
HAL Id: hal-02002963
https://hal.science/hal-02002963v1

Submitted on 1 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Persistent Homology Computation Using Combinatorial
Map Simplification

Guillaume Damiand, Rocio Gonzalez-Diaz

To cite this version:
Guillaume Damiand, Rocio Gonzalez-Diaz. Persistent Homology Computation Using Combinatorial
Map Simplification. International Workshop on Computational Topology in Image Context, Jan 2019,
Malaga, Spain. pp.26-39, �10.1007/978-3-030-10828-1_3�. �hal-02002963�

https://hal.science/hal-02002963v1
https://hal.archives-ouvertes.fr

Persistent Homology Computation Using
Combinatorial Map Simplification

Guillaume Damiand and Rocio Gonzalez-Diaz

1 Univ. Lyon, CNRS, LIRIS, UMR5205, F-69622 France
guillaume.damiand@liris.cnrs.fr

https://liris.cnrs.fr/guillaume.damiand/

2 Universidad de Sevilla, Dpto. de Matemática Aplicada I, S-41012, Spain
rogodi@us.es

http://personal.us.es/rogodi/

Abstract. We propose an algorithm for persistence homology computa-
tion of orientable 2-dimensional (2D) manifolds with or without bound-
ary (meshes) represented by 2D combinatorial maps. Having as an input
a real function h on the vertices of the mesh, we first compute persis-
tent homology of filtrations obtained by adding cells incident to each
vertex of the mesh, The cells to add are controlled by both the function
h and a parameter δ. The parameter δ is used to control the number of
cells added to each level of the filtration. Bigger δ produces less levels in
the filtration and consequently more cells in each level. We then simplify
each level (cluster) by merging faces of the same cluster. Our experiments
demonstrate that our method allows fast computation of persistent ho-
mology of big meshes and it is persistent-homology aware in the sense
that persistent homology does not change in the simplification process
when fixing δ.

Keywords: Persistent homology computation; 2D combinatorial map;
mesh simplification

1 Introduction

Topological data analysis (TDA) is a relatively new field in computer science.
One of the most useful concept in TDA is the one of persistent homology which is
an algebraic method for measuring topological features (connected components,
voids, cavities, etc) of shapes and functions. Two of the crucial ingredients of
persistence are: (1) a cell complex to structure the data; and (2) a filtration which
is a nested sequence of subcomplexes that starts with the empty complex and
ends with the whole complex. See [1, 2] for initial reports and [3, 4] for a modern
exposition of the field.

In [5], the authors proposed an efficient algorithm that computes persistent
homology for 3D gray-scale images using the Morse-Smale complex previously
obtained, which is much smaller than the input data, but with all necessary
information. The authors first computed a combinatorial gradient vector field

2 Guillaume Damiand and Rocio Gonzalez-Diaz

(GVF) by a process presented in [6]. To do this, the cell complex is decomposed
into the lower star of its vertices. The authors then computed persistent homol-
ogy from the boundary map of the chain complex associated to the Morse-Smale
complex induced by GVF.

In [7], we proposed an efficient algorithm for computing the homology of
meshes (orientable manifolds with or without boundary), represented by 2D
combinatorial maps (which are models of representation of meshes composed by
vertices, edges linking two vertices, and 2D faces bounded by a closed path of
edges), avoiding the time-consuming step of constructing and modifying bound-
aries and coboundaries of cells. The process consists of merging faces if they share
a common edge, guaranteeing that the structure of combinatorial map and the
homology information of the mesh is preserved until the end of the process.

In this paper we extend our work to compute persistent homology of meshes.
First, as in [7], a simplification process is made to improve computation time.
Now, faces as dispatched in clusters depending on a parameter δ and only faces
of the same cluster are merged. For constructing the cluster the following rule
is used: two faces are in a same cluster if there is a path of vertices of these
two faces of length smaller than δ. At the end of the process, a smaller than the
input 2D combinatorial map is obtained. To obtain persistent homology of the
simplified mesh, lower-start filtration induced by a function h on its vertices (in
our case, h is the height function) is computed. Varying the parameter δ, the
filtration varies and also its persistent homology.

The paper is organized as follows. Section 2 recalls the background of the pa-
per regarding combinatorial maps and persistent homology. Section 3 is the main
section of the paper and presents our method to compute persistent homology
starting from a particular filtration constructed from the height function and a
parameter δ. Several experimental and computational results are presented in
Section 4. Finally, we summarize the paper with a brief discussion about future
work in Section 5.

2 Preliminary Notions

In this section we recall the needed background of the paper regarding combi-
natorial maps and persistent homology.

2.1 2D combinatorial maps

A 2D combinatorial map [8, 9], called 2-map, is a model of representation of a
mesh, which is composed by i-cells: vertices or 0-cells associated with points,
edges or 1-cells which link two vertices, and faces or 2-cells which are bounded
by a closed path.

Two cells are incident if one cell belongs to the boundary of the other one;
while two i-cells c1 and c2 are adjacent if it exists one (i−1)-cell incident to both
c1 and c2. An edge e is dangling if it is incident to one vertex v such that no
other edge than e is incident to v. An edge is isolated if it has no adjacent edge.

Persistent Homology Computation Using Combinatorial Map Simplification 3

An edge incident to two different faces is called inner. Such an edge is necessarily
not dangling nor isolated. Lastly, an edge is called border if it is incident to only
one face and if it touches the boundary of the mesh. See Figure 1(a).

f3

1e

4e

5e

f2
2e

3e

f4

v2

v1

f1

v3

6e

7e

(a)

4

5

1
2

3

6

11

12

9

8

10

7

13

16

17

14

15

18

20

19

(b)

Fig. 1. (a) Example of a mesh having 5 faces (the four faces incident to vertex v1,
and the “degenerated one” bounded twice by edge e7), 14 edges (e6 is dangling, e7
is isolated, {e1, e2, e3, e4} are inner and the rest are border) and 12 vertices. (b) The
corresponding 2-map has 20 darts. Images taken from [7].

The different elements of a mesh are encoded in a 2-map by darts and two
mappings between these dart: β1 and β2:
β2: A dart is an orientation of an edge. If an edge separates two faces, it is
described by two darts d1, d2 in the 2-map linked by β2 (i.e., β2(d1) = d2 and
β2(d2) = d1). These two darts represent the two possible orientations of the edge
(for example β2(8) = 11 and β2(11) = 8 in Figure 1(b)). Each border edge is
described by only one dart d in the 2-map, linked by β2 with a special element ∅
(cf. for example dart 10 in Figure 1(b) which describes border edge e5).β1: For
each dart d, β1(d) is the dart following dart d and belonging to the same face
than d (for example β1(1) = 2 in Figure 1(b)). Note that a 2-map is oriented
and thus described a given orientation of the mesh.

A dart belongs exactly to one vertex, one edge and one face, and thus each
cell of the mesh is described by a set of darts in the 2-map. For example, in
Figure 1(b), vertex v1 is described by the set of darts {2, 5, 8, 12}. Note that
this is a very important property of 2-map. Even an isolated edge (like e7 in
Figure 1(a)) belongs to one face (which explain why we have 5 faces and not 4
in Figure 1(a)).

The different type of edges can be detected in a 2-map thanks to particular
configurations of darts and β links (for example an edge is isolated if β1(β1(d)) =
d, d being of of the dart of the edge).

The algorithm presented in this paper for computing persistent homology
on meshes used a modified version of Algorithm 1 detailed below which was
presented in [7] to compute the minimal 2-map (i.e. with minimal number of

4 Guillaume Damiand and Rocio Gonzalez-Diaz

cells) describing a given mesh. The algorithm uses two operations on 2-maps:
edge removal and edge contraction. It simplifies a given combinatorial map in
its minimal form while preserving all the homology information. The proof that
Algorithm 1 preserves homology information is given in [10].

Algorithm 1: Simplification of a mesh (modified version of Algorithm 1
of [7]).

Input: A 2-map M representing the mesh.
Output: The simplified 2-map corresponding to M.

foreach edge e of M do
if e is an inner edge then remove e;

foreach edge e of M do
while e is dangling do

e′ ← one edge adjacent to e;
remove e; e← e′;

foreach edge e of M do
if e is not a loop then

contract e;

2.2 Persistent Homology

In this subsection we give elementary notions from topology needed to under-
stand the rest of the paper. In particular, we introduce the notion of homology
and persistent homology. Precise definitions of homology can be found for ex-
ample in [11], and definition of persistent homology for example in [4].

Homology can be thought as a method for defining k-dimensional holes (con-
nected components, tunnels, voids) in a given mesh. For example. a 1-cycle is
a closed path and a 1-boundary is the boundary of a 2D manifold. Then, 1-
homology classes (which represent tunnels) are equivalence classes of 1-cycles
modulo 1-boundaries. This concept can be generalized to k-homology classes.
Finally, k-homology groups are the groups of k-homology classes.

Persistent homology captures the topological changes occurring in a growing
sequence of meshes, called filtration. During the growth of a mesh, homology
classes of different dimension may appear (be born) and disappear (die). Filtra-
tions are frequently constructed using a real-valued function h on the vertices of
the mesh M . For example, the lower-start filtration is computed as follows:

– First, order the vertices of M in a non-decreasing way,

h(v1) ≤ h(v2) ≤ · · · ≤ h(vn).

– Second, compute the lower-star of a vertex v in M , which is the set of cells
of M incident to v whose vertices all have function values at most h(v).

Persistent Homology Computation Using Combinatorial Map Simplification 5

– Define Mi as the union of the lower-star of all vertices of M whose function
value is at most h(vi).
This way, if h(vi−1) < h(vi) then Mi \Mi−1 is the set of cells of M having
a vertex with function value exactly h(vi).
And if h(vi−1) = h(vi) then Mi−1 = Mi.

The lower-star filtration of the mesh M induced by the function h is the sequence
of nested meshes:

∅ = M0 ⊆M1 ⊆M2 ⊆ · · · ⊆Mn−1 ⊆Mn = M.

Intuitively, imagine we sweep the mesh M in increasing values of the function
h. At any real-value α, we consider the set of cells whose function value on their
vertices is below or equal to α. As α increases, this gives us a sequence of subsets
of M , growing larger and larger.

The topological evolution along the filtration is expressed by the correspond-
ing sequence of homology groups. When adding the cells in order according to
the filtration, new homology classes may born and some of them may later die
when they become trivial or merge with another class. If a homology class γ is
born at Mi and dies entering Mj then h(vj) − h(vi) is the persistence of γ. If
γ is born at Mi but never dies then its persistence is set to infinity. Homology
classes with low persistence are considered noise and the ones that persist are
considered features of the mesh.

The information obtained when computing persistent homology can be visu-
alized as a persistence barcode which consists of the set of (birth, death) intervals,
each interval recording a persistent homology event. The bottleneck distance is
used to compare two persistence barcodes corresponding to two different filtra-
tions of the same mesh. Given a bijection η between two persistence barcodes,
we take the supremum L∞-distance3 between matched points and define the
bottleneck distance by taking the infimum over all supremums.

In order to compute persistent homology, in this paper we have implemented
a simplified version of the incremental algorithm for computing AT-models given
in [12]. Given an ordering of the cells of the mesh, Algorithm 2 computes a triplet
(M,H, f) where:

– M is the given mesh (decomposed in cells obtained from the combinatorial
map). If σ is a k-cell, then ∂(σ) is the set of (k − 1)-cells in its boundary.

– H is a subset of cells of M called surviving cells. Fixed k, the set of all
the surviving k-cells together with the addition operation + (here + means
the disjoint union of sets) form the group Ck(H) which is isomorphic to the
k-dimensional homology group Hk of M .

– f : C(M) → C(H) maps each k-cell in M to a sum of surviving cells,
satisfying that if a, b ∈ Ck(M) are two homologous k-cycles then fk(a) =
fk(b). Let Mσi

be the set of cells {σ1, . . . , σi}. Then, in the ith step of

3 The L∞-distance between points u = (u1, u2) and v = (v1, v2) in the extended plane
is max{|u1 − v1|, |u2 − v2|},

6 Guillaume Damiand and Rocio Gonzalez-Diaz

Algorithm 2: Computing persistent homology (Algorithm 2 of [12]).

Input: An ordering of the cells of M : {σ1, . . . , σm}.
Output: Persistent homology.

Initialize H := ∅ and f(σi) := 0, for 1 ≤ i ≤ m.
for i = 1 to m do

if f∂(σi) = 0 then
f(σi) := σi, H := H ∪ {σi} (a new homology class was born).

if f∂(σi) 6= 0 then
Let σj ∈ f∂(σi) s t. j = max{ index(µ) : µ ∈ f∂(σi) }
H := H \ {σj} (an old homology class died).
foreach x ∈M such that σj ∈ f(x) do

f(x) := f(x) + f∂(σi).

Algorithm 2, σi belongs to a k-cycle c in C(Mσi
) if and only if f∂(σi) = 0.

This is why if f∂(σi) = 0 then a new homology class was born (the one
represented by the k-cycle c) and σi enters H. Otherwise, if f∂(σi) 6= 0,
then a homology class died, which is equivalent to say that an element of
f∂(σ) ⊆ H is removed from H. The element to be removed from H will be
the youngest one: max{ index(µ) : µ ∈ f∂(σi) }, being index(µ) the position
of the cell µ in the given ordered list of cells {σ1, . . . , σm}.

In [13] the authors establish a correspondence between the incremental al-
gorithm for computing AT-models given in [12] and the one for computing per-
sistent homology [4]. Since we are only interested in computing the persistence
events, we only compute the set H and the map f . See Algorithm 2.

3 Computing Persistence

Our starting point is a subdivision of a mesh M (with or without boundaries)
into vertices, edges and faces, and a real-valued function h on the vertices of the
mesh.

Our method is based on three steps:

1. Simplification of the 2-map according to a parameter δ;
2. Computation of the lower-star filtration of the simplified mesh;
3. Computation of persistent homology of the given filtration.

Our goal in step 1 is to simplify the 2-map decreasing the number of faces in
each level of the filtration in order to improve the computation time in Step 3
which is the more time-consuming step. Observe that persistent homology varies
when δ varies since the filtration computed is different. Nevertheless, we have
observe in the experiments that our simplification can be seen as a filtering of
small persistent homology events.

Persistent Homology Computation Using Combinatorial Map Simplification 7

3.1 2-Map Simplification

In this step, the 2-map is simplified by dispatching the faces into clusters and
applying Algorithm 1 with constraints.

First, faces are dispatched into clusters according to the parameter δ. To
compute such clusters, vertices of the mesh are ordered in a non-decreasing way
by their height values h(v). We assign a height value to each face with is the
maximum value of the height of its vertices.

Then in the first cluster we add the first face f in the ordering and all the
faces “at distance” less than δ. which means that there exists a path of vertices
of these two faces of length smaller than δ. For example, if δ = 0, only one face
per cluster is added. If δ = 1 all the faces sharing an edge with f are added. For
any δ > 1 all the faces at distance less than or equal to δ to f are added to the
cluster. We repeat the process with the next face provided by the ordering that
was not included in any cluster. We repeat the process until all faces are in a
cluster.

After dispatching the faces in clusters, we apply Algorithm 1 with the fol-
lowing constraints:

– Faces merge (i.e, the inner shared edge e is removed) only if they belong to
the same cluster.

– Besides, contrary to Algorithm 1, critical edges (separating faces belonging
to two different clusters) are not removed here. Merging faces belonging to
two different clusters could lead to loose a persistent event, and this is why
we do not merge such faces.

– We do not use the contraction step (last foreach in Algorithm 1). Indeed,
the simplified 2-map obtained here has several faces, contrary to Algorithm 1
computed without constraints that always produces one face per connected
component. For this reason, the number of possible edges to contract is here
smaller and thus we have observed no gain (and even sometimes a loss) when
using the contraction step comparing to not use it.

3.2 Filtration

The second step in our algorithm for computing persistent homology is to com-
pute the lower-star filtration (see Section 2.2) of the simplified mesh SM .

Observed that increasing the value of δ in Step 1 will decrease the different
number of SMj sets (i.e., the number of levels in the filtration), which increases
the average number of cells belonging to a same SMj , as illustrated in Figure 3
for the Neptune mesh and three different δ values. Note that bigger δ increases
the number of simplifications done and thus decreases the size of the simplified
combinatorial map. In this case, the persistent homology computed is not the
same than the one obtained by the lower-star filtration on the original mesh
(they only coincides when δ = 0). Nevertheless, we have seen in our tests that
the effect of the parameter δ > 0 is to remove small persistent homology events.
However this new possibility gives to users a way to choose a level to analyze a
given mesh, while allowing to speed-up the method.

8 Guillaume Damiand and Rocio Gonzalez-Diaz

3.3 Computation of persistent homology

The last step of our method is the computation of persistent homology of the
simplied mesh SM .

We order the cells in SM according to the given filtration and obtain the
ordered set of cells {σ1, . . . , σm} such that if i < j then there exist i′, j′ such
that i′ ≤ j′, σi ∈ SMi′ , σj ∈ SMj′ and σj is not in the boundary of σi. We then
apply Algorithm 2 to compute persistent homology.

The persistence barcode is stored in a list L with the (birth, death) events
as follows: if σ ∈ M` \M`−1 is born and dies entering µ ∈ Mm \Mm−1, then
store (birth, death) in L being birth= h(vi`) and death= h(vim).

Finally, bottleneck distance between different filtrations of the same mesh
obtained from different values of δ can be computed to measure the effect of the
parameter δ in the persistent homology information obtained.

4 Experiments

We have implemented our algorithm for persistent homology computation by
using the CGAL implementation of combinatorial maps [14] and the additional
layer, called linear cell complex, which additionally represents the geometry [15].
All our experiments were run on an Intel R©i7-4790 CPU, 4 cores @ 3.60GHz with
32 Go RAM. All the computation times given here are averages of 10 consecutive
runs of the same method.

In our tests, we used the six meshes shown in Figure 2, having between
703, 512 and 10, 000, 000 faces. All these meshes have only one connected com-
ponent, except Blade which has 295 connected components because it contains
many small isolated closed meshes inside the blade.

In our experiment, we compared the persistent homology computation of the
six meshes for the following values of δ: 0, 1, 2, 4, 8, 16, 32 and 64. For δ = 0,
the persistent homology computed is the one of the lower-star filtration induced
by the height function on the vertices of the original mesh. When δ increases,
the number of faces in a same cluster increases also and thus the combinatorial
map becomes more and more simplified. Nevertheless, persistent homology varies
since the filtration varies, although differences are “small”.

We can see an illustration of the effect of the δ parameter on the size of
the different clusters in Figure 3. The number of cells of the different simplified
2-maps for each value of δ is given in Figure 4 (average values for the six meshes).

The effect of δ on the computation time is analyzed in Figure 5 where the
six meshes shown in Figure 2 are used, and our method of persistent homology
computation based on the 2-map simplification is ran by using different values
of δ. Obviously, computation time decreases while δ increases, since more faces
belong to the same cluster, and thus the combinatorial map becomes more and
more simplified. We can see that the computation time decreases a lot even for
small value of δ which is very interesting. For example, for δ = 2, computation
time is divided by 2.75 in average.

Persistent Homology Computation Using Combinatorial Map Simplification 9

(a) (b)

(c) (d) (e) (f)

#0-cells #1-cells #2-cells #H0 #H1 #H2

(a) Blade 882,954 2,648,082 1,765,388 295 330 295
(b) DrumDancer 1,335,436 4,006,302 2,670,868 1 0 1
(c) Neptune 2,003,932 6,011,808 4,007,872 1 6 1
(d) HappyBuddha 543,652 1,631,574 1,087,716 1 208 1
(e) Iphigenia 351,750 1,055,268 703,512 1 8 1
(f) ThaiStatue 4,999,996 15,000,000 10,000,000 1 6 1

Fig. 2. The six meshes used in our experiments. The table gives the number of i-cells,
#i-cells, and the number of Hi generators, #Hi, for i = 0, 1, 2.

10 Guillaume Damiand and Rocio Gonzalez-Diaz

(a) (b) (c) (d)

Fig. 3. Effect of the δ parameter on the size of the different clusters for the Neptune
mesh, zoom in on the trident. (a) δ = 0. (b) δ = 1. (c) δ = 4. (c) δ = 32.

 4096

16,384

65,536

262,144

1,048,576

4,194,304

 0 2 4 8 16 32 64

N
u
m

b
e
r

o
f
c
e
ll
s

Delta

0-cells
1-cells
2-cells

Fig. 4. Number of vertices, edges and faces of the simplified combinatorial maps (in
log2 scale) depending on the value of δ. δ = 0 is the original (non-simplified) 2-map.
These numbers are average values for the six meshes.

δ 1 2 4 8 16 32 64

Blade 0.64 1 1.53 2.5 3.43 16.25 10.30
DrumDancer 0.10 0.87 0.62 1.25 1.18 3.31 3.31
Neptune 1.10 1.25 1.67 3.08 5.41 8.00 13.41
HappyBuddha 0.00025 0.0005 0.0014 0.0017 0.0024 0.0060 0.010
Iphigenia 0.88 1.19 1.64 2.71 4.51 9.87 19.22
Statuette 0.90 12.37 12.37 12.24 18.39 26.20 27.41

Table 1. Bottleneck distance between 0-dimensional persistent homology computed
on: (1) the lower-star filtration for δ = 0, and (2) the lower-star filtration for different
values of δ.

Persistent Homology Computation Using Combinatorial Map Simplification 11

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 4 8 16 32 64

T
im

e
 (

s
e

c
)

Delta

Filtration
Simplification

AT-model

δ 0 1 2 4 8 16 32 64

Blade 13.81 5.94 1.69 1.14 0.93 0.80 0.72 0.69
DrumDancer 2.73 2.37 1.79 1.62 1.48 1.36 1.24 1.19
Neptune 8.42 5.23 3.59 2.92 2.63 2.46 2.29 2.26
HappyBuddha 3.39 1.92 0.99 0.73 0.62 0.56 0.52 0.50
Iphigenia 0.77 0.58 0.40 0.35 0.34 0.31 0.29 0.28
Statuette 13.75 10.13 7.15 6.05 5.30 4.89 4.69 4.49

Average 7.15 4.36 2.60 2.14 1.88 1.73 1.63 1.57

Fig. 5. Computation time (in seconds) of our method by using the patch filtration with
increasing δ starting from 0 and going to 64. The graph shows average values for the
six meshes, and details time spent in the different parts of the method: computation of
the filtration, combinatorial map simplification and persistence computation by using
AT-model. The array gives global computation time for each mesh.

We can see in Figure 6 the effect of δ on the results of the persistent homology
computation. First, it should be notice that infinite events are always the same
whatever the value of δ is. This is a direct consequence of the fact that the
homology of the mesh is preserved by our simplification algorithm. For finite
events, we can see that their numbers decrease when δ increase. Indeed, the
combinatorial map becomes more and more simplified, and thus the number of
cells becomes smaller and smaller (as seen in Figure 4).

In Table 1 we can see the bottleneck distance with respect to the 0-dimensional
persistent homology between the persitence barcodes corresponding to the lower-
star filtration and the filtration obtained when varying δ. Table 2 shows the same
information for the 1-dimensional persistent homology. To compute the bottle-
neck distance we used the package TDA of R4. We can observe that, in general,
the distance increases when δ increases and the distance is bounded by the value

4 https://cran.r-project.org/web/packages/TDA/vignettes/article.pdf.

12 Guillaume Damiand and Rocio Gonzalez-Diaz

 4

 16

 64

 256

 1024

 4096

16,384

 0 2 4 8 16 32 64

N
u
m

b
e
r

o
f
e
v
e
n
ts

Delta

Betti 0
Bettti 1

Fig. 6. Number of finite persistence events (in log2 scale) depending on the value of
δ. δ = 0 is the original (non-simplified) 2-map. Betti i is the number of i-homology
classes that were born and later died when computing persistent homology, for i = 0, 1.
These numbers are average values for the six meshes.

of δ. Sometimes, δ increases and the distance is a bit lower. This could occurs
due to small pockets in the considered mesh. Moreover we can see that in some
meshes the effect of δ is more important than in others. See for example Table 1:
for Statuette, the difference between the bottleneck distance for δ = 0 and δ = 4
and for δ = 0 and δ = 8 is only 12.37−12.24 = 0.13 which means that we obtain
similar persistent homology information when computing persistent homology
using δ = 8 instead of δ = 4. Nevertheless, bottleneck distance for δ = 0 and
δ = 8 and for δ = 0 and δ = 16 is 18.39 − 12.24 = 6.14 which means that we
could loss important details if we simplify the mesh using δ = 16 instead that
δ = 8.

δ 1 2 4 8 16 32 64

Blade 0.97 1.0 2.0 4.0 7.0 14.0 21.0
DrumDancer 0.14 0.19 0.38 0.58 1.06 2.40 1.89
Neptune 0.53 1.32 1.82 3.15 5.15 8.28 12.41
HappyBuddha 0.00039 0.00067 0.0010 0.0015 0.0028 0.0034 0.005
Iphigenia 0.6 1.2 1.45 2.87 3.59 9.97 7.27

Table 2. Bottleneck distance between 1-dimensional persistent homology computed
on: (1) the lower-star filtration for δ = 0, and (2) the lower-star filtration for different
values of δ.

Persistent Homology Computation Using Combinatorial Map Simplification 13

5 Conclusion

In this paper, we have defined an algorithm for computing persistent homology
of a given filtration defined on a 2D mesh. Persistent homology is computed
on different filtrations depending on a parameter δ. When δ = 0, the filtration
coincides with the lower start filtration. When δ > 0 the filtration takes, pro-
portionally to δ, more faces in each level. Our method provides high flexibility
which allows easily to change the filtration due to the new parameter δ, allowing
to speed-up (increasing δ) and giving to users a parameter allowing to tune their
results depending on their needs.

One of our future work is to test the different possibilities for clusters re-
garding to the parameter δ. For example, as one reviewer suggested, it would be
interesting not only to take into account the distance between faces but also to
consider the height of a face relatively to the seed before adding it to a cluster.

Since we have observed in the experiments that our simplification filters small
persistent homology events, we plan to provide theoretical results to this new
approach stating that the filtration is stable with respect to δ. That is, the
bottleneck distance between two filtrations of the same mesh is bounded by a
function on δ. We think we can prove it using the classical result of Edelsbrunner
et al on stability of persistence diagrams [4].

Finally, we plan to extend our work to non-orientable manifolds by using the
generalized maps package (the non-orientable extension of combinatorial maps)
of CGAL. We also would like to define a parallel version of our method: the
combinatorial map simplification was already defined in parallel in [7] but we
need now to study if it is possible to parallelize some parts of the AT-model
computation algorithm. Extension in nD could be given based on the theoreti-
cal results for removal and contraction operations in any dimension given in [16,
17]. Indeed, all basic tools used in this work, combinatorial maps, removal / con-
traction operations and AT-model computation, are defined in any dimension.

Acknowledgments. This research has been partially supported by MINECO,
FEDER/UE under grant MTM2015-67072-P. We thank the anonymous review-
ers for their valuable comments.

References

1. T. K. Dey, H. Edelsbrunner, S. Guha, Computational topology, in: Advances in
Discrete and Computational Geometry, American Mathematical Society, 1999, pp.
109–143.

2. M. W. Bern, D. Eppstein, P. K. Agarwal, N. Amenta, L. P. Chew, T. K. Dey, D. P.
Dobkin, H. Edelsbrunner, C. Grimm, L. J. Guibas, J. Harer, J. Hass, A. Hicks,
C. K. Johnson, G. Lerman, D. Letscher, P. E. Plassmann, E. Sedgwick, J. Snoeyink,
J. Weeks, C. Yap, D. Zorin, Emerging challenges in computational topology, CoRR
cs.CG/9909001.

3. G. Carlsson, Topology and data, Bulletin of the American Mathematical Society
46 (2) (1999) 255–308.

14 Guillaume Damiand and Rocio Gonzalez-Diaz

4. H. Edelsbrunner, J. Harer, Computational Topology - an Introduction, American
Mathematical Society, 2010.

5. D. Günther, J. Reininghaus, H. Wagner, I. Hotz, Efficient computation of 3D
Morse-Smale complexes and persistent homology using discrete Morse theory, The
Visual Computer 28 (10) (2012) 959–969.

6. V. Robins, P. Wood, A. Sheppard, Theory and algorithms for constructing discrete
morse complexes from grayscale digital images, IEEE Trans. Pattern Anal. Mach.
Intell. 33 (8) (2011) 1646–1658.

7. G. Damiand, R. Gonzalez-Diaz, Parallel homology computation of meshes, in:
Computational Topology in Image Context - 6th International Workshop, CTIC
2016, Marseille, France, June 15-17, 2016, Proceedings, 2016, pp. 53–64.

8. P. Lienhardt, N-Dimensional generalized combinatorial maps and cellular quasi-
manifolds, Inte. J. of Computational Geometry and Applications 4 (3) (1994) 275–
324.

9. G. Damiand, P. Lienhardt, Combinatorial Maps: Efficient Data Structures for
Computer Graphics and Image Processing, A K Peters/CRC Press, 2014.

10. G. Damiand, S. Peltier, L. Fuchs, Computing homology for surfaces with general-
ized maps: Application to 3d images, in: Advances in Visual Computing, Second
International Symposium, ISVC 2006 Lake Tahoe, NV, USA, November 6-8, 2006.
Proceedings, Part II, 2006, pp. 235–244.

11. A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002.
12. R. Gonzalez-Diaz, P. Real, On the cohomology of 3d digital images, Discrete Ap-

plied Mathematics 147 (2-3) (2005) 245–263.
13. R. Gonzalez-Diaz, A. Ion, M.-J. Jimenez, R. Poyatos, Incremental-decremental

algorithm for computing at-models and persistent homology, in: Computer Analysis
of Images and Patterns - 14th International Conference, CAIP 2011, Seville, Spain,
August 29-31, 2011, Proceedings, Part I, 2011, pp. 286–293.

14. G. Damiand, Combinatorial maps, in: CGAL User and Reference Manual, 3.9
Edition, 2011, http://www.cgal.org/Pkg/CombinatorialMaps.

15. G. Damiand, Linear Cell Complex, in: CGAL User and Reference Manual, 4.0
Edition, 2012, http://www.cgal.org/Pkg/LinearCellComplex.

16. G. Damiand, R. Gonzalez-Diaz, S. Peltier, Removal operations in nD general-
ized maps for efficient homology computation, in: Proc. of 4th Int. Workshop on
Computational Topology in Image Context (CTIC), Vol. 7309 of LNCS, Springer
Berlin/Heidelberg, Bertinoro, Italy, 2012, pp. 20–29.

17. G. Damiand, R. Gonzalez-Diaz, S. Peltier, Removal and contraction operations in
nD generalized maps for efficient homology computation, CoRR abs/1403.3683.

