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ON TIME-SPLITTING METHODS FOR NONLINEAR SCHRÖDINGER

EQUATION WITH HIGHLY OSCILLATORY POTENTIAL

CHUNMEI SU AND XIAOFEI ZHAO

Abstract. In this work, we consider the numerical solution of the nonlinear Schrödinger equa-

tion with a highly oscillatory potential (NLSE-OP). The NLSE-OP is a model problem which

frequently occurs in recent studies of some multiscale dynamical systems, where the potential
introduces wide temporal oscillations to the solution and causes numerical difficulties. We aim to

analyze rigorously the error bounds of the splitting schemes for solving the NLSE-OP to a fixed

time. Our theoretical results show that the Lie-Trotter splitting scheme is uniformly and optimally
accurate, while the Strang splitting scheme is not. Our results apply to general dispersive or wave

equations with an oscillatory potential. The error estimates are confirmed by numerical results.

Keywords: nonlinear Schrödinger equation, highly oscillatory potential, Lie-Trotter splitting,

Strang splitting, error estimates, uniformly accurate.
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1. Introduction

In quantum and plasma physics, to observe and address particular physical phenomenon, param-
eters of different scales are frequently introduced into the related dispersive or kinetic modelling
equations. These parameters (often scaled to be small) cause multiscale behavior in the solution.
For example, the non-relativistic limit regime of the Klein-Gordon equation [2, 8], the subsonic limit
regime of the Zakharov system [5, 6] and the strong magnetic field regime of the Vlasov equation
[14, 15] all induce high temporal oscillations of the corresponding solutions. This kind of problems,
usually after some suitable change of variable which filters out the stiffest part in the equation, can
be reformulated into a highly oscillatory problem:

u̇(t) = f(t/ε, u(t)), t > 0, (1.1)

where ε ∈ (0, 1]. The common fact that ü(t) = O(1/ε) makes standard numerical integration schemes
based on finite difference discretization suffering from low efficiency, since the time step has to be
restricted by ε. Therefore, efforts have been made in recent research to design uniformly accurate
methods aiming to overcome the time step size restriction [2, 6, 8, 11, 14]. To gain a uniform accuracy
which means that the error is independent of ε, the proposed numerical schemes are equipped with
multiscale techniques such as asymptotic expansion [2, 6, 12], two-scale formulation [11, 14] or
iterative strategy [8]. However, these multiscale techniques would break the intrinsic structure
such as symmetry and Hamiltonian in the original model, which lead to numerical schemes missing
ideal long-time performance. Moreover, for some problems the multiscale methods may be over
sophisticated to some extent.

In this paper, we shall investigate a simple case of (1.1) where the dependence on t/ε is explicit
and linear, by considering the following nonlinear Schrödinger equation with an external highly
oscillatory potential (NLSE-OP):

i∂tu(x, t) = ∆u(x, t) +
(
V ε(x, t) + f(|u(x, t)|2)

)
u(x, t), t > 0, x ∈ Td, (1.2a)

u(x, 0) = u0(x), x ∈ Td. (1.2b)

Here d = 1, 2, 3, T = [−π, π], u := u(x, t) is the complex-valued unknown, and u0 is the given initial
value, V ε(x, t) is a given real-valued smooth function with dependence of a parameter 0 < ε ≤ 1
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2 C. SU AND X. ZHAO

and f ∈ C∞(R,R) is the given nonlinearity. The potential function V ε(x, t) is assumed to oscillate
in time with frequency inversely proportional to ε and

∂kt V
ε = O(ε−k), k ∈ N, 0 < ε� 1. (1.3)

Note that when the highly oscillatory potential V ε(x, t) is given for instance as a fast traveling wave:

ε2∂ttV
ε −∆V ε = |u|2,

the NLSE-OP coupled with the above wave equation form a Hamiltonian system. The model problem
(1.2) is essentially motivated from the recent numerical study of the subsonic limit of the Zakharov
system [6], where the highly oscillatory potential represents the fast out-going initial layer. Problems
with a similar form as (1.2) would also be encountered in situations such as the simultaneously high-
plasma-frequency and subsonic limit regime of the Klein-Gordon-Zakharov system [7, 21], the NLS
formulation of the nonlinear Klein-Gordon equation in the non-relativistic limit regime [8] and
also the rapidly rotating regime of the Klein-Gordon equation in Lagrangian coordinates [22]. In
case that V ε(x, t) could be integrated exactly in time, the operator splitting schemes which are
undoubtedly one of the most popular numerical methods for solving Shrödinger type equations, can
give promising numerical approximations to (1.2) in terms of accuracy for all ε ∈ (0, 1]. In fact,
a multiscale scheme based on a splitting solver for the NLSE-OP displays a uniform accuracy for
solving the Zakharov system in the subsonic limit regime [6], where the fast out-going wave type
potential V ε in such case acts only for a very short time.

In this work, we are going to rigorously analyze the error bounds of the classical splitting schemes:
the Lie-Trotter splitting and the Strang splitting for solving the NLSE-OP (1.2) with a general highly
oscillatory potential (1.3). Note that the torus setup in (1.2) ensures that the potential V ε never
vanishes even if it is a traveling wave. The convergence analysis of splitting methods for Schrödinger
type problems has been widely carried out in the literature [9, 13, 17, 19, 23, 25]. By borrowing some
of the state-of-the-art techniques, in this work we make special efforts to derive the dependence of
the error bound on the wavelength ε in the potential V ε up to a fixed time. We shall show through
theoretical error estimates and numerical tests that the Lie-Trotter splitting scheme gives uniform
first order accuracy in solving (1.2) for all ε ∈ (0, 1], while the Strang splitting scheme fails to reach
its optimal second order accuracy for all ε ∈ (0, 1]. However, thanks to the exact integration of the
oscillatory potential, the splitting schemes still give much more accurate approximations than the
exponential integrators (or called as trigonometric integrators) [3, 29, 30] in the highly oscillatory
regime. Though we focus on the NLSE-OP (1.2), our analysis also applies to general dispersive or
wave equations with oscillatory potentials. The extension to the nonlinear Klein-Gordon equation
with an oscillatory potential could be potentially used to design uniformly accurate schemes for
the Klein-Gordon-Zakharov system in the simultaneously high-plasma-frequency and subsonic limit
regime.

The rest of the paper is organized as follows. In Section 2, we present the splitting schemes
for solving (1.2) and the corresponding convergence results. Section 3 and Section 4 are devoted
to proving the error estimates of the Lie-Trotter splitting scheme and the Strang splitting scheme,
respectively. Numerical results are given in Section 5 to illustrate the theoretical results. Conclusions
are drawn in Section 6.

2. Splitting schemes

In this section, we shall briefly present the Lie-Trotter splitting scheme and the Strang splitting
scheme for solving the NLSE-OP, and then present the main results on the error estimates.

2.1. Schemes and notations. We denote in the following τ = ∆t > 0 and tn = nτ . As is widely
used, the time splitting method splits the NLSE-OP (1.2) for some t = s+ t′ into subproblems{

i∂sv(x, s+ t′) = ∆v(x, s+ t′), x ∈ Td, s > 0,

v(x, t′) = v0(x), x ∈ Td,
(2.1)
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and {
i∂sw(x, s+ t′) =

(
V ε(x, s+ t′) + f(|w(x, s+ t′)|2)

)
w(x, s+ t′), x ∈ Td, s > 0,

w(x, t′) = w0(x), x ∈ Td.
(2.2)

Note in (2.2) |w(x, s+t′)| ≡ |w0(x)| for all s ≥ 0, since V ε and f are real-valued. The exact solutions
of the subproblems (2.1) and (2.2) can be written explicitly as

v(x, s+ t′) = ϕs
T

(v0) := e−is∆v0(x),

and
w(x, s+ t′) = ϕs,t

′

V
(w0) := e−i

∫ s
0
V ε(x,t′+y)dy−isf(|w0(x)|2)w0(x),

respectively. Setting u0 = u0. The first order Lie-Trotter splitting scheme reads as

un = Φτ,tn−1

L
(un−1), n ≥ 1, Φτ,t

′

L
(η) := ϕτ

T
◦ ϕτ,t

′

V
(η), (2.3)

and the second order Strang splitting scheme reads as

un = Φτ,tn−1

S
(un−1), n ≥ 1, Φτ,t

′

S
(η) := ϕτ/2

T
◦ ϕτ,t

′

V
◦ ϕτ/2

T
(η). (2.4)

We assume that
∫ s

0
V ε(x, t′ + y)dy can be evaluated exactly in (2.3) and (2.4). For m ∈ R, we

denote by ‖ · ‖m the standard Hm = Hm(Td) Sobolev norm, which reads as

‖u‖2m =
∑
k∈Zd

(1 + |k|2)m|ûk|2, where ûk =
1

(2π)d

∫
Td
u(x)e−ikxdx.

For m = 0, the space is exactly L2 and the corresponding norm is denoted as ‖ · ‖ for simplicity.
Throughout the paper we assume σ > d/2 so that the well-known bilinear estimate holds [1]:

‖fg‖σ ≤ Cσ,d‖f‖σ‖g‖σ, (2.5)

where Cσ,d represents a positive constant depending on σ and d. We consider the problem (1.2) till
some time 0 < T0 < T ∗, where T ∗ > 0 denotes the maximum existence time of the solution. We
give the error bounds of the splitting schemes for solving (1.2) till t = T0 without discretizing the
space variable, while the full discretization case can be analyzed similarly. In practice, the spatial
discretization can be done by either Fourier pseudo-spectral method [25] or Hermite collocation
method [17, 23] regarding the consistent boundary conditions. As we are considering the periodic
setup in (1.2), the Fourier pseudo-spectral method can be easily applied. Throughout the rest of
the paper, to simplify the notations and simultaneously address the dependence of the error on ε,
we adopt the notation A . B to represent that there exists a generic constant C > 0, which is
independent of the time step τ (or n) and the parameter ε, such that |A| ≤ CB.

2.2. Main results. For the Lie-Trotter splitting scheme (2.3), assume that the potential and the
solution of the NLSE-OP (1.2) satisfy

V ε ∈ C([0, T0];Hσ+2), u ∈ C([0, T0];Hσ+2) ∩ C1([0, T0];Hσ), (2.6a)

‖V ε‖L∞([0,T0];Hσ+2) + ‖u‖L∞([0,T ];Hσ+2) + ‖∂tu‖L∞([0,T ];Hσ) . 1, (2.6b)

where σ > d/2 is a real number. Then we have the following error estimate which shows uniform
accuracy of the Lie-Trotter splitting scheme.

Theorem 2.1. (Lie-Trotter) Under the regularity assumption (2.6), there exists τ0 > 0 independent
of ε and τ (or n), such that when 0 < τ ≤ τ0, the error of the Lie-Trotter scheme satisfies:

‖un − u(·, tn)‖σ . τ, 0 ≤ n ≤ T0/τ.

For the Strang splitting scheme, assume that the given potential and the solution of the NLSE-OP
(1.2) satisfy

V ε ∈ C([0, T0];Hσ+4) ∩ C1([0, T0];Hσ+2), (2.7a)

u ∈ C([0, T0];Hσ+4) ∩ C1([0, T0];Hσ+2) ∩ C2([0, T0];Hσ), (2.7b)

‖V ε‖L∞([0,T0];Hσ+4) + ε‖∂tV ε‖L∞([0,T0];Hσ+2) . 1, (2.7c)

‖u‖L∞([0,T0];Hσ+4) + ‖∂tu‖L∞([0,T0];Hσ+2) + ε‖∂ttu‖L∞([0,T0];Hσ) . 1, (2.7d)
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with σ > d/2. The error bound of the Strang splitting scheme is stated as the follows.

Theorem 2.2. (Strang) Under the regularity assumption (2.7), there exists τ0 > 0 independent of ε
and τ (or n), such that when 0 < τ ≤ τ0, the following error estimate of the Strang splitting scheme
holds:

‖un − u(·, tn)‖σ . min

{
τ,
τ2

ε

}
, 0 ≤ n ≤ T0/τ.

2.3. Extension to Klein-Gordon equation. The splitting schemes for the NLSE-OP (1.2) and
corresponding error estimates can be extended to other wave or dispersive equations with a highly
oscillatory potential. In the following, we present the extension to the nonlinear Klein-Gordon
equation.

For describing cosmic superfluid, the rotating nonlinear Klein-Gordon equation was introduced,
see e.g. [27] and the references therein. After applying the rotating Lagrangian coordinates trans-
form, the following nonlinear Klein-Gordon equation with a highly oscillatory potential (KGE-OP)
occurs [22]:

∂ttu(x, t)−∆u(x, t) + u(x, t) + V ε(x, t)u(x, t) + f(u(x, t)) = 0, x ∈ Td, t > 0, (2.8a)

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), x ∈ Td, (2.8b)

where u is the unknown, u0 and u1 are given real-valued initial data, f : R → R is the given
nonlinearity and V ε is the highly oscillatory potential. In [22], the highly oscillatory V ε is an
anisotropic trapping potential that composites with rapid rotation. The KGE-OP (2.8) also shows
up in the counterpart of the study for the subsonic limit of the Klein-Gordon-Zakharov system [4, 20].
To apply the splitting schemes, we firstly rewrite (2.8) into a first order system by introducing

v(x, t) = 〈∇〉−1∂tu(x, t), 〈∇〉 =
√

1−∆.

Then the vectorised equation reads

∂t

(
u

v

)
=

(
0 〈∇〉
−〈∇〉 0

)(
u

v

)
−
(

0
〈∇〉−1(V εu+ f(u))

)
, t > 0. (2.9)

Note that the linear operator (
0 〈∇〉
−〈∇〉 0

)
is skew symmetric and 0 < 〈∇〉−1 ≤ 1, then (2.9) is analogous to the NLSE-OP (1.2). One can thus
split (2.9) into

∂t

(
u1

v1

)
=

(
0 〈∇〉
−〈∇〉 0

)(
u1

v1

)
and ∂t

(
u2

v2

)
= −

(
0

〈∇〉−1(V εu2 + f(u2))

)
.

The subproblems can be exactly integrated respectively as(
u1(x, t)

v1(x, t)

)
=

(
cos(〈∇〉t) sin(〈∇〉t)
− sin(〈∇〉t) cos(〈∇〉t)

)(
u1(x, 0)

v1(x, 0)

)
,

and (
u2(x, t)

v2(x, t)

)
=

(
u2(x, 0)

v2(x, 0)− 〈∇〉−1
[∫ t

0
V ε(x, s)ds u2(x, 0) + tf(u2(x, 0))

]).
It is straightforward to apply the Lie-Trotter or Strang splitting scheme, and the theoretical error
estimates hold as well. Compared to the strategy introduced in [6] that integrates the oscillation in
phase space with convolution, the splitting schemes could surely improve the efficiency.
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3. Error estimate of the Lie-Trotter splitting

In this section, we aim to prove Theorem 2.1 for the error bound of the Lie-Trotter splitting
scheme (2.3) for solving the NLSE-OP (1.2). Denote

R = ‖u‖L∞([0,T ];Hσ), BσR = {v ∈ Hσ : ‖v‖σ ≤ R}.
Firstly we introduce some auxiliary results which will be used in our proof.

Proposition 3.1. [13] For any function g ∈ C∞(C,C), there exists a nondecreasing function χg :
R+ → R+ such that

‖g(u)‖σ ≤ ‖g(0)‖σ + χg(‖u‖L∞)‖u‖σ, ∀u ∈ Hσ. (3.1)

For all v, w ∈ BσR, we have
‖g(v)− g(w)‖σ ≤ α(g,R)‖v − w‖σ, (3.2)

where α(g,R) = ‖g′(0)‖σ + Rχg′(cR), with c > 0 being the constant for the Sobolev imbedding
‖ · ‖L∞ ≤ c‖ · ‖σ.

Applying the triangle inequality, (3.1) and (3.2), we have

‖f(|v|2)v − f(|w|2)w‖σ ≤M0‖v − w‖σ, v, w ∈ BσR, (3.3)

with M0 = Cσ,d‖f(0)‖σ + C2
σ,dR

2
[
χf (c2R2) + 2α(f, Cσ,dR

2)
]
.

Next we establish the stability result and the local truncation error.

Lemma 3.2. (Stability) For v, w ∈ BσR and 0 ≤ t′ ≤ T0 − τ , the propagator of the Lie-Trotter
splitting scheme (2.3) satisfies:∥∥∥Φτ,t

′

L
(v)− Φτ,t

′

L
(w)
∥∥∥
σ
≤ eMτ‖v − w‖σ,

where M > 0 depends on σ, d, R, ‖V ε‖L∞([0,T0];Hσ) and f .

Proof. Noticing ϕτ
T

preserves Hσ-norm, we get∥∥∥Φτ,t
′

L
(v)− Φτ,t

′

L
(w)
∥∥∥
σ

=
∥∥∥ϕτ,t′

V
(v)− ϕτ,t

′

V
(w)
∥∥∥
σ
.

Denote ṽ(x, t) = ϕt,t
′

V
(v) and w̃(x, t) = ϕt,t

′

V
(w). Define g(x) := e−ix. It is obvious that g ∈

C∞(C,C). It follows from (3.1) that

‖e−i
∫ t
0
V ε(t′+s)ds‖σ ≤ ‖g(0)‖σ + χg

(∥∥∫ t

0

V ε(t′ + s)ds
∥∥
L∞

)∥∥∫ t

0

V ε(t′ + s)ds
∥∥
σ

≤ ‖Id‖σ + χg

(
c t sup

0≤s≤t
‖V ε(t′ + s)‖σ

)
t sup

0≤s≤t
‖V ε(t′ + s)‖σ. (3.4)

Similarly, we get

‖e−itf(|v|2)‖σ ≤ ‖Id‖σ + tχg (t‖f‖L∞) ‖f(|v|2)‖σ
≤ ‖Id‖σ + tχg (t‖f‖L∞)

[
‖f(0)‖σ + Cσ,dχf (c2‖v‖2σ)‖v‖2σ

]
.

Combining the above inequalities and using the bilinear inequality (2.5), we obtain

‖ṽ(x, t)‖σ = ‖ϕt,t
′

V
(v)‖σ ≤ C2

σ,d‖v‖σ‖e−i
∫ t
0
V ε(t′+s)ds‖σ‖e−itf(|v|2)‖σ ≤M1‖v‖σ,

where M1 depends on σ, d, t, f , ‖v‖σ and sup
0≤s≤t

‖V ε(t′+s)‖σ. This implies that ṽ(x, t), w̃(x, t) ∈ Hσ.

By Duhamel’s formula, Minkovski’s inequality, (3.3) and the bilinear inequality (2.5), we have

‖ṽ(·, τ)− w̃(·, τ)‖σ ≤‖v − w‖σ +

∫ τ

0

‖V ε(·, t+ t′) (ṽ(·, t)− w̃(·, t))‖σ dt

+

∫ τ

0

∥∥f(|ṽ(·, t)|2)ṽ(x, t)− f(|w̃(·, t)|2)w̃(·, t)
∥∥
σ
dt

≤‖v − w‖σ +
(
M0 + Cσ,d sup

t∈[0,T0]

‖V ε‖σ
)∫ τ

0

‖ṽ(·, t)− w̃(·, t)‖σ dt.
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By Gronwall’s inequality, we get

‖ṽ(·, τ)− w̃(·, τ)‖σ ≤ eMτ‖v − w‖σ,
where M = M0 + Cσ,d‖V ε‖L∞([0,T0];Hσ) depends on σ, d, R, ‖V ε‖L∞([0,T0];Hσ) and f . �

Omit the space variable for simplicity and denote the local truncation error for n ≥ 0 as

ξn := u(tn+1)− Φτ,tn
L

(u(tn)) = u(tn+1)− e−iτ∆
(

e−i
∫ τ
0
V ε(s+tn)ds−iτf(|u(tn)|2)u(tn)

)
. (3.5)

For the local truncation error, we have the following estimate.

Lemma 3.3. (Local error) Under the regularity assumption (2.6), the local truncation error of the
Lie-Trotter splitting scheme (2.3) satisfies

‖ξn‖σ . τ
2, 0 ≤ n < T0/τ.

Proof. For simplicity of notation, we denote Fn(s) = f(|u(tn+ s)|2), V εn (s) = V ε(tn+ s). By Taylor
expansion, we have

ξn = u(tn+1)− e−iτ∆

[
u(tn)− i

∫ τ

0

V εn (s)ds u(tn)− iτf(|u(tn)|2)u(tn)

−
∫ 1

0

(1− θ)e−iθ
∫ τ
0
V εn (s)ds−iθτf(|u(tn)|2)dθ

(∫ τ

0

V εn (s)ds+ τf(|u(tn)|2)
)2

u(tn)

]
.

Duhamel’s principle gives that

u(tn+1) = e−iτ∆u(tn) +

∫ τ

0

e−i(τ−s)∆ [−iV εn (s)u(tn + s)− iFn(s)u(tn + s)] ds

= e−iτ∆u(tn)− ie−iτ∆

∫ τ

0

[
V εn (s)u(tn) + f(|u(tn)|2)u(tn)

]
ds

+ e−iτ∆

∫ τ

0

∫ 1

0

eisθ∆dθ(s∆) [V εn (s)u(tn + s) + Fn(s)u(tn + s)] ds

− ie−iτ∆

∫ τ

0

[V εn (s)(u(tn + s)− u(tn)) + Fn(s)u(tn + s)− Fn(0)u(tn)] ds.

Thus the local error can be written as

ξn = e−iτ∆

[ ∫ 1

0

(1− θ)e−iθ
∫ τ
0
V εn (s)ds−iθτf(|u(tn)|2)dθ

(∫ τ

0

V εn (s)ds+ τf(|u(tn)|2)
)2

u(tn)

]
+ e−iτ∆

∫ τ

0

∫ 1

0

eisθ∆dθ(s∆) [V εn (s)u(tn + s) + Fn(s)u(tn + s)] ds

− ie−iτ∆

∫ τ

0

[V εn (s)(u(tn + s)− u(tn)) + Fn(s)u(tn + s)− Fn(0)u(tn)] ds.

By using (2.5) and (3.2), we arrive at

‖ξn‖σ ≤ τ2C3
σ,d‖u(tn)‖σ

[
‖f(|u(tn)|2)‖2σ + sup

0≤s≤τ
‖V εn (s)‖σ

]
sup

0≤θ≤1

∥∥∥e−iθ
∫ τ
0
V εn (s)ds−iθτf(|u(tn)|2)

∥∥∥
σ

+ τ2Cσ+2,d sup
0≤s≤τ

‖u(tn + s)‖σ+2 (‖V εn (s)‖σ+2 + ‖Fn(s)‖σ+2)

+

(
M0 + sup

0≤s≤τ
‖V εn (s)‖σ

)∫ τ

0

‖u(tn + s)− u(tn)‖σds.

Applying similar arguments as the proof of Lemma 3.2, we have∥∥∥e−iθ
∫ τ
0
V εn (s)ds−iθτf(|u(tn)|2)

∥∥∥
σ
≤M2,

where M2 depends on σ, d, τ , f , ‖u(tn)‖σ and sup
0≤s≤τ

‖V εn (s)‖σ. Owing to (3.1), we obtain

‖Fn(s)‖σ+2 ≤ ‖f(0)‖σ+2 + Cσ+2,d χf (c2‖u(tn + s)‖2σ)‖u(tn + s)‖2σ+2,



NLS WITH OSCILLATORY POTENTIAL 7

and ∫ τ

0

‖u(tn + s)− u(tn)‖σds =

∫ τ

0

∥∥∥∥∫ s

0

∂tu(tn + y)dy

∥∥∥∥
σ

ds

≤
∫ τ

0

∫ s

0

‖∂tu(tn + y)‖σdyds ≤ τ2 sup
0≤s≤τ

‖∂tu(tn + s)‖σ.

Hence we conclude that there exists a constant C > 0 such that

‖ξn‖σ ≤ Cτ2, 0 ≤ n < T0/τ,

where C depends on σ, d, f , ‖V ε‖L∞([0,T0];Hσ+2), ‖u‖L∞([0,T0];Hσ+2) and ‖∂tu‖L∞([0,T0];Hσ). �

With the above two lemmas, we give the proof of the global error estimate for the Lie-Trotter
splitting (2.3) which is stated as Theorem 2.1.

Proof of Theorem 2.1.

Proof. We use an induction argument for the boundedness of the numerical solution. Denote R =
‖u‖L∞([0,T0];Hσ). We next show the numerical solution un ∈ BσR+1. Firstly, it is obvious for n = 0

since u0 = u0 ∈ BσR. Assume ul ∈ Bσ−2
R+1 for 0 ≤ l ≤ n < T0/τ . Denote en = u(tn)− un. Taking the

difference between (2.3) and (3.5), we get

en+1 = ξn + Φτ,tn
L

(u(tn))− Φτ,tn
L

(un).

Using Lemmas 3.2 and 3.3, we get

‖en+1‖σ ≤‖ξn‖σ +
∥∥Φτ,tn

L
(u(tn))− Φτ,tn

L
(un)

∥∥
σ

≤eMτ‖en‖σ + Cτ2 ≤ eM(n+1)τ‖e0‖σ + Cτ2
n∑
l=0

eMlτ .

Then we get

‖en+1‖σ ≤ C
eMT0 − 1

M
τ, 0 ≤ n < T0/τ,

and when 0 < τ ≤ τ0 := M
C(eMT0−1)

, we have

‖un+1‖σ ≤ ‖u(tn+1)‖σ + 1.

Hence, we have un+1 ∈ BσR+1 and the induction proof is completed. �

Remark 3.4. For the other Lie-Trotter splitting

un =

n∏
m=1

Ψτ,tm−1

L
(u0), Ψτ,t′

L
(ξ) := ϕτ,t

′

V
◦ ϕτ

T
(ξ), n ≥ 0,

we can get the first-order convergence under the same regularity assumptions by noticing that

‖Ψτ,t′

L
(v)−Ψτ,t′

L
(w)‖σ ≤ Cσ,d

∥∥∥e−i
∫ τ
0
V ε(t′+y)dy

∥∥∥
σ

∥∥∥e−iτf(|e−iτ∆v|2)e−iτ∆v − e−iτf(|e−iτ∆w|2)e−iτ∆w
∥∥∥
σ

≤M‖v − w‖σ,

where we have used (3.4) and (3.2).

4. Error estamte of Strang splitting

In this section, we establish the error bound of the Strang splitting scheme (2.4) by proving
Theorem 2.2. We adopt the same notations as in the previous section.

Lemma 4.1. (Stability) For v, w ∈ BσR and 0 ≤ t′ ≤ T0 − τ , the propagator of the Strang splitting
scheme (2.4) satisfies: ∥∥∥Φτ,t

′

S
(v)− Φτ,t

′

S
(w)
∥∥∥
σ
≤ eMτ‖v − w‖σ,

for some M > 0 depending on σ, d, R, ‖V ε‖L∞([0,T0];Hσ) and f .
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Proof. Directly by the fact that ϕτ
T

preserves the Hs-norm and Lemma 3.2, we have∥∥∥Φτ,t
′

S
(v)− Φτ,t

′

S
(w)
∥∥∥
σ

=
∥∥∥ϕτ,t′

V
◦ ϕτ/2

T
(v)− ϕτ,t

′

V
◦ ϕτ/2

T
(w)
∥∥∥
Hσ−4

≤ eMτ
∥∥∥ϕτ/2

T
(v)− ϕτ/2

T
(w)
∥∥∥
σ

= eMτ‖v − w‖σ,

which completes the proof. �

Denote the local truncation error of the Strang splitting for n ≥ 0 as

ηn := u(tn+1)−Φτ,tn
S

(u(tn)) = u(tn+1)−e−i
τ
2 ∆
(

e−i
∫ τ
0
V εn (s)ds−iτf(|e−i

τ
2

∆u(tn)|2)e−i
τ
2 ∆u(tn)

)
. (4.1)

To do so, we further introduce some notations. Let R = R(v, t, s) be a term that depends on the
function values v(t+ t′) for 0 ≤ t′ ≤ s. We say that R ∈ Rβ(v, sα) if and only if

‖R(v, t, s)‖σ ≤ Csα,

where C depends on sup
0≤t′≤s

‖v(t+ t′)‖σ+β . Similarly, we denote by R = R(v, w, t, s) ∈ Rβ,γ(v, w, sα)

if and only if

‖R(v, w, t, s)‖σ ≤ Csα,
where C depends on sup

0≤t′≤s
‖v(t + t′)‖σ+β and sup

0≤t′≤s
‖w(t + t′)‖σ+γ . For simplicity, we write φ =

ψ+Rβ(v, sα) whenever φ = ψ+R with R ∈ Rβ(v, sα) and similarly φ = ψ+Rβ,γ(v, w, sα) whenever
φ = ψ + R with R ∈ Rβ,γ(v, w, sα). Next we introduce a lemma on expansion which will be used
frequently afterwards.

Lemma 4.2. For all s ≥ 0, we have

‖e±is∆v − v‖σ ≤ s‖v‖σ+2 and ‖e±is∆v − v ∓ is∆v‖σ ≤
s2

2
‖v‖σ+4. (4.2)

Proof. For v =
∑
k∈Zd

v̂ke
ikx, we have

e±is∆v − v =
∑
k∈Zd

v̂k

(
e∓is|k|

2

− 1
)
eikx,

which yields that

‖e±is∆v − v‖2σ =
∑
k∈Zd

(1 + |k|2)σ|v̂k|2|e∓is|k|
2

− 1|2 ≤ s2
∑
k∈Zd

(1 + |k|2)σ|v̂k|2|k|4

≤ s2
∑
k∈Zd

(1 + |k|2)σ+2|v̂k|2 ≤ s2‖v‖2σ+2.

Similarly, we have

‖e±is∆v − v ∓ is∆v‖2σ =
∑
k∈Zd

(1 + |k|2)σ|v̂k|2|e∓is|k|
2

− 1± is|k|2|2 ≤ s4

4

∑
k∈Zd

(1 + |k|2)σ|v̂k|2|k|8

≤ s4

4

∑
k∈Zd

(1 + |k|2)σ+4|v̂k|2 ≤
s4

4
‖v‖2σ+4,

which completes the proof. �

Lemma 4.3. (Local error) Under the regularity assumption (2.7), the local truncation error of the
Strang splitting scheme (2.4) satisfies

‖ξn‖σ . min

{
τ2,

τ3

ε

}
, 0 ≤ n < T0/τ.
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Proof. Denote u 1
2

= e−iτ∆/2u(tn). An application of the Duhamel’s formula and Lemma 4.2 leads

to the following representation for 0 ≤ s ≤ τ :

u(tn + s) = e−is∆u(tn)− i
∫ s

0

e−i(s−y)∆ [(V εn (y) + Fn(y))u(tn + y)] dy

= u 1
2

+
(

e−i(s−τ/2)∆ − 1
)
u 1

2
− i
∫ s

0

e−i(s−y)∆ [(V εn (y) + Fn(y))u(tn + y)] dy

= u 1
2

+R2(u, τ) +R0,0(V εn , u, τ) +R0,0(Fn, u, τ)

= u 1
2

+R2(u, τ) +R0,0(V εn , u, τ),

where we have used the inequality (3.1) that ‖Fn(y)‖σ ≤ ‖f(0)‖σ +Cσ,d‖u‖2σχf (c2‖u‖2σ). Plugging
this approximation into the Duhamel’s formula and applying Lemma 4.2, we obtain

u(tn + s) = e−is∆u(tn)− i
∫ s

0

e−i(s−y)∆
[
(V εn (y) + f(|u 1

2
|2))u 1

2

]
dy +R2(u, τ2) +R0,2(V εn , u, τ

2)

= ei(τ/2−s)∆u 1
2
− i
∫ s

0

V εn (y)u 1
2
dy − i

∫ s

0

f(|u 1
2
|2)u 1

2
dy +R2(u, τ2) +R2,2(V εn , u, τ

2)

=
[
1 + i

(τ
2
− s
)

∆
]
u 1

2
− iGεn(s)u 1

2
− isf(|u 1

2
|2)u 1

2
+R4(u, τ2) +R2,2(V εn , u, τ

2), (4.3)

where

Gεn(s) =

∫ s

0

V εn (y)dy.

With this approximation, setting s = τ in the Duhamel’s formula, one gets

u(tn + τ) = e−iτ∆u(tn)− i
∫ τ

0

e−i(τ−s)∆ [(V εn (s) + Fn(s))u(tn + s)] ds

= e−iτ∆u(tn)− ie−iτ∆(Q1 +Q2) +R0,4(V εn , u, τ
3) +R2,2(V εn , u, τ

3),

where

Q1 =

∫ τ

0

eis∆
[
V εn (s)

(
1 + i

(τ
2
− s
)

∆− iGεn(s)− isf(|u 1
2
|2)
)
u 1

2

]
ds,

Q2 =

∫ τ

0

eis∆[Fn(s)u(tn + s)]ds.

Applying Lemma 4.2, Q1 can be expanded as

Q1 =

∫ τ

0

(1 + is∆)(V εn (s)u 1
2
)ds+ i

∫ τ

0

V εn (s)
[(τ

2
− s
)

∆−Gεn(s)− sf(|u 1
2
|2)
]
u 1

2
ds+R4,4(V εn , u, τ

3)

= Gεn(τ)u 1
2

+ i∆
(
Hε
n(τ)u 1

2

)
+ i
[τ

2
Gεn(τ)−Hε

n(τ)
]

∆u 1
2

− i
[
Gεn(τ)2

2
+Hε

n(τ)f(|u 1
2
|2)

]
u 1

2
+R4,4(V εn , u, τ

3),

where Hε
n(τ) =

∫ τ
0
sV εn (s)ds. Moreover, by Taylor expansion, we have

Q2 =

∫ τ

0

eis∆
[
Fn(

τ

2
)u(tn + s)

]
ds+

∫ τ

0

eis∆

[∫ s

τ
2

F ′n(y)dy u(tn + s)

]
ds

=

∫ τ

0

eis∆
[
Fn(

τ

2
)u(tn + s)

]
ds+

∫ τ

0

∫ s

τ
2

F ′n(y)dy u(tn + s)ds+R2,2(u, ∂tu, τ
3)

=

∫ τ

0

eis∆
[
Fn(

τ

2
)u(tn + s)

]
ds+

∫ τ

0

∫ s

τ
2

F ′n(y)dy u
(
tn +

τ

2

)
ds+R2,2(u, ∂tu, τ

3)

=

∫ τ

0

eis∆
[
Fn(

τ

2
)u(tn + s)

]
ds+ u

(
tn +

τ

2

)∫ τ
2

0

y [F ′n(τ − y)− F ′n(y)] dy +R2,2(u, ∂tu, τ
3)

=

∫ τ

0

eis∆
[
Fn(

τ

2
)u(tn + s)

]
ds+R2,2(u, ∂tu, τ

3) +R0,0(u, ∂tu, τ
2). (4.4)
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Noticing that ∫ τ
2

0

y [F ′n(τ − y)− F ′n(y)] dy =

∫ τ
2

0

F ′′n (s)
s2

2
ds+

∫ τ

τ
2

F ′′n (s)
(τ − s)2

2
ds,

this implies

Q2 =

∫ τ

0

eis∆
[
Fn

(τ
2

)
u(tn + s)

]
ds+R2,2(u, ∂tu, τ

3) +R0,0(u, ∂ttu, τ
3), (4.5)

where we have used (3.1) repeatedly for f , f ′ and f ′′. Setting s = τ
2 in (4.3), we have

u
(
tn +

τ

2

)
= u 1

2
− iGεn

(τ
2

)
u 1

2
− iτ

2
f(|u 1

2
|2)u 1

2
+R4(u, τ2) +R2,2(V εn , u, τ

2),

which yields that

|u
(
tn +

τ

2

)
|2 = |u 1

2
|2 +R4(u, τ2) +R2,2(V εn , u, τ

2),

Fn

(τ
2

)
= f(|u 1

2
|2) +R4(u, τ2) +R2,2(V εn , u, τ

2).

Plugging this approximation and (4.3) into Q2, using Lemma 4.2, we get

Q2 =

∫ τ

0

eis∆
[
f(|u 1

2
|2)u(tn + s)

]
ds+Q3

=

∫ τ

0

eis∆
[
f(|u 1

2
|2)
(

1 + i(
τ

2
− s)∆− iGεn(s)− isf(|u 1

2
|2)
)
u 1

2

]
ds+Q3

=

∫ τ

0

(1 + is∆)
(
f(|u 1

2
|2)u 1

2

)
ds+ if(|u 1

2
|2)

∫ τ

0

[(τ
2
− s
)

∆−Gεn(s)− sf(|u 1
2
|2)
]
u 1

2
ds+Q3

= τf(|u 1
2
|2)u 1

2
+
iτ2

2
∆
(
f(|u 1

2
|2)u 1

2

)
− i
∫ τ

0

Gεn(s)ds f(|u 1
2
|2)u 1

2
− iτ2

2
f(|u 1

2
|2)2u 1

2
+Q3,

where by (4.4) and (4.5),

Q3 = R4(u, τ3) +R2,2(V εn , u, τ
3) +R2,2(u, ∂tu, τ

3) + min{R0,0(u, ∂tu, τ
2),R0,0(u, ∂ttu, τ

3)}.

This concludes that

u(tn + τ) = e−iτ∆u(tn)− iGεn(τ)u 1
2
− τ∆(Gεn(τ)u 1

2
) + ∆(Hε

n(τ)u 1
2
) +

(τ
2
Gεn(τ)−Hε

n(τ)
)

∆u 1
2

− u 1
2

[
Gεn(τ)2

2
+ (iτ +Hε

n(τ))f(|u 1
2
|2)

]
− τ2

2
∆
(
f(|u 1

2
|2)u 1

2

)
− τ2

2
f(|u 1

2
|2)2u 1

2

−
∫ τ

0

Gεn(s)ds f(|u 1
2
|2)u 1

2
+R4,4(V εn , u, τ

3) +R2,2(u, ∂tu, τ
3)

+ min{R0,0(u, ∂tu, τ
2),R0,0(u, ∂ttu, τ

3)}.

On the other hand, an application of (4.2) yields

Φτ,tn
S

(u(tn)) = e−iτ∆/2

(
e
−iGεn(τ)−iτf(|u 1

2
|2)
u 1

2

)
= e−iτ∆/2

([
1− iGεn(τ)− iτf(|u 1

2
|2)− 1

2

(
Gεn(τ) + τf(|u 1

2
|2)
)2]

u 1
2

)
+R0,0(V εn , u, τ

3)

= e−iτ∆u(tn)− i
(
Gεn(τ) + τf(|u 1

2
|2)
)
u 1

2
− τ

2
∆
[
(Gεn(τ) + τf(|u 1

2
|2))u 1

2

]
− 1

2
(Gεn(τ) + τf(|u 1

2
|2))2u 1

2
+R4,4(V εn , u, τ

3).
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By subtraction, we get

u(tn+1)− Φτ,tn
S

(u(tn))

= −τ
2

∆(Gεn(τ)u 1
2
) + ∆(Hε

n(τ)u 1
2
) +

[τ
2
Gεn(τ)−Hε

n(τ)
]

∆u 1
2

+R0,0(u, ∂ttu, τ
3)

−
[
Hε
n(τ) +

∫ τ

0

Gεn(s)ds− τGεn(τ)

]
f(|u 1

2
|2)u 1

2
+R4,4(V εn , u, τ

3) +R2,2(u, ∂tu, τ
3)

= 2∇u 1
2
· ∇
[
Hε
n(τ)− τ

2
Gεn(τ)

]
+ u 1

2
∆
[
Hε
n(τ)− τ

2
Gεn(τ)

]
+R4,4(V εn , u, τ

3) +R2,2(u, ∂tu, τ
3) + min{R0,0(u, ∂tu, τ

2),R0,0(u, ∂ttu, τ
3)},

where we have used the property that

Hε
n(τ) +

∫ τ

0

Gεn(s)ds− τGεn(τ) =

∫ τ

0

sV εn (s)ds+

∫ τ

0

∫ s

0

V εn (y)dyds− τ
∫ τ

0

V εn (s)ds

=

∫ τ

0

(s− τ)V εn (s)ds+

∫ τ

0

V εn (y)

∫ τ

y

dsdy = 0.

Noticing that

Hε
n(τ)− τ

2
Gεn(τ) =

∫ τ

0

(
s− τ

2

)
V εn (s)ds =

1

2

∫ τ

0

s(τ − s)∂tV εn (s)ds,

which together with assumption (2.7) yields that

u(tn+1)− Φτ,tn
S

(u(tn)) = R4,4(V εn , u, τ
3) +R2,2(u, ∂tu, τ

3) + min{R0,0(u, ∂tu, τ
2),R0,0(u, ∂ttu, τ

3)}
+ min{R1,2(u, V εn , τ

2),R1,2(u, ∂tV
ε
n , τ

3)}

. min

{
τ2,

τ3

ε

}
,

and the proof is completed. �

Combining the local error bound in Lemma 4.3 and the stability estimate (4.1), and applying a
similar argument as in the proof of Theorem 2.1, we can get the error bound of the second-order
scheme (2.4) as shown in Theorem 2.2.

Remark 4.4. Although our presentation stops at the Strang splitting scheme, the higher-order split-
ting schemes whose local truncation error certainly involves higher-order time derivatives of V ε, are
not expected to be uniformly accurate at their optimal convergence rate.

5. Numerical result

In this section, we present the convergence tests results of the splitting schemes for solving the
NLSE-OP (1.2) and the KGE-OP (2.8) for a wide range of ε ∈ (0, 1]. We implement the spatial
discretization of the splitting schemes by Fourier pseudo-spectral method [24].

Example 5.1. (Test for NLSE-OP) We take one-dimensional example of NLSE-OP for test, i.e.,
d = 1,x = x in (1.2). We consider the cubic nonlinearity f(u) = −u3 and choose the initial condition
for (1.2) as

u0(x) =
sin(2x)

2 + cos(x)
, x ∈ [−π, π].

We take the oscillatory potential V ε(x, t) as

V ε(x, t) = Uε(x, t) + 2 cos(t) cos2(x), (5.1)

where Uε(x, t) is the solution of the following wave equation:
ε2∂ttU

ε(x, t)− ∂xxUε(x, t) = 0, x ∈ (−π, π), t > 0,

Uε(x, 0) =
sin(x)

2 + cos(2x)
+ sin(2x), ∂tU

ε(x, 0) =
1

ε
[cos(3x) + sin(2x)] , x ∈ [−π, π],

Uε(π, t) = Uε(−π, t), ∂xU
ε(π, t) = ∂xU

ε(−π, t), t ≥ 0.
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Figure 1. Error ‖u(·, tn)−un‖H1 at t = 2 of the Lie-Trotter splitting (above) and
Strang splitting (below) for the NLSE-OP (1.2) under different ε and τ .

We solve the NLSE-OP (1.2) till t = 2 and compute the error of splitting schemes:

‖u(·, tn)− un‖H1 .

The reference solution is given by a 4th order Yoshida splitting scheme [28] with Fourier pseudo-
spectral method under very small time step size τ = 10−5 and fine mesh size ∆x = 2π/128. We
plot the temporal error of the Lie-Trotter splitting scheme and the Strang splitting scheme under
different 0 < ε < 1 in Figure 1, where the spatial mesh size ∆x = 2π/128 is kept so that the spatial
discretization error is negligible.

From the numerical results in Figure 1, we can see that
1) The Lie-Trotter splitting scheme (2.3) converges uniformly for all ε ∈ (0, 1] at the first order

rate for solving the NLSE-OP (1.2).
2) The Strang splitting scheme (2.4) converges at the second order rate when the time step τ is

small enough, but the accuracy is not uniform and optimal for ε ∈ (0, 1].

Example 5.2. (Test for KGE-OP) As another example, we solve the one-dimensional KGE-OP
(2.8). We take a cubic nonlinearity f(u) = u3 and initial values in (2.8) as:

u0(x) =
sin(2x)

2 + cos(x)
, u1(x) =

1 + cos(x)

1− sin(2x)/2
, x ∈ [−π, π].

The potential V ε(x, t) is chosen as same as in (5.1).



NLS WITH OSCILLATORY POTENTIAL 13

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

τ

e
rr

o
r

 

 
ε=1/2

ε=1/22

ε=1/23

ε=1/24

ε=1/25

ε=1/26

ε=1/27

ε=1/28

ε=1/29

ε=1/210

ε=1/211

τ

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

ε

e
rr

o
r

 

 
τ=0.1
τ=0.1/2

τ=0.1/22

τ=0.1/23

τ=0.1/24

τ=0.1/25

τ=0.1/26

τ=0.1/27

τ=0.1/28

10
−3

10
−2

10
−1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

τ

e
rr

o
r

 

 
ε=1/2

ε=1/22

ε=1/23

ε=1/24

ε=1/25

ε=1/26

ε=1/27

ε=1/28

ε=1/29

ε=1/210

ε=1/211

τ2

10
−3

10
−2

10
−1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

ε

e
rr

o
r

 

 
τ=0.1
τ=0.1/2

τ=0.1/22

τ=0.1/23

τ=0.1/24

τ=0.1/25

τ=0.1/26

τ=0.1/27

τ=0.1/28

Figure 2. Error ‖u(·, tn)−un‖H1 + ‖∂tu(·, tn)− u̇n‖H1 at t = 2 of the Lie-Trotter
splitting (above) and Strang splitting (below) for the KGE-OP (2.8) under different
ε and τ .

We solve the KGE-OP (2.8) till t = 2 and compute the error:

‖u(·, tn)− un‖H1 + ‖∂tu(·, tn)− u̇n‖H1 .

The reference solution is obtained similarly as before. Figure 2 shows the temporal error (fixed
∆x = 2π/128) of the Lie-Trotter splitting scheme and the Strang splitting scheme under different
ε ∈ (0, 1]. As can be seen, the numerical results in Figure 2 are similar as before and hence
illustrates once again the same conclusions on the convergence result of the splitting schemes. As
for comparisons, we show the corresponding error from the Deuflhard-type exponential integrator
[30] in Figure 3. Although the splitting methods and the exponential integrators (or known as
trigonometric integrators) are closely related [10, 19], it is clear that the exponential integrator
gives much worse approximations than the splitting scheme in our model case, where the error in
Figure 3 increases dramatically as ε becomes small. We comment that the error of the Gautschi-type
exponential integrator [3, 29] is even worse when ε is small.

6. Conclusion

In this work, we consider the nonlinear Schrödinger equation with a highly oscillatory potential
(NLSE-OP) as our model problem, where the potential introduces fast temporal oscillations to
the solution. This model problem is motivated from recent studies on multiscale problems such
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Figure 3. Error ‖u(·, t)− un‖H1 + ‖∂t(·, t)− u̇n‖H1 at t = 2 of exponential inte-
grator for the KGE-OP (2.8) under different ε and τ .

as the subsonic limit of the Zakharov system. The time-splitting schemes are applied to solve the
NLSE-OP, where the sub-flows are integrated exactly. We rigorously analyze the error bounds of the
splitting schemes, where the results show that the Lie-Trotter splitting scheme converges linearly and
uniformly with respect to the oscillation frequency from the potential, while the Strang splitting
scheme is not uniformly second order accurate. Due to the exact integration of the oscillatory
potential, the splitting schemes still give much more accurate approximations than the exponential
integrators in the highly oscillatory regime. Extensions are made to the nonlinear Klein-Gordon
equation with an oscillatory potential. Numerical results justify the theoretical estimates.
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