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A PREDATOR-PREY SYSTEM WITH HOLLING-TYPE1

FUNCTIONAL RESPONSE2

NABIL BEROUAL AND TEWFIK SARI3

(Communicated by Wenxian Shen)

Abstract. We consider the Gause-type predator-prey system with a large

class of growth and response functions, in the case where the response function
is not smooth at the origin. We discuss the conditions under which this system

has exactly one stable limit cycle or has a positive stable equilibrium point

and we describe the basin of attraction of the stable limit cycle and the stable
equilibrium point, respectively. Our results correct previous results of the

existing literature obtained for the Holling response function xp/(a + xp), in

the case where 0 < p < 1.

1. Introduction4

Consider a predator-prey system of the so-called Gause type in the following5

general form:6

(1.1)
ẋ = xf(x)− yg(x),
ẏ = y (µg(x)−D) ,

where ˙ = d/dt; x and y represent the prey population and the predator population,7

respectively; µ and D are positive parameters. Here xf(x) is the growth function of8

the prey species in the absence of the predators, and g(x) represents the functional9

response of predators to the growth of prey. For the background on this model, see10

Freedman [4].11

In mathematical models for biology, the focus is on the global behavior of the12

system in the positive cone of the phase plane. The global behavior of the system13

is typically determined by the existence of a positive global attractor, either an14

equilibrium or a limit cycle. For this reason, the existence of a positive equilibrium15

of (1.1), its global asymptotic stability, the existence of a limit cycle (in case where16

the positive equilibrium is unstable), the uniqueness of the limit cycle, its global17

orbital attractivity, have attracted much interest in recent years, see [6, 7, 8, 9, 11,18

12, 13, 14, 15] and the references therein.19

The functions f and g in (1.1) are assumed to satisfy the following hypotheses.20

(H1) f is smooth for x ≥ 0 and there exists k > 0 such that f(k) = 0 and21

(x− k)f(x) < 0 for x ≥ 0 and x 6= k.22

(H2) g is continuous for x ≥ 0, g(0) = 0 and µg(k) > D. It is smooth for x > 023

and g′(x) > 0 for x > 0.24
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2 N. BEROUAL AND T. SARI

In (H1) the value k is interpreted as the carrying capacity of the prey species in25

the absence of the predators. The system (1.1) admits two boundary equilibrium26

points, E0 = (0, 0) and E1 = (k, 0). It follows from (H2) that there is a unique x∗27

such that 0 < x∗ < k and g (x∗) = D/µ. The predator isocline in the positive cone,28

i.e., the curve determined by the equation µg(x)−D = 0, is a vertical line x = x∗.29

Meanwhile, the prey isocline is the graph of the function y = ϕ(x) where30

(1.2) ϕ(x) =
xf(x)

g(x)
.

It is easy to see that ϕ(k) = 0 and ϕ(x) > 0 for 0 < x < k. The value of ϕ(0)31

depends on additional properties on g near the origin. The intersection point of32

the isoclines, E∗ = (x∗, y∗) with y∗ = ϕ(x∗), is the only positive equilibrium point33

of system (1.1).34

Since g is not assumed to be smooth at 0, E0 is not a hyperbolic equilibrium.35

Using linear stability analysis (Jacobian) it is easy to see that E1 is always a saddle36

point, while E∗ can be a stable or unstable focus or node depending on the sign37

of ϕ′ (x∗), where ϕ is defined by (1.2). For ϕ′ (x∗) < 0, E∗ is an attractor. For38

ϕ′ (x∗) > 0, E∗ is a repeller.39

A prototype of f(x) and g(x) in (1.1) is given by the logistic growth and the40

Holling functional response, see [12, 13],41

(1.3) f(x) = r
(

1− x

k

)
, g(x) =

xp

a+ xp
,

where r, k, a and p are positive parameters (p is not always an integer). In this42

case, if 0 < p < 1, the function x 7→ g(x) is not smooth at x = 0. Using numerical43

simulations, it was observed in [2] that, if 0 < p < 1, some results of [12, 13] on44

the existence of a limit cycle or on the global stability of the positive equilibrium,45

are not true. We show in this paper why the classical arguments of dynamical46

systems do not apply, and why the results on existence and uniqueness of limit47

cycle, together with the result on global attractivity of the positive equilibrium or48

the limit cycle obtained in [12, 13] are not true when 0 < p < 1.49

Liu [9] considered the system (1.1). This author did not required the smoothness50

of g(x) at x = 0, because (see the lines following Hypothesis (H2) in [9]), in some51

models it may happen that52

(1.4) g′(0+) := lim
x→0+

g(x)

x
= +∞.

For instance, for Holling functions (1.3) with 0 < p < 1, (1.4) holds.53

The purpose of this paper is to consider the case where g(x) is not smooth at54

x = 0 and to study the global asymptotic stability of the positive equilibrium55

point (when it is locally exponentially stable), and also to study the existence of56

limit cycles (when the positive equilibrium is unstable) and the orbital asymptotic57

stability, and hence uniqueness, of the limit cycle (when the limit cycle exists).58

The paper is organized as follows. In the next section we give a condition on59

the response function g, which is satisfied by the Holling function (1.3), with 0 <60

p < 1, such that all points of the positive y-axis are points of non-uniqueness of61

the solutions of (1.1), that is to say the Cauchy problem (1.1) and the conditions62

x(0) = 0, y(0) > 0 has not only the trivial solution x(t) ≡ 0, but also has solutions63

satisfying x(t) > 0 for some t < 0. In Section 3 we discuss the global results on64

(1.1) and we describe the basin of attraction of the limit cycle, if it exists, and the65
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basin of attraction of the positive equilibrium point, when it is a local attractor. In66

Section 4 we apply our results to the system (1.1) where f and g are given by (1.3)67

and we correct some of the results in the existing literature which asserted that the68

system has a unique limit cycle (which is hence globally attracting), if and only if69

the positive equilibrium is a repeller, and that the positive equilibrium is globally70

attracting if and only if it is a local attractor. Some complements and technical71

proofs are given in the appendix.72

2. Non uniqueness of solutions73

The function g(x) is assumed to satisfy the following hypothesis.74

(H3) g(x) is not smooth for x = 0, (1.4) holds and the integral

∫ α

ε

dx

g (x)
converges75

as ε→ 0, where α > 0 is fixed.76

It follows from (1.4) that ϕ(0) = 0. The condition on the convergence of the77

integral in (H3) is a technical condition that will be useful for the proofs presented in78

this paper. For instance, for Holling functions (1.3) with 0 < p < 1, (H2) and (H3)79

hold. However, it should be noticed that (1.4) does not imply that the improper80

integral
∫ α
ε

dx
g(x) converges. For instance if function g is equivalent to −x ln(x) near81

0, then (1.4) hods and the improper integral does not converge.82

Let x0 be such that 0 < x0 < x∗. Let (X(t, x0), Y (t, x0)) be the solution of (1.1)83

with initial condition (x0, ϕ(x0)). As long as x∗ > x > 0 and y > ϕ(x), the solution84

(X(t, x0), Y (t, x0)) can be parametrized by x, that is to say its orbit is the graph85

of a function of x:86

(2.1) y = η(x, x0), for x0 ≤ x ≤ x∗.

Our aim is to show that the limit of these orbits (2.1) exists when x0 → 0 and is a87

positive orbit. If the equilibrium point E0 was hyperbolic, then the limit of orbits88

(2.1) is simply the y-axis, which is the stable separatrix of E0. However, under89

hypothesis (H3) all points (0, y0), with y0 > 0 are non uniqueness points and some90

solutions with initial conditions x(0) > 0, y(0) > 0 can reach in finite time the91

y-axis at some point (0, y0) after with y decreases to 0. Therefore the orbits (2.1)92

are bounded above, so that their limit exists and is a positive orbit.93

More precisely, we consider the initial value problem94

(2.2)
ẋ = xf(x)− yg(x), x(0) = 0,
ẏ = y (µg(x)−D) , y(0) = y0.

Besides the trivial solution
(
x(t) = 0, y(t) = y0e

−Dt), the initial value problem (2.2)95

admits nontrivial positive solutions (x1(t), y1(t)), where x1(t) is not identically 0,96

which tends also to E0 as t→ +∞, as shown in the following result.97

Theorem 2.1. For any y0 > 0, (0, y0) is a non uniqueness point for (2.2). The98

system admits a maximal solution (X1(t, y0), Y1(t, y0)) satisfying99

(1) X1(t, y0) > 0 and Y1(t, y0) > 0 for t < 0.100

(2) X1(t, y0) = 0 and Y1(t, y0) = y0e
−Dt for t ≥ 0.101

Proof. The concept of maximal solution used in this theorem should not be con-102

fused with the usual concept of maximal solution, defined on a maximal interval103

of definition. Here the solution is said to be maximal in the sense that it is the104

solution (X1(t), Y1(t)) of the initial value problem (2.2), which is non trivial (i.e.105
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X1(t) > 0), on the maximal possible interval, that is to say for all t < 0. The106

details of the proof is given in Appendix B. �107

As long as 0 < x < x∗ and y > ϕ(x), the solution (X1(t, y0), Y1(t, y0)) can be108

parametrized by x, that is to say, its orbit is the graph of a function of x:109

(2.3) y = η1(x, y0), for 0 ≤ x ≤ x∗.
Hence, we have the following inequalities, see Fig. 1(a):

ϕ(x) < η(x, x0) < η1(x, y0), for x0 > 0, y0 > 0 and x0 ≤ x ≤ x∗.
Therefore the following limits

w(x) = lim
x0→0

η(x, x0) = sup
0<x0<x∗

η(x, x0),

w1(x) = lim
y0→0

η1(x, y0) = inf
y0>0

η1(x, y0),

exit and satisfy ϕ(x) < w(x) ≤ w1(x), for 0 < x < x∗, see Fig. 1(a). Since the110

graphs of functions y = w(x) and y = w1(x) are limits, when x0 → 0 and y0 → 0111

respectively, of orbits of (1.1), they themselves are orbits of (1.1). We denote by112

W s(E0) and W s
1 (E0) the global orbits corresponding to the local orbits y = w(x)113

and y = w1(x) respectively, see Fig. 1(b).114

(a) (b)

y = ϕ(x)

y = η(x, x0)

y = η1(x, x0)

x0
x

kx∗0

y

y0

y = w1(x)

y = w(x)

E0 E1

E∗

W s
1 (E0)

x

y

W s(E0)

Elliptic sector

Hyperbolic sector

Figure 1. (a): The definitions of the local orbits y = w(x) (col-
ored in blue) and y = w1(x) (colored in red). (b): The global
corresponding orbits W s(E0) (colored in blue) and W s

1 (E0) (col-
ored in red) and the elliptic sector, above W s(E0), and hyperbolic
sector, below W s(E0) (colored in yellow), of E0.

Remark 2.2. Although the origin E0 is not a hyperbolic singular point, we use the115

notations W s(E0) and W s
1 (E0) since the solutions corresponding to these orbits116

tend to E0 as t→ +∞. The description of the behavior of the system near E0 is as117

follows: The region between W s(E0) and the x-axis is a hyperbolic sector and the118

region between W s(E0) and the y-axis is an elliptic sector, see Fig. 1(b). Orbits119

who are between W s(E0) and W s
1 (E0) tend toward E0 when t → +∞ and those120

who are between the y axis and W s
1 (E0) reach the y axis in finite time and then,121

go toward the origin when t→ +∞.122
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3. Global behaviour123

Assume that E∗ is a repeller, that is to say ϕ′(x∗) > 0. If g were smooth at 0,124

then the system would necessarily have a limit cycle surrounding E∗. The existence125

of a limit cycle results from the Poincaré-Bendixson Theorem and the fact that E0 is126

a saddle point, see Appendix A. Is this limit cycle globally orbitally asymptotically127

stable (GOAS) ? If the system has at most one cycle, then this cycle is necessarily128

GOAS.129

Assume that E∗ is an attractor, that is to say ϕ′(x∗) < 0. Is E∗ globally130

asymptotically stable (GAS) ? In the case where g is smooth at 0, if a solution with131

positive initial condition does not converge toward E∗, then, from the Poincaré-132

Bendixson Theorem and the fact that E0 is a saddle point, it must converge toward133

a limit cycle, see Appendix A. If the system cannot have a cycle, then E∗ is134

necessarily GAS.135

In both cases the argument that the system has a limit cycle that must surround136

E∗ uses the fact that E0 is a saddle point, which does not hold when g is not137

smooth at 0, as shown in the preceding section, see Remark 2.2. In the case where138

hypothesis (H3) holds, E0 is not a saddle point and the Poincaré-Bendixson theorem139

is inapplicable. In this case, the description of the global behavior of the system is140

obtained by considering the relative position of the orbit W s(E0) with respect to141

the unstable separatrix Wu(E1) of the saddle point E1.142

(a) (b)

Γ

x
x∗

y

E0 E1

E∗

Wu(E1)

W s(E0)

E0 E1

E∗

x∗ x

y

Wu(E1)

W s(E0)

Figure 2. W s(E0) (in blue) is above Wu(E1) (in red). The iso-
clines ẋ = 0 and ẏ = 0 are represented in green. (a): E∗ is a
repeller; (b): E∗ is an attractor.

3.1. The case where W s(E0) is above Wu(E1). We have the following result143

Proposition 3.1. Assume that W s(E0) is above Wu(E1). If E∗ is a repeller,144

then it is surrounded by at least one limit cycle. If the system can have at most one145

cycle, then E∗ is surrounded by a unique limit cycle which is orbitally asymptotically146

stable. This limit cycle is not GOAS, even if it is unique. If E∗ is an attractor and147

if the system has no cycles, then all orbits below W s(E0) converge towards E∗. E∗148

is not GAS, even if it is not surrounded by any unstable limit cycle.149
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Proof. Assume that E∗ is a repeller. The orbit Wu(E1) lies in the hyperbolic150

sector. Therefore, its ω-limit set is a limit cycle Γ surrounding E∗. This limit151

cycle is attracting at least on its exterior, see Fig. 2(a). Since E∗ is repelling, it is152

surrounded also by a limit cycle Γ1 which is attracting at least on its interior. If153

the system can have at most one cycle then Γ1 = Γ. Therefore a limit cycle exists154

but it is not GOAS: all orbits above W s(E0) converge toward E0 and all positive155

orbits below W s(E0), excepted for E∗, converge toward the limit cycle Γ.156

Assume that E∗ is an attractor. The orbit Wu(E1) lies in the hyperbolic sector.157

Therefore, its ω-limit set, if it does not contain E∗, is necessarily a limit cycle158

surrounding E∗. If the system cannot have a cycle then the limit set of Wu(E1)159

is equal to E∗. Therefore E∗ is not GAS since: all orbits above W s(E0) converge160

toward E0 and all positive orbits below W s(E0) converge toward E∗, see Fig.161

2(b). �162

(a) (b)

x
x∗

y

E0 E1

E∗

Wu(E1)

W s(E0)

E0 E1

E∗

x∗ x

y

Wu(E1)

W s(E0)

Figure 3. W s(E0) (in blue) is below Wu(E1) (in red). The iso-
clines ẋ = 0 and ẏ = 0 are represented in green. (a): E∗ is a
repeller; (b): E∗ is an attractor.

3.2. The case where W s(E0) is below Wu(E1). We have the following result163

Proposition 3.2. Assume that W s(E0) is below Wu(E1). If E∗ is a repeller and164

assuming that the system can have at most one cycle and, if it exists, this cycle165

cannot be semi-stable (i.e stable on one side and unstable in another side), then all166

positive orbits, excepted for E∗, converge toward E0. If E∗ is an attractor then it167

is surrounded by an unstable limit cycle.168

Proof. Assume that E∗ is a repeller. The orbit W s(E0) lies in the hyperbolic sector.169

Therefore, its α-limit set, if it does not contain E∗, is necessarily a limit cycle Γ170

surrounding E∗. This limit cycle is repelling on its exterior. Since E∗ is repelling,171

it is surrounded also by a limit cycle Γ1 which is attracting on its interior. Since172

the system can have at most one cycle, Γ1 = Γ. Therefore Γ is attracting on one173

side and repelling on the other side. Since this situation is impossible, the α-limit174

set of W s(E0) is equal to E∗. Therefore no limit cycle can exist and all positive175

solutions, excepted for E∗, converge toward E0.176
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Assume that E∗ is an attractor. The orbit W s(E0) lies in the hyperbolic sector.177

Therefore, its α-limit set is necessarily a limit cycle Γ surrounding E∗. This limit178

cycle is repelling on its exterior. �179

The first case of the proposition (E∗ is a repeller) is depicted in Fig.3(a). This180

case presents an unstable positive equilibrium, which is not surrounded by a cycle.181

The second case of the proposition (E∗ is an attractor) is depicted in Fig. 3(b). If182

the system cannot have a cycle then the situation where E∗ is an attractor and in183

the same time W s(E0) is below Wu(E1) cannot hold.184

4. Applications185

The purpose of this section is to clarify the necessary and sufficient conditions186

for the existence and uniqueness of limit cycles of the predator-prey system (1.1),187

where f and g are given by (1.3), with 0 < p < 1. The system is written188

(4.1)
ẋ = rx

(
1− x

k

)
− xpy

a+ xp
,

ẏ = y

(
µxp

a+ xp
−D

)
.

The condition µg(k) > D in (H2) is equivalent to k > x∗, where x∗ is defined by189

g(x∗) = D/µ, that is to say190

(4.2) µ > D, k > x∗ :=

(
aD

µ−D

) 1
p

.

Hence functions f and g satisfy the hypotheses (H1), (H2) and (H3) if and only if191

0 < p < 1 and (4.2) is satisfied. Therefore the results in Propositions 3.1 and 3.2,192

have the corollary that if E∗ is a repellor, the system does not always have a limit193

cycle, and if E∗ is a attractor, it is not GAS.194

4.1. Existence of a limit cycle. Sugie, Kohno and Miyazaki have stated (see195

Theorem 2.1 in [13]) that if196

(4.3) (pD − (p− 1)µ)k > (pD − (p− 2)µ)x∗,

then the system (4.1) has a unique limit cycle. Owing the the non uniqueness of197

the solution, this claim is not true. We have the following result:198

Proposition 4.1. Assume that (4.2) and (4.3) hold. Then, if W s(E0) is above199

Wu(E1), the system (4.1) has a unique limit cycle whose basin of attraction is the200

positive region of the plane located below W s(E0). If W s(E0) is below Wu(E1), the201

system (4.1) has no limit cycle and all positive solutions, excepted for E∗ converge202

toward E0.203

Proof. One can check that the condition (4.3) is equivalent to ϕ′(x∗) > 0. Therefore204

E∗ is a repellor and it can be surrounded by a limit cycle. However, this limit cycle205

is not GOAS since it cannot attract the orbits above W s(E0). Actually, if it exists,206

the limit cycle attracts all the orbits below W s(E0). Using the result of [13] that,207

in this case, the system can have at most one limit cycle, we obtain as a corollary208

of Proposition 3.1 that if W s(E0) is above Wu(E1), then the system has a unique209

limit cycle. On the other hand, using Proposition 3.2 we obtain that if W s(E0) is210

below Wu(E1), then the system has no cycle and all positive solutions are attracted211

by E0. �212
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(a) (b) (c)

E0 E1

E∗

Wu(E1)

W s(E0)

E0 E1

E∗

Wu(E1)=W s(E0)

E0 E1

E∗

Wu(E1)

W s(E0)

Figure 4. The relative positions of W s(E0) and Wu(E1) for (4.1)
when the parameter values are k = 9.5, a = 2, p = 0.6, µ = 2,
D = 1 and (a): r = 0.6, (b): The heterocline bifurcation W s(E0) =
Wu(E1) holds for 1.4026 < r < 1.4027, (c): r = 2.

These results are illustrated in Fig. 4. The numerical simulations show that for213

the given values of the parameters, there exists a bifurcation value r0 for which the214

heterocline bifurcation W s(E0) = Wu(E1) occurs: If r < r0 then W s(E0) is above215

Wu(E1) and the system has a unique limit cycle which is not GOAS; If r > r0216

then W s(E0) is below Wu(E1) and the system has no limit cycle, and the positive217

solutions are attracted by the origin.218

4.2. Global asymptotic stability of E∗. Sugie and Katayama have stated (see219

Theorem 1.1 in [12]) that the positive equilibrium E∗ is GAS if and only if220

(4.4) (pD − (p− 1)µ)k ≤ (pD − (p− 2)µ)x∗.

Owing the the non uniqueness of the solution, this claim is not true. We have the221

following result:222

Proposition 4.2. Assume that (4.2) and (4.4) hold. Then W s(E0) is above223

Wu(E1) and the basin of attraction of E∗ is the positive region of the plane lo-224

cated below W s(E0). Therefore E∗ is not GAS.225

Proof. One can check that the condition (4.4) is equivalent to ϕ′(x∗) ≤ 0. Therefore226

E∗ is an attractor. However, it is not GAS since it cannot attract the orbits above227

W s(E0). Actually, it attracts all the orbits belowW s(E0). Using the result of [9, 12]228

that, in this case the system has no cycle, we obtain as a corollary of Proposition229

3.2 that W s(E0) is always above Wu(E1), that is to say, the situation depicted in230

Fig. 3 never occurs. Therefore, using Propositions 3.1 we obtain that E∗ attracts231

all the orbits below W s(E0). �232

These results are illustrated in Fig. 5, where it is shown that E∗ is never GAS.233

5. Discussion234

We have shown in this work that the differentiability of g at x = 0 could dras-235

tically affect the dynamics of (1.1). For instance, when 0 < p < 1, and E∗ is a236

repeller, the system (4.1) does not necessarily have a limit cycle. When W s(E0) is237

above Wu(E1), the limit cycle exists. However, it is not GOAS. All solutions with238

initial conditions above W s(E0) reach the y-axis in finite time. All solutions with239

initial conditions below W s(E0) excepted the equilibrium point E∗ converge to the240
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E0 E1

E∗

Wu(E1)

W s(E0)

Figure 5. When E∗ is an attractor, W s(E0) is always above
Wu(E1). The parameter values are the same as in Fig. 4, ex-
cepted that D = 1.1 and r = 1.6.

limit cycle. When W s(E0) is below Wu(E1), the limit cycle does not exist. All241

solutions, excepted the equilibrium point E∗, reach the y-axis in finite time.242

An heterocline bifurcation occurs when W s(E0) = Wu(E1) giving rise to a poly-243

cycle: all solutions with initial conditions outside the poly-cycle reach the y-axis in244

finite time. All solution with initial conditions inside the poly-cycle excepted the245

equilibrium E∗ converge to the poly-cycle.246

On the other hand, when 0 < p < 1 and E∗ is an attractor, it is not GAS. In247

this case W s(E0) is always above Wu(E1), and the basin of attraction of E∗ is the248

positive region below W s(E0).249

Our findings clarify some misunderstandings on the behaviour of this prey preda-250

tor model that appeared in the existing literature [12, 13]. It is not true that when251

0 < p < 1 the system admits a limit cycle as long as its positive equilibrium E∗252

is a repeller, nor that this limit cycle is globally attracting whenever it exists, nor253

that E∗ is GAS, whenever it is an attractor.254

In [12], the authors consider that the function g(x) = xp

a+xp in (4.1) is of Holing255

type II if p ≤ 1 and of Holing type III if p > 1. Actually the functional response256

belongs to Holling type III if p > 1, since its has an inflexion point and the func-257

tional response curve is sigmoid [5]. When 0 < p ≤ 1, the function g is strictly258

increasing, bounded and convex, although the case 0 < p < 1 deserves special in-259

terest because of the singularity of g in 0. From a biological and ecological point of260

view, the functional response g with 0 < p < 1, defines a class of prey and predator261

populations characterized by predators with a very high attack rate for very small262

densities prey and a need for a large amount of prey to reach satiety. This response263

function has the property that the prey can go extinct in finite time, which never264

happens when p ≥ 1.265

Appendix A. Existence of limit cycles when g is smooth at 0266

Most of the classical works on (1.1) or (4.1) have employed the transforma-267

tion that converts the system into an equivalent generalized Liénard system. This268

method requires that f(x) and g(x) are sufficiently smooth so that existence,269

uniqueness, and continuation for all positive t are satisfied for initial-value prob-270

lems. For instance, the proof of the existence of a cycle, when g is smooth at 0,271

and the positive equilibrium is a repeller, needs the Poincaré-Bendixson Theorem272
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and the fact that E0 is hyperbolic. However, since this proof is standard, it is often273

omitted in the existing literature by authors who attempted to extend the results274

to functions g which are not smooth at 0. This is precisely the point where these275

proofs are not correct.276

For the convenience of the reader, we give here the details on the proof of the277

existence of a limit cycle, when the positive equilibrium point is a repeller and278

the function g is smooth at 0. The hypothesis of hyperbolicity of E0 is crucial to279

applying the so-called Butler-MacGehee Theorem which we recall here and whose280

proof is given in [10].281

Theorem A.1. (Butler–McGehee). If an omega (or alpha)-limit set ω contains a282

hyperbolic equilibrium point a, but it is not equal to {a}, then ω contains a point283

b 6= a of the stable manifold W s(a), as well as a point c 6= a of the unstable manifold284

Wu(a).285

We have the following result286

Theorem A.2. Assume that (H1) and (H2) hold and in addition g is smooth at287

0. If E∗ is a repeller, then (1.1) has a limit cycle that contains E∗ in its interior.288

Proof. It is known that under the hypotheses (H1) and (H2), all solutions of (1.1)289

are positively bounded. Therefore the omega-limit set ω of a positive trajectory is290

nonempty, invariant and compact. If g is smooth at x = 0 then E0 is hyperbolic (a291

saddle point).292

The limit set ω does not contain the saddle points E0 and E1. Indeed, if ω293

contains E0, and since it is different from E0, because E0 is the omega-limit set of294

only the trajectories lying in the y-axis, then by the Butler-MacGehee Theorem, it295

must contain a point b = (0, y0) with y0 > 0 of W s(E0) which is the positive y-axis.296

Since ω is invariant it must contain the whole trajectory of b, which is the positive297

y axis. This contradicts the compactness of ω.298

In the same manner if ω contains E1, and since it is different from E1, because299

E1 is the omega-limit set of only trajectories lying in the x-axis, then by the Butler-300

MacGehee Theorem, it must contain a point b = (x0, 0) with x0 > 0 of W s(E1)301

which is the positive x-axis. Two cases must be distinguished: If x0 > k then302

ω contains the whole trajectory of b which is unbounded. This contradicts the303

compactness of ω; If x0 < k then ω contains the whole trajectory of b which is the304

segment (0, k) of the x-axis. Since ω is closed, it must contain [0, k], the closure of305

(0, k). Therefore ω contains E0 which is impossible as we have previously seen.306

Assuming that E∗ is a repeller, then it cannot belong to the omega-limit set ω.307

Therefore ω contains no equilibrium points. By the Poincaré-Bendixson Theorem,308

ω is a cycle. Since in the plane, a cycle must contain an equilibrium point in its309

interior, ω surrounds E∗. �310

If one have to our disposal the result that (1.1) admits at most one cycle, then311

the limit cycle whose existence was proved in the previous theorem is necessarily312

GOAS. Therefore, all solutions with positive initial conditions, excepted for E∗313

converge toward this limit cycle. The solutions with initial conditions on the y-axis314

converge toward E0, and the solutions with initial conditions on the positive x-axis315

converge toward E1.316

When E∗ is an attractor, we have the following result317
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Theorem A.3. Assume that (H1) and (H2) hold and in addition g is smooth at318

0. If E∗ is an attractor and (1.1) has no cycles then E∗ is GAS.319

Proof. Assume that E∗ is an attractor. If a solution with positive initial condition320

does not converge toward E∗, then its omega-limit set ω cannot contain E∗. By321

the Butler-McGehee Theorem, it cannot contain E0 nor E1 as shown in the proof322

of the previous theorem. Therefore ω contain no equilibrium points. From the323

Poincaré-Bendixson Theorem, ω is a limit cycle, which contradicts the hypothesis324

that (1.1) has no cycles. Therefore ω = {E∗}, which proves that E∗ is GAS. �325

In the case where g(x) is not smooth at x = 0, E0 is not a hyperbolic saddle326

point and the arguments used in the proofs of Theorem A.2 and Theorem A.3 do327

not apply. For instance, in his proof of Theorem 1 in [9], the author claimed that328

(0, 0) is a saddle, which is not true when g(x) is not smooth at x = 0. Therefore,329

the system does not have necessarily a cycle when (x∗, y∗) is a repeller. Moreover,330

the claim of the author following the proof of his Theorem 1, that “local asymptotic331

stability of (x∗, y∗) implies its global asymptotic stability” is not true. Indeed Fig.332

5 provides a counterexample to this claim.333

Appendix B. Proof of Theorem 2.1334

The proof needs the following result, known as the Tamarkine’s non uniqueness335

theorem (see [1], p. 98).336

Theorem B.1. Let F (u, x) be a continuous function on S = [−a, a]× [−b, b], with337

a > 0 and b > 0. Assume that for all (u, x) ∈ S338

|F (u, x)− F (u, x0 (u))| ≥ G (|x− x0 (u)|) ,
where u 7→ x0 (u) is a solution of the initial value problem339

(B.1)
dx

du
= F (u, x) , x (0) = 0.

Assume that z 7→ G (z) is an increasing function for z ≥ 0, G (0) = 0 and the340

integral

∫ α

ε

dz

G (z)
, (α > ε) converges as ε → 0. Then, the initial value problem341

(B.1) has at least two solutions in [−a, a].342

Proof. (of Theorem 2.1) The change of variables y = y0e
u, transforms (2.2) into343

the system344

(B.2)
ẋ = xf(x)− y0e

ug(x), x(0) = 0,
u̇ = µg(x)−D, u(0) = 0.

In the region

D =

{
(x, u) : 0 ≤ x < x∗, u > ln

ϕ(x)

y0

}
,

where ϕ(x) is defined by (1.2), we have xf(x)− y0e
ug(x) < 0 and µg(x)−D < 0.345

Therefore (B.2) is equivalent to the scalar initial value problem346

(B.3)
dx

du
= F (u, x, y0) , x (0) = 0,

with

F (u, x, y0) =
xf(x)− y0e

ug(x)

µg(x)−D
,
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where y0 is considered as a parameter. Using (1.2), F (u, x, y0) can be written

F (u, x, y0) = g(x)
y0e

u − ϕ(x)

D − µg(x)
.

Since g(0) = 0, F (u, 0, y0) = 0. Therefore x0 (u) = 0 is a solution of (B.3). Actually347

the initial value problem (B.3) has also non trivial solutions.348

If u ≥ 0 then y0e
u ≥ y0 and hence, for any u ≥ 0 and x ∈ [0, x∗), we have

|F (u, x, y0)− F (u, x0 (u) , y0)| = F (u, x, y0) > G (x) ,

where

G (z) = g (z)
y0 − ϕ (z)

D − µg (z)
.

Let us denote by

h (z) =
y0 − ϕ (z)

D − µg (z)
.

The function G is written G(z) = g(z)h(z). It satisfies that G (0) = 0 and, for
z small enough, G is increasing. Indeed, from h (0) = y0/D > 0 we deduce that
h(x) > 0 for x small enough, and from g (0) = 0 we deduce that g(x) is small for x
small enough, so that

G′ (z) = g′ (z)h (z) + g (z)h′ (z) ≈ g′ (z)h (z) > 0.

For z small enough

1

G (z)
=

D − µg (z)

g (z) (y0 − ϕ (z))
∼ D

y0g (z)
.

Therefore, using (H3),
∫ α
ε

dz
G(z) converges as ε→ 0. Using Theorem B.1 the initial349

value problem (B.3) has a positive nontrivial solution x1(u) such that x1(u) is not350

identically 0.351

Let us prove now that the initial value problem (B.3) has a solution ξ(u, y0)
satisfying the following conditions:

ξ(u, y0) > 0, for 0 < u < u0 and ξ(u, y0) = 0, for u ≤ 0.

The set Φ(y0) of all solutions u 7→ x(u) of (B.3) defined on a open interval I
containing 0 contains at least two distinct solutions, the trivial solution x0 for
which x0(u) is identically 0 and a non trivial solution x1 for which x1(u) is not
identically 0. For each u ∈ I let

ξ(u, y0) = sup
x∈Φ(y0)

x(u).

It is well known (see [3], section 10.5, problem 7) that ξ belongs to Φ(y0). It is
called the maximal solution of (B.3) on I, corresponding to the initial condition
x(0) = 0. Let u0 ∈ I, such that u0 > 0. Using the definition of ξ, we have
ξ(u, y0) > 0 for 0 < u < u0. The trivial solution x0(u) = 0 of (B.3) corresponds
to the trivial solution

(
x(t) = 0, y(0) = y0e

−Dt) of (2.2) and a nontrivial solution
x1(u) of (B.3) corresponds to a nontrivial positive solution (x1(t), y1(t)) of (2.2).
For instance, to the maximal nontrivial solution ξ(u, y0) corresponds the maximal
solution (X1(t, y0), Y1(t, y0)) of (2.2) constructed as follows. First we consider the
second equation in (B.2), where x is replaced by ξ(u, y0):

u̇ = µg (ξ(u, y0))−D, u(0) = 0.
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Let U(t, y0) be the solution of this initial value problem. Since ξ(u, y0) = 0 for
u ≤ 0, one has U(t, y0) = −Dt for u ≤ 0. Using the change of variables y = y0e

u,
the solution (X1(t, y0), Y1(t, y0)) of (2.2) is defined by

X1(t, y0) = ξ (U(t, y0), y0) , Y1(t, y0) = y0e
U(t,y0).

This solution satisfies X1(t, y0) = 0, Y1(t, y0) = y0e
−Dt for t ≤ 0 and X1(t, y0) > 0,352

Y1(t, y0) > 0 for t < 0, which are the conditions in the theorem. �353
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