite fails.

The support threshold is set to the maximum value of the support. The
mutants contain a single fault. The faulty line is thus executed by all failed
executions. Different values of the lift threshold are set for each mutant in order
to study the behavior of DeLLIS (8 values from 1 to (maxlift− 1) ∗ 0.95 + 1).
We discovered two representative threshold values among the studied ones. The
first lift threshold is a value close to the max value: (maxlift− 1) ∗ 0.95 + 1.
The second lift threshold is (maxlift− 1)/3 + 1.

6.2.2 Results

Figure 10 shows the Expense values for each mutant when min lift is set to 95%
of max lift (light blue) and 33% of max lift (dark red). The Expense value is
presented in a logarithmic scale. The expenses are much higher with the larger
min lift. When min lift = 95% of max lift, some mutants, for example
mutant 1, have an expense value equal to 100%, representing 3638 lines, namely
the whole program. When min lift = 33% of max lift, for all but 4 mutants,
the percentage of investigated lines is below 10%. And for most of them, it

25



has dropped below 1%. Note that 1 line corresponds to 0.03% of the program.
Thus, 0.03% is the best Expense value that can be expected. Other experiments
on intermediate values of min lift confim that the lower min lift, the lower
the expense value is, and the fewer lines have to be examined by a competent
debugger.

When min lift = 33% of max lift, DeLLIS, like Tarantula [16], is much
better at detecting the fault than on the much smaller programs of the Siemens
suite. For 51% of the versions, less than 1% of the code needs to be explored to
find the fault. For 85% of the versions, less than 10% of the code needs to be
explored to find the fault.

Figure 11 sheds some light on the results of Figure 10 and also explains why it
is not always possible to start with a small min lift. The figure presents the size
of the failure lattice (the number of concepts) for each mutant when min lift
is set to 95% of max lift and 33% of max lift. The number of concepts is also
presented in a logarithmic scale. For min lift = 95% max lift, for all but one
mutant, either no rule or a single rule is computed. In the first case, the whole
program has to be examined (Mutant 1). In the second case, the expense value
is proportional to the number of events in the premise of the rule. For example,
this represents 1571 lines for Mutant 5. When reducing min lift, the size of the
lattice increases and the labelling of the concepts decreases. Thus, fewer lines
have to be examined at each step when traversing the failure lattice, hence the
better results for the Expense values with a low min lift.

However, for min lift = 33% of max lift, for almost half of the mutants,
the number of concepts is above a thousand and for one mutant it is even
above 10000. Therefore, whereas Expense decreases when min lift increases,
the size and cost of computing the failure lattices increase. Furthermore, when
the number of concepts increases so does the number of possible paths in the
lattice. For the best strategy this does not make a difference. However, in reality
even a competent debugger is not guaranteed to always find the best path at
once. Thus, a compromise must be found in practice between the number of
concepts and the size of their labelling. At present, we start computing the
rules with a relatively low min lift. If the lattice exceeds a given number
of concepts, the computation is aborted and restarted with a higher value of
min lift following a divide and conquer approach.

7 Discussion and Future Works

7.1 Discussion

The contexts and lattices introduced in the previous sections allow programmers
to see all the differences between execution traces as well as all the differences
between association rules. There exist other methods which compute differences
between execution traces. We first show that the information about trace differ-
ences provided by the failure context (and the corresponding lattice) is already
more relevant than the information provided by four other methods proposed
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Figure 12: Lattice from the trace context of mutant 1 of the Trityp program
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by Renieris and Reiss [24], and Cleve and Zeller [7]. Then we show that ex-
plicitly using association rules with several lines in the premise alleviate some
limitations of Jones et al.’s method [17]. Finally we show that reasoning on
the partial ordering given by the proposed failure lattice is more relevant than
reasoning on total order rankings [17, 18, 8, 19, 31].

7.1.1 The structure of the execution traces

The trace context contains the whole information about execution traces. In
particular, the associated lattice, the trace lattice, allows programmers to see
in one pass all differences between traces. Figure 12 shows the trace lattice of
mutant 1 (compare with the corresponding failure lattice in Figure 3).

There exist several fault localization methods based on the differences be-
tween execution traces. They all assume a single failed execution and several
passed executions. We rephrase them in terms of search in a lattice to highlight
their advantages, their hidden hypothesis and limitations.

Union model The union model, proposed by Renieris and Reiss [24], aims
at finding features that are specific to the failed execution. The method is
based on trace differences between the failed execution f and a set of passed
executions S: f −

⋃
s∈S s. The underlying intuition is that the failure is

caused by lines that are executed only in the failed execution. Formalized in
FCA terms, the concepts of interest are the subconcepts whose label contains
FAIL, and the computed information is the lines contained in the labels of
those subconcepts. For example, in Figure 12 this corresponds to concepts A,
B, and C. They contain no line in their label, which means that the information
provided by the union model is empty. If only one failed execution is taken into
account as in the union model method, the concept of interest is the concept
whose label contains FAIL, and the computed information is the lines contained
in the label. The trace lattice presented in the figure is slightly different from
the lattice that would be computed for the union model, because it represents
more than one failed execution. Nevertheless, the union model often computes
an empty information, namely each time the faulty line belongs to failed and
passed execution traces. For example, a fault in a condition has a very slight
chance to be localized. Our approach is based on the same intuition. However,
the lattices that we propose do not lose information and help navigate in order
to localize the faults, even when the faulty line belongs to both failed and passed
execution traces.

The union model helps localize a bug when executing the faulty statement
always implies an error, for example the bad assignment of a variable that is
the result of the program. In that case, our lattice does also help, the faulty
statement labels the same concept as FAIL.

Intersection model The intersection model [24] is the complementary of the
previous model. It computes the features whose absence is discriminant of the
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failed execution:
⋂

s∈S s − f . Replacing FAIL by PASS in the above discussion
is relevant to discuss the intersection model and leads to the same conclusions.

Nearest neighbor The nearest neighbor approach [24] computes a distance
metrics between the failed execution trace and a set of passed execution traces.
The computed trace difference involves the failed execution trace, f , and only
one passed execution trace, the nearest one, p: f − p. That difference is meant
to be the part of the code to explore. The approach can be formalized in FCA.
Given a concept Cf whose intent contains FAIL, the nearest neighbor method
search for a concept Cp whose intent contains PASS , such that the intent of Cp

shares as many lines as possible with the intent of Cf . On Figure 12 for example,
the two circled concepts are “near”, they share all their line attributes except
the attributes FAIL and PASS , therefore f = p and f − p = ∅. The rightmost
concept fails whereas the leftmost one passes. As for the previous methods, it
is a good approach when the execution of the faulty statement always involves
an error. But as we see on the example, when the faulty statement can lead
to both a passed and a failed execution, the nearest neighbor method is not
sufficient. In addition, we remark that there are possibly many concepts of
interest, namely all the nearest neighbors of the concept which is labelled by
FAIL. With a lattice that kind of behavior can be observed directly.

Note that in the trace lattice, the executions that execute the same lines
are clustered in the label of a single concept. Executions that are near share a
large part of their executed lines and label concepts that are neighbors in the
lattice. There is therefore no reason to restrict the comparison to a single pass
execution. Furthermore, all the nearest neighbors are naturally in the lattice.

Delta debugging Delta debugging, proposed by Zeller et al. [7], reasons on
the values of variables during executions rather than on executed lines. The
trace spectrum, and therefore the trace context, contains different types of at-
tributes. Note that our approach does not depend on the type of attributes and
would apply on spectra containing other attributes than executed lines.

Delta debugging computes in a memory graph the differences between the
failed execution trace and a single passed execution trace. By injecting the
values of variables of the failed execution into variables of the passed execution,
the method tries to determine a small set of suspicious variables. One of the
purpose of that method is to find a passed execution relatively similar to the
failed execution. It has the same drawbacks as the nearest neighbor method.

7.1.2 From the trace context to the failure context

Tarantula Jones et al. [17] compute association rules with only one line in the
premises. Denmat et al. [10] have shown that the limitations of this method,
in particular due to three implicit hypothesis. The first hypothesis is that a
failure has a single faulty statement origin. The second hypothesis is that lines
are independent. The third hypothesis is that executing the faulty statement
often causes a failure. That last hypothesis is a common assumption of fault

29



localization methods, including our method. Indeed, when the fault is executed
in both passed and failed executions (e.g. in a prelude) it cannot be found so
easily using these hypothesis. In addition, Denmat et al. demonstrate that the
ad hoc indicator which is used by Jones et al. is equivalent to the lift indicator.

By using association rules with more expressive premises than in Jones et
al. method (namely with several lines), the limitations mentioned above are
alleviated. Firstly, the fault need not be a single line, but can be contain several
lines together. Secondly, the dependency between lines is taken into account.
Indeed, dependent lines are clustered or ordered together.

The part of the trace context which is important to search in order to localize
a fault is the set of concepts that are related to the concept labelled by FAIL;
i.e. those that have a non-empty intersection with the concept labelled by FAIL.
Computing association rules with FAIL as a conclusion computes exactly those
concepts, modulo the min sup and min lift filtering. In other words, the focus
is done on the part of the lattice related to the concept labelled by FAIL. For
example, in the trace lattice of the Trityp program presented in Figure 12, the
failure lattice when min lift is very low (yet still attractive, i.e. min lift > 1),
is drawn in bold lines.

7.1.3 The structure of association rules

Jones et al.’s method presents the result of the analysis to the user as a coloring
of the source code. A red-green gradient indicates the correlation with failure.
Lines that are highly correlated with failure are colored in red, whereas lines
that are highly not correlated are colored in green. Red lines typically represents
more than 10% of the lines of the program, whithout identified links between
them. Some other statistical methods [18, 8, 19, 31] also try to rank lines in a
total ordering. It can be seen as ordering the concepts of the failure lattice by
the lift value of the rule in their label. However, we have shown in Section 3
that the monotonicity of lift is only relevant locally to a support cluster.

For example, on the failure lattice of Figure 3, the obtained ranking would
be: line 85, line 66, line 68, line 84, . . . No link would be established between
the execution of line 85 and line 68 for example.

The user who has to localize a fault in a program has a background knowledge
about the program, and can use it to explore the failure lattice. Reading the
lattice gives a context of the fault and not just a sequence of independent lines
to be examined, and reduces the number of lines to be examined at each step
(concept) by structuring them.

7.1.4 Multiple Faults

We have compared the failure lattice with existing single fault localization meth-
ods. In this section, we compare our navigation into the failure lattice with the
strategies of the other methods to detect several faults.

Our approach has a flavour of algorithmic debugging [26]. The difference lays
in the traversed data structure. Whereas Shapiro’s algorithm helps traverse a
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proof tree, our algorithm helps traverse the failure lattice, starting from the
most suspicious places.

For multiple faults, Jiang et al. [14] criticize the ranking of statistical meth-
ods. They propose a method based on traces whose events are predicates. The
predicates are clustered, and the path in the control flow graph associated to
each cluster is computed. In the failure lattice, events are also clustered in con-
cepts. The relations between concepts give information about the path in the
control flow graph and highlight some parts of that path as relevant to debug
without computing the control flow graph.

Zheng et al. [31] propose a method based on bi-clustering in order to group
failed executions and to identify one feature (bug predictor) that characterizes
each cluster. They propose to look at one bug predictor at a time. Several bug
predictors can be in relation with the same fault but no link is drawn between
them. Our approach gives a context to the fault, in order to help understand
the mistakes of the programmer which have produced the fault.

Jones et al. [15] propose a method which first clusters executions and then
finds a fault in each cluster in parallel. That method has the same aim as our
method. Indeed, in both cases we want to separate the effects of the differents
faults in order to treat the maximum of faults in one execution of the test suite,
but in our approach, the clusters are partially ordered to take into account
dependencies between faults.

Finally, SBI [18] introduces a stop criterion as we did in our algorithm.
SBI tries to take advantage of one execution of the test suite. The events are
predicates. SBI ranks those predicates. When a fault is found thanks to the
ranking, all execution traces that contain the predicates used to find the fault are
deleted and a new ranking on predicates with the reduced set of execution traces
is computed. Deleting execution traces can be seen as equivalent to tagging
concepts, and thus the events of their labelling, as explained in DeLLIS. The
difference between SBI and DeLLIS is that DeLLIS does not need to compute
the failure lattice several times.

7.2 Future works

We have presented a deliberately simplistic approach to using formal concept
analysis and association rules for fault localization. In the current approach, a
trace is a set of line numbers, and the trace issue is PASS or FAIL. However, the
proposed approach lends itself easily to refinements like taking into account the
structure of the tested software, the scheduling or the semantic of the events,
or a classification of failures.

7.2.1 Using taxonomies to reflect structure

Formal concept analysis has been extended since its beginning to cope with
structured contexts. The first approach has been to encode structures, called
scales, into formal contexts in order to reflect such structures as hierarchy, di-
chotomy, etc. [12]. A more recent approach, called Logical Formal Analysis,
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as shown how to use logical formulas instead of attributes in contexts, and
use logical implication between sets of attributes, instead of set inclusion, as
the ordering that defines formal concept [11]. In both cases, the extension is
conservative and leads to the construction of a regular concept lattice.

As a consequence, our fault localization approach can directly benefit from
these refinement of formal concept analysis.

The first benefit could be to use evidences of the software structure, eg. file,
package, class, method, function, loop, block, to give a structure to line numbers.
This could be used for refining the zoom effect of our global debugging process,
and also to factorize the presentation of concepts. Note that these structure
evidences obey to a reach logical structure: eg. a line of a block of a loop of a
function of a method of a class of a package of a file...

A second benefit could be to recognize basic blocks syntactically when possi-
ble, eg. for goto-less languages, instead of recognizing them empirically as lines
that always come together.

In both cases, this refinement will make the dialog between the debugging
person and the fault localization tool more effective because it will use formal
notions that are closer to the richness of the developer experience.

7.2.2 Using n-grams to reflect scheduling

Our primitive approach consider traces as sets of execution events, ie. an un-
ordered collection. However, this completely ignores that execution events are
ordered in time by the execution scheduler. In principle, it is possible to rep-
resent an order, even a total order, in a formal context, but at a considerable
cost.

We propose to use a cheap but incomplete rendition of execution scheduling
by n-grams of trace events. An n-gram is simply a n-tuple of trace events. In
our case, it could have the semantics that in an n-gram the j-st component
immediately precedes the (j + 1)-st component in the execution scheduling.

It is not necessary to consider n-grams with a large n. For instance, 2-grams
essentially reconstruct fragments of the control flow graph of the program [29].
The reconstructed fragments depend on the test coverage. This could be used
for further analyses based on data flow [29]. For instance, a liveness analysis
could discover that an assignment is dead, ie. the variable is not read after being
assigned. The reason for this could be a program fault, but also a lack of test
coverage, however in both cases it can guide the debugging person into further
investigations.

7.2.3 Using valued attributes to reflect semantics

When explaining a fault, one does not say “It is a line 1729 fault”, but rather
one says “It is a badly initialized variable v in method m”. We propose to use
valued attributes to express the semantics of the trace events. For instance, Def
and Use are two classical roles that are used in semantics analysis [29]. Def
of an instruction is the set of memory locations (usually one variable) that are
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assigned a content by the instruction. Use of an instruction is the set of memory
locations that are read. This reflects the dataflow of a program. This can be
represented as def and use attributes whose values are memory locations.

Note that dataflow analysis with pointers is very difficult especially because
one cannot generally know the location that is actually written in *x = y, or
the location that is read in x = *y. However, the Def and Use locations are
all known at run-time. So, it is easier to analyze them from traces than from
sources files. Since traces represent fragments of all possible executions one must
be cautious when generalizing trace analyses, but for every universal property
like “∀ execution, . . . is true”, ie. an invariant, finding a counter-example in a
trace suffices to prove the condition false. And it is all testing is about: finding
plausible truth from partial evidences.

7.2.4 Using valued attributes to refined failure conditions

It is often the case that a failure is detected by different means:

• Confrontation with a test oracle for functional failure. In this case, the
program executes normally but produces an unexpected result.

• Detection of a failure condition by the execution environment. In this case,
the execution is halted before the normal termination of the program.

Failure conditions depend on what the execution environment is equipped to
detect. This can go from an invalid memory address and out-of-bound index,
to invalid database requests and invalid URLs.

These refined failure conditions are a key input for the debugging person,
and they must not be blurred in a single FAIL verdict. So, a normal refinement
of our approach is to actually represent different failure conditions as a fail
attribute with a value indicating the actual condition.

There is more than a gain in semantic precision in this variant. Indeed, this
also changes the lift value of a P −→ fail(cond) association rule with respect
to P −→ FAIL. It is possible that the lift of the first rule shows an attrac-
tion whereas the second shows a repulsion. This is because ‖extent(FAIL)‖
comes to the denominator of the lift formula; therefore, when it is replaced by
‖extent(fail(cond))‖, which is smaller, the lift increases. So, this variant yields
both an increase in precision in the association rules, and an increase in precision
in the evaluation of the rules because failure rules become better focused.

8 Conclusion

We have proposed an approach for software fault localization that uses formal
concept analysis and association rules as a means for giving a structure to a set
of trace events. The proposed approach articulates two levels of analysis. At a
first level, a set of trace events produced by the execution of test cases is mined
to evaluate their correlation with PASS and FAIL test outputs. This yields a set
of association rules that is much too large for practical purposes, and a second
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level of analysis is used for exploring the set. Both levels can be fine-tuned in
terms of precision and sensibility, permitting a progressive approach in which
the time-cost compromise can be adjusted.

This leads to a Global Debugging Process which gives a rational to man-
aging the test and analysis effort. We do not pretend this is the definitive
debugging process, but we advocate that Fault Localization, as well as Testing
and Debugging, should be formalized as a process.
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