N

N

A PREDATOR-PREY SYSTEM WITH
HOLLING-TYPE FUNCTIONAL RESPONSE
Nabil Beroual, Tewfik Sari

» To cite this version:

Nabil Beroual, Tewfik Sari. A PREDATOR-PREY SYSTEM WITH HOLLING-TYPE FUNC-
TIONAL RESPONSE. 2019. hal-02002894v1

HAL Id: hal-02002894
https://hal.science/hal-02002894v1

Preprint submitted on 31 Jan 2019 (v1), last revised 23 Jul 2020 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-02002894v1
https://hal.archives-ouvertes.fr

A PREDATOR-PREY SYSTEM WITH HOLLING-TYPE
FUNCTIONAL RESPONSE

NABIL BEROUAL AND TEWFIK SARI

ABSTRACT. We consider the Gause-type predator-prey system with a large
class of growth and response functions, in the case where the response function
is not smooth at the origin. We discuss the conditions under which this system
has exactly one stable limit cycle or has a positive stable equilibrium point
and we describe the basin of attraction of the stable limit cycle and the stable
equilibrium point, respectively. Our results correct previous results of the
existing literature obtained for the Holling response function z?/(a + z?), in
the case where 0 < p < 1.

1. INTRODUCTION

Consider a predator-prey system of the so-called Gause type in the following
general form:

(11) CI? = $f($) - yg(x),

y = y(pg(x) - D),
where " = d/dt; x and y represent the prey population and the predator population,
respectively; p and D are positive parameters. Here  f(x) is the growth function of
the prey species in the absence of the predators, and g(x) represents the functional
response of predators to the growth of prey. For the background on this model, see
Freedman [4].

Motivated by biological applications, one focus of study about (1.1) is the global
behavior of the system in the positive cone of the phase plane. The global behavior
of the system is typically determined by the existence of a positive global attractor,
either an equilibrium or a limit cycle. For this reason, the existence of a positive
equilibrium, its global asymptotic stability, the existence of a limit cycle (in the
case where the positive equilibrium is unstable), the uniqueness of the limit cycle,
its global orbital attractivity, have attracted much interest in recent years, see
[6, 7, 8,9, 11, 12, 13, 14, 15] and the references therein.

The functions f and ¢ in (1.1) are assumed to satisfy the following hypotheses.

(H1) f is smooth for > 0 and there exists k£ > 0 such that

(x—k)f(z) <O0forx >0,z £k

(H2) g is continuous for = > 0, g(0) = 0 and pg(k) > D. It is smooth for z > 0
and ¢'(x) > 0 for > 0.

In (H1) the value k is interpreted as the carrying capacity of the prey species in
the absence of the predators. The system (1.1) admits two boundary equilibrium,
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2 N. BEROUAL AND T. SARI

Ey = (0,0) and Ey = (k,0). It follows from (H2) that there is a unique z* such
that 0 < z* < k and g (2*) = D/u. The predator isocline in the positive cone,
i.e., the curve determined by the equation pg(z) — D = 0, is a vertical line z = x*.
Meanwhile, the prey isocline is the graph of the function y = ¢(z) where

zf(x)
(12) ol) =50
It is easily seen that (k) = 0 and ¢(z) > 0 for 0 < & < k. The value of ¢(0)
depends on additional properties on g near the origin. The intersection point of
the isoclines, E* = (z*,y*) with y* = p(z*), is the only positive equilibrium point
of system (1.1).

Since ¢ is not assumed to be smooth at 0, Ey is not a hyperbolic equilibrium.
Using linear stability analysis (Jacobian) it is easy to see that F; is always a saddle
point, while E* can be a stable or unstable focus or node depending on the sign
of ¢’ (*), where ¢ is defined by (1.2). For ¢’ (2*) < 0, E* is an attractor. For
¢ (z*) > 0, E* is a repeller.

A prototype of f(z) and g(z) in (1.1) is given by the logistic growth and the
Holling functional response, see [12, 13],

(1.3) flz)=r (1 - %) R S

a+ P’

where r, k, a and p are positive parameters (p is not always an integer). In this
case, if 0 < p < 1, the function = — g(z) is not smooth at = 0. Using numerical
simulations, it was observed in [2] that, if 0 < p < 1, some results of [12, 13] on the
existence of a limit cycle or on the global stability of the positive equilibrium, are
not true. We show in this paper why the classical arguments of dynamical systems
do not apply, so that, the results on existence and uniqueness of limit cycle, togheter
with the result on global attractivity of the positive positive equilibrium or the limit
cycle obtained in [12, 13] are not true when 0 < p < 1.

Liu [9] considered the system (1.1). This author did not required the smoothness
of g(x) at = 0, because (see the lines following Hypothesis (H2) in [9]), in some
models it may happen that

(1.4) g (0%) = lim =~ = +o0

For instance, for Holling functions (1.3) with 0 < p < 1, (1.4) holds.

The purpose of this paper is to consider the case where g(x) is not smooth at
x = 0 and to study the global asymptotic stability of the positive equilibrium point,
in the case where it is locally exponentially stable, the existence of limit cycles in
system (1.1), in the case where the positive equilibrium is unstable and the orbital
asymptotic stability (and hence uniqueness) of the limit cycle, in the case where it
exists. The paper is organized as follows. In the next section we give a condition
on the response function g, which is satisfied by the Holling function (1.3), when
0 < p < 1, such that all points of the positive y-axis are non uniqueness points
of (1.1). In Section 3 we discuss the global results of (1.1) and we describe the
basin of attraction of the limit cycle, if its exists, or the positive equilibrium point,
if it is a local attractor. In Section 4 we apply our results to the system (1.1)
where f and g are given by (1.3) and we correct some of the results in the existing
literature which asserted that the system has a unique limit cycle (which is hence
globally attracting), if and only if the positive equilibrium is a repeller, and that
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the positive equilibrium is globally attracting if and only if it is a local attractor.
Some complements and technical proofs are given in the appendix.

2. NONUNIQUENESS OF SOLUTIONS
The function g(z) is assumed to satisfy the following hypothesis.
(H3) g(z) is not smooth for x = 0, (1.4) holds and the integral / o converges
>4

g(x)
as € — 0, where o > 0 is fixed.

From (1.4) it is deduced that ¢(0) = 0. The condition on the convergence of the
integral in (H3) is a technical condition that will be useful for the proofs presented in
this paper. For instance, for Holling functions (1.3) with 0 < p < 1, (H2) and (H3)
hold. However, it should be noticed that (1.4) does not imply that the improper
integral f: dz_ converges. For instance if function g is equivalent to —z In(z) near

g()
0, then (1.4) hods and the improper integral does not converge.

Let 2o be such that 0 < zg < z*. Let (X (¢, 20), Y (¢, 20)) be the solution of (1.1)
with initial condition (zg, p(zo)). Aslong as z* > x > 0 and y > (z), the solution
(X (t,x0),Y (t,20)) can be parametrized by z, that is to say its orbit is the graph
of a function of x:

(2.1) y =n(z,x), for zg <z < z*

Our aim is to show that the limit of these orbits (2.1) exists when 2y — 0 and is a
positive orbit. If the equilibrium point Fy was hyperbolic, then the limit of orbits
(2.1) is simply the y-axis, which is the stable separatrix of Ey. However, under
hypothesis (H3) all points (0, yo), with yo > 0 are non uniqueness points and some
solutions with initial conditions z(0) > 0, y(0) > 0 can reach in finite time the
y-axis at some point (0,yo) after with y decreases to 0. Therefore the orbits (2.1)
are bounded above, so that their limit exists and is a positive orbit.
More precisely, we consider the initial value problem

y = ylugle)=D),  y(0) =y
Besides the trivial solution (z(t) = 0,y(t) = yoe~ ), the initial value problem (2.2)
admits nontrivial positive solutions (x1(t),y1(t)), where z1(t) is not identically 0,
which tends also to Ey as t — 400, as shown in the following result.

Theorem 2.1. For any yo > 0, (0,y0) is a non uniqueness point for (2.2). The
system admits a maximal solution (X1(t,yo),Y1(t,y0)) satisfying

(1) Xy(t,y0) >0 and Y1 (t,y0) >0 fort <0

(2) Xi(t,y0) =0 and Yi(t,yo) = yoe P* fort >0

Proof. The concept of maximal solution used in this theorem should not be con-
fused with the usual concept of mazimal solution, defined on a maximal interval
of definition. Here the solution is said to be mazimal is the sense that it is the
solution (X1(t),Y1(t)) of the initial value problem (2.2), which is non trivial (i.e.
X1(t) > 0), on the maximal possible interval, that is to say for all ¢ < 0. The
details of the proof is given in Appendix B. O

As long as 0 < = < z* and y > ¢(x), the solution (X1 (¢,v0), Y1(t,90)) can be
parametrized by x, that is to say, its orbit is the graph of a function of x:

(2.3) y=n(z,y0), for 0 <z < z*
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Hence, we have the following inequalities, see Fig. 1(a):
o(x) < nlz,z0) < Mm(w,90), for 2o > 0,y0 >0 and z9 <z < z”

Therefore the following limits

w(z) = lim n(z,z9) = sup n(x,x)
zo—0 0<zo<T*

wy () = ylol§0771($»y0) = ylgfo m(x,yo)

exit and satisfy p(z) < w(z) < wy(z), for 0 < z < z*, see Fig. 1(a). Since the
graphs of functions y = w(z) and y = w;(x) are limits, when o — 0 and yo — 0
respectively, of orbits of (1.1), they are themselves orbits of (1.1). We denote by
W?#(Ey) and W (Ey) the global orbits corresponding to the local orbits y = w(x)
and y = w1 (x) respectively, see Fig. 1(b).

Y y
y =m(z, o)
y = wi(x) Elliptic sector
y = w(w)

y = n(z, zo0)

Yo W7 (Eo)
E*
= p(z
y = (@) P
Hyperbolic sector

0 7o e BT o B T

FIGURE 1. (a): The definitions of the local orbits y = w(x) (col-
ored in blue) and y = wi(x) (colored in red). (b): The global
corresponding orbits W#(Ey) (colored in blue) and W (Ep) (col-
ored in red) and the elliptic sector, above W#(Ep), and hyperbolic
sector, under W#(Ejp) (colored in yellow), of Ejy.

Remark 2.2. Although the origin Ej is not a hyperbolic singular point, we use the
notations W#(Ey) and W7 (Ep) since the solutions corresponding to these orbits
tend to Ey as t — +o0o. The description of the behavior of the system near the
origin is as follows: The orbits between W*(Ey) and the y-axis correspond to an
elliptic sector: they tend to the origin as t — +00; The orbits between W*(Eyp) and
the z-axis correspond to a hyperbolic sector, see Fig. 1(b). The orbits between the
y-axis and W7 (Ep) reach the y axis in finite time and goes toward the origin.

3. GLOBAL BEHAVIOUR

Assume that E* is a repeller, that is to say ¢'(z*) > 0. If g was smooth
at 0, then the system would necessarily have a limit cycle surrounding E*. The
existence of a limit cycle results from the Poincaré-Bendixson Theorem and the
fact that Ey is a saddle point, see Appendix A. Is this limit cycle globally orbitally
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asymptotically stable (GOAS) ? If the system can have at most one cycle, then this
cycle is necessarily GOAS.

Assume that E* is an attractor, that is to say ¢'(z*) < 0. Is E* globally
asymptotically stable (GAS) 7 In the case where g is smooth at 0, if a solution with
positive initial condition does not converge toward E*, then, from the Poincaré-
Bendixson Theorem and the fact that Ey is a saddle point, it must converge toward
a limit cycle, see Appendix A. If the system cannot have a cycle, then E* is
necessarily GAS.

In both cases the argument that the system has a limit cycle that must surround
E* uses the fact that Fy is a saddle point, which does not necessarily hold when g
is not smooth at 0, as shown in the preceding section, see Remark 2.2. In the case
where hypothesis (H3) holds, Ey is not a saddle point and the arguments using the
Poincaré-Bendixson theorem cannot run. In this case, the description of the global
behavior of the system is obtained by considering the relative position of the orbit
W#(Eyp) with respect to the unstable separatrix W*(Ej) of the saddle point Fj.

<
<

W*(Eo)

W*(En)

E() CE* E1 Eo I* El

FIGURE 2. W*(Ep) (in blue) is above W*(E7) (in red). The iso-
clines # = 0 and y = 0 are represented in green. (a): E* is a
repeller; (b): E* is an attractor.

3.1. The case where W*(Ey) is above W*(E;). We have the following result

Proposition 3.1. Assume that W*(Ey) is above W*(Ey). If E* is a repeller,
then it is surrounded by at least one limit cycle. If the system can have at most one
cycle, then E* is surrounded by a unique limit cycle which is orbitally asymptotically
stable. This limit cycle is not GOAS, even if it is unique. If E* is an attractor and
if the system has no cycles, then all orbits under W*(FEy) converge towards E*. E*
is not GAS, even if it is not surrounded by any unstable limit cycle.

Proof. Assume that E* is a repeller. The orbit W*(E;) lies in the hyperbolic
sector. Therefore, its w-limit set is limit cycle I' surrounding E*. This limit cycle
is attracting at least on its exterior, see Fig. 2(a). Since E* is repelling, it is
surrounded also by a limit cycle I'y which is attracting at least on its interior. If
one knows that the system can have at most one cycle then I'y = I'. Therefore a
limit cycle exists but it is not GOAS: all orbits above W?*(Ey) converge toward Ey
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and all positive orbits under W*(Ejy), excepted for E*, converge toward the limit
cycle T'.

Assume that E* is an attractor. The orbit W*(E1) lies in the hyperbolic sector.
Therefore, its w-limit set, if it does not contain E*, is necessarily a limit cycle
surrounding E*. If one knows that the system cannot have a cycle then the limit
set is E*. Therefore E* is not GAS since: all orbits above W*(Ey) converge toward
Ey and all positive orbits under W#(Ey) converge toward E*, see Fig. 2(b). O

FIGURE 3. W*(E)p) (in blue) is above W*(E;) (in red). The iso-
clines # = 0 and y = 0 are represented in green. (a): E* is a
repeller; (b): E* is an attractor.

3.2. The case where W*(Ey) is under W"(E;). We have the following result

Proposition 3.2. Assume that W*(Ey) is under W*(Ey). If E* is a repeller and
one knows that the system can have a semi-stable cycle, then all positive solutions
converge toward Ey. If E* is an attractor then it is surrounded by an unstable limit
cycle. If one knows that the system has no cycles, then W*(Ey) cannot be under
W"(Ey).

Proof. Assume that E* is a repeller. The orbit W?*(Ejy) lies in the hyperbolic sector.
Therefore, its a-limit set, if it does not contain E*, is necessarily a limit cycle I'
surrounding E*. This limit cycle is repelling at least on its exterior, see Fig. 3(a).
Since E* is repelling, it is surrounded also by a limit cycle I'y which is attracting at
least on its interior. If one knows that the system can have at most one cycle then
I'y = I'. Therefore I' is attracting on one side and repelling on the other side. If
one knows that this situation is impossible, then the a-limit set of W*(Ey) is equal
to E*. Therefore no limit cycle can exist and all positives solutions, excepted for
E*, converge toward Ey. This case present an unstable positive equilibrium, which
is not surrounded by a cycle.

Assume that E* is an attractor. The orbit W*(Ejy) lies in the hyperbolic sector.
Therefore, its a-limit set is necessarily a limit cycle I' surrounding E*. This limit
cycle is repelling at least on its exterior, see Fig. 3(b). If one knows that the system
cannot have a cycle then the situation where E* is an attractor and in the same
time W*(Ejp) is under W*(E4) cannot hold. O
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4. APPLICATIONS

The purpose of this section is to clarify the necessary and sufficient condition
for the existence and uniqueness of limit cycles of the predator-prey system (1.1),
where f and g are given by (1.3), with 0 < p < 1. The system is written

T xPy
" (1 Bl E) Catar’
(4.1) | ot ATE
y = y(

a + xP

T

)

The condition pug(k) > D in (H2) is equivalent to k > x*, where z* is defined by
g(x*) = D/u, that is to say

1
(4.2) w> D, k:>9c*::( aD )p
w—D
Hence functions f and g satisfy the hypothese (H1), (H2) and (H3) if and only if
0 < p <1 and (4.2) is satisfied. Therefore the results in Propositions 3.1 and 3.2,
have the corollary that if E* is a repellor, the system does not have necessarily a
limit cycle, and if E* is a attractor, it is not GAS.

12 12 12

W (E,)=W?*(Eo)
T ’

Ei"° E¢ 2 4 6 s Eiv By 2 4 6 L it

FIGURE 4. The relative positions of W?*(Ey) and W*(E) for (4.1)
when the parameter values are k = 9.5, a = 2, p = 0.6, u = 2,
D =1and (a): » = 0.6, (b): The heterocline bifurcation W*(FEy) =
W*(E7) holds for 1.4026 < r < 1.4027, (c): r = 2.

4.1. Existence of a limit cycle. Sugie, Kohno and Miyazaki have stated (see
Theorem 2.1 in [13]) that if

(4.3) (D - (p — D)k > (pD — (p — 2)p)z”

then the system (4.1) has a unique limit cycle. Owing the the nonuniqueness of the
solution, this claim is not true. We have the following result:

Proposition 4.1. Assume that (4.2) and (4.3) hold. Then, if W*(Ey) is above
W™(Ey), the system (4.1) has a unique limit cycle whose basin of attraction is the
positive region of the plane located under W*(Ey). If W*(Ey) is under W¥(E), the
system (4.1) has no limit cycle and all positive solutions, excepted for E* converge
toward Ey.
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Proof. One can check that the condition (4.3) is equivalent to ¢’ (x*) > 0. Therefore
FE* is a repellor and it can be surrounded by a limit cycle. However, this limit cycle
if GOAS since it cannot attract the orbits above W#(Ep). Actually, if it exists,
the limit cycle attracts all the orbits under W#(Fy). Using the result of [13] that,
in this case, the system can have at most one limit cycle, we obtain as a corollary
of Proposition 3.1 that if W*(Ep) is above W*(E}), then the system has a unique
limit cycle. On the other hand, using Proposition 3.2 we obtain that if that if
W*#(Ep) is under W*(Ey), then the system has no cycle and all positive solutions
are attracted by Ej. (Il

These results are illustrated in Fig. 4. The numerical simulations show that for
the given values of the parameters, there exists a bifurcation value r( for which the
heterocline bifurcation W*(Ey) = W*(E}) occurs: If r < ro then W#(Ep) is above
W% (E;) and the system has a unique limit cycle; If » > r¢ then W*(Ejp) is under
W*(E4) and the system has no limit cycle.

FIGURE 5. When E* is an attractor, W*(Ejy) is allways above
W¥(E7). The parameter values are the same as in Fig. 4, exepted
that D = 1.1 and r = 1.6.

4.2. Global asymptotic stability of E*. Sugie and Katayama have stated (see
Theorem 1.1 in [12]) that the positive equilibrium E* is GAS if and only if

(4.4) (pD — (p—1)p)k < (pD — (p — 2)p)z”

Owing the the nonuniqueness of the solution, this claim is not true. We have the
following result:

Proposition 4.2. Assume that (4.2) and (4.4) hold. Then W*(Ey) is above
W™(Ey) and the basin of attraction of E* is the positive region of the plane lo-
cated under W*(Ey). Therefore E* is not GAS.

Proof. One can check that the condition (4.4) is equivalent to ¢’ (z*) < 0. Therefore
E* is an attractor. However, it is not GAS since it cannot attract the orbits above
W?#(Ep). Actuaklly, it attracts all the orbits under W?*(Ey). Using the result
of [9, 12] that, in this case the system has no cycle, we obtain as a corollary of
Proposition 3.2 that W*(Ep) is allways above W*(E}), that is to say, the situation
depicted in Fig. 3 never occurs. Therefore, using Propositions 3.1 we obtain that
E* attracts all the orbits under W?*(Ey). O

These results are illustrated in Fig. 5, where it is shown that E* is never GAS.
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5. DISCUSSION

The numerical simulations suggest that, for the system (4.1), when 0 < p < 1,
W3 (E®) = W3 (EY), so that all orbits above W*(EY) reach the y-axis in finite time
and then y(t) tends exponentially to 0.

We have shown that when 0 < p < 1, and E* is a repeller, the system (4.1)
does not necessarily have a limit cycle. When W#(Ep) is above W*(Ey), the limit
cycle exists. However, if is not GOAS. All solutions with initial conditions above
W#(Ey) reach the y-axis in finite time. All solution with initial conditions under
W#(Ey) excepted the equilibrium point E* converge to the limit cycle. When
W#(Ep) is under W*(Ey), the limit cycle does not exist. All solutions, excepted
the equilibrium point E*, reach the y-axis in finite time.

An heterocline bifurcation occurs when W#(Ey) = W*(E4) giving rise to a poly-
cycle: all solutions with initial conditions outside the poly-cycle reach the y-axis in
finite time. All solution with initial conditions inside the poly-cycle excepted the
equilibrium E* converge to the poly-cycle.

On the other hand, when 0 < p < 1 and E* is an attractor, it is not GAS. In
this case W*(Ep) is always above W*(E}), and the basin of attraction of E* is the
positive region under W?(Ey).

Our findings clarify some misunderstandings on the behaviour of this prey preda-
tor model that appeared in the existing literature [12, 13]. It is not true that when
0 < p < 1 the system admits a limit cycle as long as its positive equilibrium E*
is a repeller, nor that this limit cycle is globally attracting whenever it exists, nor
that E* is GAS, whenever it is an attractor.

In [12], the authors consider that the function g(z) = af;p in (4.1) is of Holing
type IT if p < 1 and of Holing type III if p > 1. Actually the functional response
belongs to Holling type III if p > 1, since its has an inflexion point and the func-
tional response curve is sigmoid [5]. When 0 < p < 1, the function g is strictly
increasing, bounded and convex, although the case 0 < p < 1 deserves special in-
terest because of the singularity of g in 0. From a biological and ecological point of
view, the functional response g with 0 < p < 1, defines a class of prey and predator
populations characterized by predators with a very high attack rate for very small
densities prey and a need for a large amount of prey to reach satiety. This response
function has the property that the prey can goes to extinction in finite time, which
never happens when p > 1.

APPENDIX A. EXISTENCE OF LIMIT CYCLES WHEN ¢ IS SMOOTH AT 0

Most of the classical works on (1.1) or (4.1) have employed the transformation
of the system into an equivalent generalized Liénard system. This method requires
that f(z) and g(x) are sufficiently smooth so that existence, uniqueness, and con-
tinuation for all positive t are satisfied for initial-value problems. For instance, the
proof of the existence of a cycle, when g is smooth at 0, and the positive equilib-
rium is a repeller, needs the Poincaré-Bendixson Theorem and the fact that Ej is
hyperbolic. However, since this proof is standard, it is often omitted in the existing
literature by authors who attempted to extend the results to functions g which are
not smooth at 0. This is precisely the point where these proofs are not correct.

For the convenience of the reader, we give here the details on the proof of the
existence of a limit cycle, when the positive equilibrium point is a repeller and the
function g is smooth at 0. The hypothesis of hyperbolicity of Ey is crucial to apply
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the so-called Butler-MacGehee Theorem which we recall here and whose proof is
given in [10].

Theorem A.l. (Butler-McGehee). If an omega (or alpha)-limit set w contains a
hyperbolic equilibrium point a, but it is not equal to {a}, then w contains a point
b # a of the stable manifold W*(a), as well as a point ¢ # a of the unstable manifold
W(a).

We have the following result

Theorem A.2. Assume that (H1) and (H2) hold and in addition g is smooth at
0. If E* is a repeller, then (1.1) has a limit cycle that contains E* in its interior.

Proof. It is known that under the hypotheses (H1) and (H2), all solutions of (1.1)
are positively bounded. Therefore the omega-limit set w of a positive trajectory is
nonempty, invariant and compact. If ¢ is smooth at = 0 then Ej is hyperbolic (a
saddle point).

The limit set w does not contain the saddle points Fy and F;. Indeed, if w
contains Fjy, and since it is different from Ey, because Ej is the omega-limit set of
only the trajectories lying in the y-axis, then by the Butler-MacGehee Theorem, it
must contain a point b = (0, yo) with yo > 0 of W#(Ejy) which is the positive y-axis.
Since w is invariant it must contain the whole trajectory of b, which is the positive
y axis. This contradicts the compactness of w.

In the same manner if w contains F7, and since it is different from F4, because
F is the omega-limit set of only trajectories lying in the z-axis, then by the Butler-
MacGehee Theorem, it must contain a point b = (x,0) with yo > 0 of W*(E})
which is the positive z-axis. Two cases must be distinguished: If zy > k then
w contains the whole trajectory of b which is unbounded. This contradicts the
compactness of w; If 2o < k then w contains the whole trajectory of b which is the
segment (0, k) of the z-axis. Since w is closed, it must contain [0, k], the closure of
(0, k). Therefore w contains Ey which is impossible as we have previously seen.

Assuming that E* is a repeller, then it cannot belong to the omega-limit set w.
Therefore w contains no equilibrium points. By the Poincaré-Bendixson Theorem,
w is a cycle. Since in the plane, a cycle must contain an equilibrium point in its
interior, w surrounds E*. ([

If one have to our disposal the result that (1.1) admits at most one cycle, then
the limit cycle whose existence was proved in the previous theorem is necessarily
GOAS. Therefore, all solutions with positive initial conditions, excepted for E*
converge toward this limit cycle. The solutions with initial conditions on the y-axis
converge toward Ej, and the solutions with initial conditions on the positive z-axis
converge toward Fj.

When E* is an attractor, we have the following result

Theorem A.3. Assume that (H1) and (H2) hold and in addition g is smooth at
0. If E* is an attractor and (1.1) has no cycles then E* is GAS.

Proof. Assume that E* is an attractor. If a solution with positive initial condition
does not converge toward E*, then its omega-limit set w cannot contain E*. By
the Butler-McGehee Theorem, it cannot contain Fy nor F; as shown in the proof
of the previous theorem. Therefore w contain no equilibrium points. From the
Poincaré-Bendixson Theorem, w is a limit cycle, which contradicts the hypothesis
that (1.1) has no cycles. Therefore w = {E*}, which proves that E* is GAS. O
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In the case where g(x) is not smooth at x = 0, Ej is not a saddle point and the
proofs of all results in the present section cannot run. For instance, in his proof of
Theorem 1 in [9], the author claimed that (0, 0) is a saddle, which is not true when
g(x) is not smooth at 2 = 0. Therefore, the system has not necessarily a cycle when
(z*,y*) is a repeller. Morever, the claim of the author following the proof of his
Theorem 1, that “local asymptotic stability of (z*, y*) implies its global asymptotic
stability” is not true. Indeed Fig. 5 provides a counterexample to this claim.

APPENDIX B. PROOF OF THEOREM 2.1

The proof needs the following result, known as the Tamarkine’s Nonuniqueness
theorem (see [1], p. 98).

Theorem B.1. Let F (u,x) be a continuous function on S = [—a,a] X [—b,b], with
a>0 and b> 0. Assume that for all (u,x) € S

|F (u, ) = F (u, 20 (u)] = G (|2 — 20 (u)])

where u — xo (u) s a solution of the initial value problem

(B.1) Tu F (u,x), z (0) =0,

Assume that z — G (z) is an increasing function for z > 0, G(0) = 0 and the
“d
integml/ Wz), (o > €) converges as € — 0. Then, the initial value problem
z
g
(B.1) has at least two solutions in [—a,a).

Proof. (of Theorem 2.1) The change of variables y = ype¥, transforms (2.2) into
the system

& = xf(x) —yoe'g(z),  x(0)=0
(B.2) - ug(w)—%)» ! u(0) =0

In the region

D= {(m,u) 0<zr <z, u>In go(x)}
Yo
we have zf(x) — yoe*g(x) < 0 and pg(z) — D < 0. Therefore (B.2) is equivalent to
the scalar initial value problem

(B.3) Y Plaw),  w(0)=0,
with
Flu,2,90) = zf(x) — yoe"g(x)

png(z) — D

where g is considered as a parameter. Using (1.2), F'(u,x,yo) can be written
yoe" — ¢(x)

D — pg(x)

Since ¢g(0) = 0, F(u,0,yo) = 0. Therefore o (u) = 0 is a solution of (B.3). Actually

the initial value problem (B.3) has also non trivial solutions.
If u > 0 then yge* > yo and hence, for any u > 0 and = € [0, z*), we have

|F (u, 2, y0) = F (u, 20,90 (w))| = F (u, ,90) > G (x)

F(u,z,y0) = g()
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where
Gl =g () S
Let us denote by
_ Yo —F(z)
"= D)

The function G is written G(z) = g(z)h(z). It satisfies that G (0) = 0 and, for
z small enough, G is increasing. Indeed, from h (0) = yo/D > 0 we deduce that
h(z) > 0 for z small enough, and from ¢ (0) = 0 we deduce that g(x) is small for x
small enough, so that

G'(2) =g (2) h(2) +g(2) W (2) = ¢’ (2) h(2) > 0.
For z small enough
1~ D-pug(2) D

G 9 W —-F) w9

Therefore, using (H3), [~ Gd(zz y converges as € — 0. Using Theorem B.1 the initial

€

value problem (B.3) has a positive nontrivial solution x;(u) such that x;(u) is not
identically 0.

Let us prove now that the initial value problem (B.3) has a solution &(u, o)
satisfying the folloxing conditions:

&(u,y0) > 0, for 0 < u < ug and &(u,yo) =0, for u <0

The set ®(yo) of all solutions u +— z(u) of (B.3) defined on a open interval I
containing 0 contains at least two distinct solutions, the trivial solution xq for
which zg(u) is identically 0 and a non trivial solution z; for which z(u) is not
identically 0. For each u € I let
§(u,y0) = sup x(u)
z€P(yo)

It is well known (see [3], section 10.5, problem 7) that & belongs to ®(yg). It is
called the mazimal solution of (B.3) on I, corresponding to the initial condition
2(0) = 0. Let ug € I, such that up > 0. Using the definition of £, we have
&(u,y0) > 0 for 0 < u < wp. The trivial solution xzo(u) = 0 of (B.3) corresponds
to the trivial solution (z(t) = 0,y(0) = yoe ?) of (2.2) and a nontrivial solution
x1(u) of (B.3) corresponds to a nontrivial positive solution (z1(t),y1(t)) of (2.2).
For instance, to the maximal nontrivial solution £(u,y) corresponds the maximal
solution (X (¢,y0), Y1(t,50)) of (2.2) constructed as follows. First we consider the
second equation in (B.2), where z is replaced by &(u, yo):

= pg (€(u,y0)) — D,  u(0)=0

Let U(t,y0) be the solution of this initial value problem. Since &(u,yo) = 0 for
u < 0, one has U(t,yo) = —Dt for u < 0. Using the change of variables y = yge*,
the solution (X1(t,yo0), Y1(¢,y0)) of (2.2) is defined by

Xi(t,yo) = €Ut y0), %),  Yilt,yo) = yoe! B0

This solution satisfies X1 (¢,v0) = 0, Y1(t,y0) = yoe P! for t < 0 and X;(t,y0) > 0,
Y1 (t,y0) > 0 for ¢ < 0, which are the conditions in the theorem. a
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