N
N

N

HAL

open science

Can Machines Design? An Artificial General
Intelligence Approach
Andreas Makoto Hein, Hélene Condat

» To cite this version:

Andreas Makoto Hein, Héléene Condat. Can Machines Design? An Artificial General Intelligence
Approach. 11th Conference on Artificial General Intelligence, Aug 2018, Prague, Czech Republic.

hal-02002814

HAL Id: hal-02002814
https://hal.science/hal-02002814
Submitted on 31 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02002814
https://hal.archives-ouvertes.fr

1806.02091v4 [cs.Al] 26 Jun 2018

arXiv

Can Machines Design? An Artificial General
Intelligence Approach

Andreas M. Hein! and Hélene Condat?

! Laboratoire Genie Industriel, CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France
andreas-makoto.hein@centralesupelec.fr
2 Initiative for Interstellar Studies (i4is), Charfield, UK

Abstract. Can machines design? Can they come up with creative solutions to prob-
lems and build tools and artifacts across a wide range of domains? Recent advances in
the field of computational creativity and formal Artificial General Intelligence (AGI)
provide frameworks for machines with the general ability to design. In this paper
we propose to integrate a formal computational creativity framework into the Godel
machine framework. We call the resulting framework design Gédel machine. Such a
machine could solve a variety of design problems by generating novel concepts. In
addition, it could change the way these concepts are generated by modifying itself.
The design Godel machine is able to improve its initial design program, once it has
proven that a modification would increase its return on the utility function. Finally,
we sketch out a specific version of the design Gddel machine which specifically ad-
dresses the design of complex software and hardware systems. Future work aims at
the development of a more formal version of the design G6del machine and a proof
of concept implementation.

Keywords: Artificial General Intelligence, Godel Machine, Computational Creativ-
ity, Software Engineering, Systems Engineering, Design Theory, Reinforcement Learn-
ing

1 Introduction

Can machines design? In other words, can they come up with creative solutions to problems
[38] and intervene into their environment by, for example, building tools and artifacts, or
better versions of themselves [26] [10]? Surprisingly, this question has not received a lot
of attention in the current debate on artificial intelligence, such as in Bostrom [2] and
Russell [33]. An exception is the literature in formal artificial general intelligence (AGI)
research [27) 28] 40, [10]. If artificial intelligence is going to have a large impact on the real
world, it needs to have at least some capacity to create "new” things and to change its
environment. The capacity to create new things has also been called ”generativity” in the
design theory literature [I7]. Such machines could be used across many contexts where the
ability to design in the widest sense is required, for example, designing industrial goods
such as the chassis of a car that can subsequently be manufactured. Another application
could be in space colonization where local resources are used for building an infrastructure
autonomously for a human crew [I8| [19] [20]. Traditionally, the wider question of creative
machines has been treated in the computational creativity community. The computational
creativity community has come up with numerous systems that exhibit creativity [9], 41l
[7, [8, B2], i.e. systems that are able to conceive artifacts that are considered as novel and
creative by humans and/or are novel compared to the underlying knowledge base of the
system. Wiggins [42] and Cherti [6] have explored the link between artificial intelligence and
creativity. More specifically, Wiggins [42] formalizes the notions of exploratory creativity and
transformational creativity from Boden [I] in an artificial intelligence context. A creative
system that exhibits exploratory creativity is capable of exploring a set of concepts according
to a set of rules. Transformational creativity is by contrast exhibited by a system that can
modify the set of concepts itself and / or the rules according to which it searches for the set
of concepts.

At the same time, the artificial general intelligence community is working on general
foundations of intelligence and providing frameworks for formally capturing essential ele-
ments of intelligence. Within this community, intelligence is primarily defined as general

problem-solving [23] [13]. According to Goertzel, [13], the field of Artificial General Intelli-
gence deals with ”the creation and study of synthetic intelligences with sufficiently broad
(e.g. human-level) scope and strong generalization capability...” A relevant research stream
in this field is the development of the "universalist approach” that deals with formal mod-
els of general intelligence. Examples are Hutter’s AIXI [23], Schmidhuber’s Gédel Machine
[35], and Orseau and Ring’s space-time embedded intelligence [27]. These formal models
are based on reinforcement learning where an agent interacts with an environment and is
capable of self-improvement.

In this paper we attempt to integrate Wiggins’ formal creativity framework [42] into an
Artificial General Intelligence (AGI) framework, the Gédel machine [35]. The purpose is to
demonstrate that the mechanisms of self-improvement in AGI frameworks can be applied to
a general system design problem. The resulting design Gddel machine designs according to
certain rules but is capable of changing these rules, which corresponds to exploratory and
transformational creative systems in Wiggins [42]. Based on this generic framework, we will
sketch out a machine that can design complex hardware or software systems. Such systems
encompass most products with a high economic value such as in aerospace, automotive,
transportation engineering, robotics, and artificial intelligence.

2 Literature Survey

In the literature survey, we will focus on the literature on design theory, formal modeling lan-
guages in systems and software engineering, computational creativity, and artificial general
intelligence.

The design theory literature provides criteria for how to evaluate a design theory. Hatchuel
et al. [I7] introduce two criteria: generativity and robustness. Whereas generativity is the
capacity of a design theory to explain or replicate how new things are created, robustness
is understood as how sensitive the performance of the designs is with respect to different
environments. The main contribution of the design theory literature to a general designing
machine are the different forms of generativity and criteria for evaluating design theories.

One possibility to capture generativity is by using a formal design language. Formal
design languages belong to the formalized subset of all design languages that are used for
generating designs. Formal languages consist of a set of symbols, called alphabet X', a set of
rules, called grammar, that define which expressions based on the alphabet are valid, and a
mapping to a domain from which meaning for the expressions is derived [I5]. This mapping
is called “semantics”. The set of all words over X is denoted X*. The language L is a subset
of X* and contains all expressions that are valid with respect to a grammar.

For example, programming languages consist of a set of expressions such as ’if” conditions
and for-loops. These expressions are used for composing a computer program. However, the
expressions need to be used in a precise way. Otherwise the code cannot be executed correctly,
i.e. the program has to be grammatically correct.

According to Broy et al. [5], formal semantics can be represented in terms of a calcu-
lus, another formalism (denotational and translational semantics), and a model interpreter
(operational semantics). Existing formal semantics for complex systems and software engi-
neering seem to be based on denotational semantics where the semantic domain to which
the syntax is mapped is based on set theory, predicate logic [4l B], algebras [21], coalgebras
[14] etc.

Formal design languages are formal languages that are used for designing, e.g. for creating
new objects or problem-solving. For example, programming languages are used for programs
that can be executed on a computer.

The computational creativity literature presents different forms of creativity and cre-
ativity mechanisms [I1]. It distinguishes between several forms of creativity, which have
been introduced by Boden [I]: Combinational creativity is creativity that is based on the
combination of preexisting knowledge. For example, the game of tangram consists of primi-
tive geometric shapes that are combined to form new shapes. Exploratory creativity is “the
process of searching an area of conceptual space governed by certain rules” [30]. Finally,
transformational creativity “is the process of transforming the rules and thus identifying a
new sub-space.” [30] These categories seem to correspond with the generativity categories

combinatorial generation, search in topological proximity, and knowledge expansion in de-
sign theory [I7]. All three forms of creativity can be generated by computational systems
today [I]. However, a key limitation is that these systems exhibit these forms of creativity
only for a very narrow domain such as art, jokes, poetry, etc. No generally creative system
exists.

The artificial general intelligence literature does seldom treat creativity explicitly. Schmid-
huber [34, [36] [37] is rather an exception. He establishes the link between a utility function
and creativity. A creative agent receives a reward for being creative. Hutter [23] briefly men-
tions creativity. Here, creativity is rather a corollary of general intelligence. In other words,
if a system exhibits general intelligence, then it is necessarily creative. In the following,
we will briefly introduce the Gédel machine AGI framework that has received considerable
attention within the community.

3 Creativity and the Godel Machine: A Design Godel Machine

We use the computational creativity framework from Wiggins [42] and integrate it with
the Godel machine framework of a self-referential learning system. In his influential paper,
Wiggins [42] introduces formal representations for creative systems that have been informally
introduced by Boden [, notably exploratory and transformational creativity. We choose the
Godel machine as our AGI framework, as its ability to self-modify is a key characteristic
for a general designing machine. Furthermore, it uses a formal language, which makes it
easier to combine with formal design languages. However, we acknowledge that AIXI [23]
and Orseau and Ring’s space-time embedded intelligence [27] should be considered for a
similar exercise.

A Godel machine that can generate novel concepts (paintings, poems, cars, spacecraft)
is called design Godel machine in the following. Such a machine is a form of creative system,
defined as a ”collection of processes, natural or automatic, which are capable of achieving
or simulating behaviour which in humans would be deemed creative.” [42]

The original G6del machine consists of a formal language £ that may include first order
logic, arithmetics, and probability theory, as shown in Fig.

Godel Machine

Alphabet T ={-,A=Y,3,(), ..+ —< ..}
Formal L={x+y=2z.}

language
T
Z 7(t)|s, e]

Utility
function u(s,e) = E,
t

switching (u[s(t) @ (switchbit(t) =" 1'),e(t)]
target > (uls(t) @ (switchbit(t) =" 0"),e(t)]

theorem
Theorem get — axiom(n)
prover apply — rule(k, m,n)

instructions delete — theorem(m)

set — switchprog(m,n)
check()

Fig. 1. Elements of the Gédel machine

It also consists of a utility function v whose value the machine tries to maximize.

u(s,e) :SxE—-R

T
u(s,e) = E,[Z r(1)|s,e] for 1<t<T (1)

T=time

Where s is a variable state of the machine, e the variable environmental state, r(¢) is a
real-valued reward input at a time ¢. E,(-|-) denotes the conditional expectation operator
of a distribution p of a set of distributions M, where M reflects the knowledge about the
(probabilistic) reactions of the environment.

How does the Godel machine self-improve? A theorem prover searches for a proof that
a modification can improve the machine’s performance with respect to the utility function.
Once a proof is found that a modified version of itself would satisfy the target theorem
in Equation , the program switchprog rewrites the machine’s code from its current to
its modified version. The target theorem essentially states that when the current state s
at 1 with modifications yields a higher utility than the current machine, the machine will
schedule its modification.

(u[s(t1) @ switchbit(ty) =" 1), Env(t)] > u[s(t1) @ switchbit(ty) =" 0'), Env(t1)]) (2)

The basic idea of combining the Godel machine framework with the formal creativity
framework of Wiggins [42] is to construct a Gédel machine where its problem solver corre-
sponds to an exploratory creative system and the proof searcher corresponds to a transfor-
mational creative system. The transformational creative system can modify the exploratory
creative system or itself.

More formally, the design Goédel machine consists of an initial software p(1). p(1) is
divided into an exploratory creative system which includes an initial policy 7(1)eny, which
interacts with the environment and a transformational creative system, which includes an
initial policy 7(1)proos. T(1)proos searches for proofs and forms pairs of (switchprog, proof),
where the proof is a proof of a target theorem that states that an immediate rewrite of p
via switchprog would yield a higher utility « than the current version of p. m(1)ep, is more
specifically interpreted as a set of design sequences comprising design actions. A design
sequence, for example, is the order in which components are combined to form a system.
The different ways of how components can be combined are the design actions and the
sequence of how they are combined is the design sequence.

The design Godel machine consists of a variable state s € S. The variable state s repre-
sents the current state of the design Godel machine, including a set of concepts ¢(t) at time ¢
that the machine has generated, a set of syntactic and knowledge-based rules R that define
the permissible concepts in a design language £, and a set of sequences of design actions mep,,
for generating concepts and getting feedback for these concepts from the environment. The
machine generates concepts in each time step ¢, including the empty concept T. It receives
feedback on the utility of these concepts via the utility function u(s,e) : S x £ — R, which
computes a reward from the environmental state e € £. Analogous to the exploratory cre-
ative system in Wiggins [42], men, and u are part of a 7-tuple < U, L, [.], (., .,.), R, Tenv, U >,
where U is a universe of concepts, [.] is an interpretation function that applies the syntactic
and knowledge-based rules R to U, resulting in the set of permissible concepts C. The inter-
preter (.,.,.) takes a set of concepts ¢;, and transforms them into a set of concepts ¢y by

applying (R, Teno, u):

(Cout) = <R7 Tenv, u> (Cin) (3)

Self-modification for the design Godel machine means that parts of the exploratory cre-
ative system and transformational creative system can be modified. Regarding the former,
the transformational creative system is able to modify the exploratory creative system’s
rules R, the sequences of design actions ey, and the utility function u. For this purpose,
the transformational creative system searches for a proof that a modification would lead to
a higher value on the meta utility function wu,etq. By default, w,erq returns 0 if the target
theorem in Equation is not satisfied and 1 if it is. If the target theorem is satisfied,
this modification is implemented in the subsequent time step. In addition, a target theorem

Umeta could capture criteria for a good design sequence in 7., that are expected to lead to
a higher value on u. Examples are measures for the originality of the created designs via a
design sequence, if originality is expected to lead to higher values on u. The proof searcher
Tproof that searches for the proof and the proof itself are expressed in a meta-language
Lometa- The proof is based on axioms, rules, and theorems in R and 7., the meta-language
syntax and rules Ri,etq, and the proof strategies mpr00r 0of the proof searcher. Hence, the
transformational creative system can be expressed as the 7-tuple:

< Ea ‘Cmetaa [-]metaa <'7 9 ->meta7 Rmeta; 7Tproofy Umeta > (4)

More specifically, in case u is not modified, the proof searcher m,,,¢ generates pairs of
R and 7oy, from an existing R and men, by applying an interpreter (., ., .)meta With Roneta,
Tproof s and Umeta:

(R27 71-env2) = <Rmetaa 7Tp7‘oof7 umeta>meta (Rh 7re7w1) (5)

This formulation is similar to the transformational creative system in Wiggins [42]. If the
proof searcher can prove wmetq ((R2, Tenv2); €1) > Umeta((R1, Tenv1), €1), the design Godel
machine will switch to the new rules Ry and design sequences Tepy2.

Analogous to the original Gédel machine, the transformational creative system in the
design Godel machine is capable of performing self-modifications, for example, on the proof
searcher and the meta-utility function:

(XQ) = <Rmetaa Tproof s umeta>meta(‘)(1) (6)

where X is one of the elements in < L, Letas [], -+ -5 -), Rmetas Tproof s Umeta > Self-
reference in general can cause problems, however, as Schmidhuber [35] notes, in most prac-
tical applications, they are likely not relevant. A design Gédel machine would start with an
initial configuration and then modify itself to find versions of itself that yield higher values
on its utility function.

Fig. [2] provides an overview of the main elements of the design Godel machine that have
been introduced before.

Environment & Design Gddel Machine

Transformational creative system

< L' Lmeta: []meta: < »a)meta: Rmetal T[proof' Umeta >

modifies modifies
r(t) .
Exploratory creative system
c(t) <ULLLC)R Topp,u >

Fig. 2. Elements of the design Gddel machine

4 A Design Godel Machine for Complex Systems Design

A specific version of the design Goédel machine for designing complex software and hardware
systems can be imagined. It would include a set of syntactic and knowledge-based rules R
that define sound designs (concepts for hardware and software) in the specific domain and a
set of design actions such as abstraction, refinement, composition, and verification [4, [3] 4]

that can be combined into design sequences 7rep,,. The environment £ could be a virtual test
environment or an environment in which design prototypes are tested in the real world.

Important principles of formal systems and software engineering are components and
their interactions, abstraction, composition, refinement, and verification [4, B, [14]. Broy
[4, [3] defines interactions in terms of streams and interfaces. Golden [I4] defines interactions
in terms of dataflows. Component functions are specified in terms of transfer functions
that transform inputs into outputs. The component behavior is specified in terms of state
machines. Golden [14] specifies component behavior via a timed Mealy machine, Broy [4] [3]
uses a state-oriented functional specification for this purpose.

Apart from this basic representation of a system as a set of interacting components,
abstraction, composition, refinement, and verification are important principles during the
design of a system.

Abstraction means that details are left out in order to facilitate the comprehension of a
complex system, reduce computational complexity or for mathematical reasons [14]. Abstrac-
tion is treated by Golden [14] via dataflow, transfer function, and component abstraction.
He remarks that abstraction can also lead to non-determinism due to the underspecification
of the abstracted system.

Composition is the aggregation of lower-level components together with their interac-
tions to higher-level components. Herrmann et al. [2I] propose a compositional algebra for
aggregating components. Broy [3] specifies composition as the assignment of truth values
to system-level inputs and outputs based on component-level inputs and outputs. Golden
[14] divides composition into product and feedback. His notion of product is similar to the
compositional algebra in Herrmann et al. [2I] and defines products of dataflows, transfer
functions, and components. Feedback further deals with outputs of a component that are
fed into the same component as an input.

Refinement is the addition of details to arrive from a general to a more specific system
specification. Golden [14] defines refinement as a form of decomposition, which is the inverse
operation of composition. Broy [3] defines different forms of refinement: property, glass box,
and interaction refinement. Both Golden and Broy interpret refinement as an addition of
properties and decomposition of components / interactions.

Verification is the process of checking requirements satisfaction. Golden [I4] assigns re-
quirements to a system or component via "boxes” that specify the system or component’s
inputs, outputs, and behavior. Broy [4,] similarly distinguishes between global (system-
level) requirements and local (component-level) requirements. The verification process in his
case is essentially formally proving that the system and its components satisfy the require-
ments.

The literature on formal modeling languages for software and systems engineering pro-
vides the necessary semantics and rules for describing complex soft- and hardware systems.
However, the main shortcoming of formal modeling languages for complex software and
hardware systems is that they cannot generate these systems by themselves. In other words
they are not generative without additional generativity mechanisms and a knowledge base.

4.1 Design Axioms

As in the original Godel machine, theorem proving requires a enumerable set of axioms.
These axioms are strings over a finite alphabet X' that includes symbols from set theory,
predicate logic, arithmetics, etc. The design Godel machine for complex systems design
includes a number of design-related axioms that will be presented in the following. The
design axioms belong to three broad categories. The first are axioms related to the formal
modeling language, describing its abstract syntax (machine-readable syntax), the semantic
domain, for example, expressed in predicate logic, and the semantic mapping between the
abstract syntax and the semantic domain. The semantic domain and mapping in Golden
[14] and Broy [4, B] can be essentially reformulated in terms of set theory, predicate logic,
arithmetics, and algebra. These axioms belong to R, but specifically define which designs
are "formally correct”. We denote the set of these axioms as R ormai- These axioms include
formal definitions for a system, component, interfaces, and interactions between component
etc.

The second category consists of axioms related to different mechanisms of generating
designs. Specifically, these are axioms for refinement, abstraction, composition, verification,
and axioms that describe domain-specific rules based on domain-specific knowledge. We
consider these axioms as part of the set of design sequences ey, .

The third category are axioms that describe conceptual knowledge such as the notion
of 7automobile”. Without being too restrictive, such conceptual knowledge would include
axioms for parts and whole, i.e. mereological statemenents [39]. For example, an automobile
has a motor and wheels. The axioms also belong to R, however, contrary to R formai, they
are not general principles of representing complex systems but knowledge specific to certain
concepts. Such axioms are expressed by R k.

4.2 System

According to Golden [14], a system is a 7-tuple [=< Ty, Input, Output, S, qo, F, Q > where
T is a time scale called the time scale of the system, Input = (In,Z) and Output = (Out, O)
are datasets, called input and output datasets, S is a nonempty e-alphabet, called the e-
alphabet of states, qo is an element of S, called the initial state, 7 : In x S x Ty — Out is a
function called functional behavior, @ : Inx S x Ty — S is a function called states behavior.
(Input, Output) are called the signature of [. This definition of a system corresponds to a
timed Mealy machine [24].

It is rather straight-forward to model the Godel machine in this system framework, if
the loss in generality of using the timed Mealy machine is considered acceptable. In that
case, we take: Ty = N, Imput = (&€,E), g0 = s(t1), Output = (S,S), F: E xS x Ty — A,
Q:EXxSXTy —S. E and S are any data behaviors on £ and S respectively.

Formulating the design Gédel machine in the system framework allows for applying the
formal machinery of the framework such as refinement, abstraction, verification etc. that the
design Godel machine can apply to itself.

4.3 Refinement and Abstraction

Refinement and abstraction relate system representations that are at different levels of ab-
straction [} [I4]. According to Broy [3], refinement may include the addition of properties
to the system that makes it more restrictive, or includes its decomposition into components.
For example:

r = yoz (7)

where the system x is decomposed into the components y and z.

4.4 Composition

The composition operator is important for combining components into a system with their
respective interfaces. A generic composition operator can be understood as:

YRz = (8)

where the components y and z are composed to x. These operators would not only need
to be defined for software systems, such as proposed by [14], [, [3] but would also need to
include interpretations of the composition for physical systems [22]. This is likely to entail
mereological questions of parts and wholes [39].

4.5 Verification

We interpret verification in two distinct ways: First, with respect to a set of requirements
& that is part of the environment &, where £ returns a reward input 7(¢) to the design
Godel machine. Based on r(t) and the respective set of concepts C, the utility function u
is evaluated. Such a utility function would have the form @ : C x & — R, with C C § and
P CE.

Second, the set of requirements @ is internal to the design Gédel machine. The require-
ments describe expectations with respect to the environment £. Specifically, the satisfaction
of the requirements is expected to return a reward input r(¢) from the environment. For
example, if a concept ¢ (a car) exhibits a property a (consumes less than 3 1/km in fuel),
then the resulting r(¢) will result in a higher w than for a different property (consumes 10
1/km of fuel). The conditional expectation operator E,(:|-) from the original Gédel machine
is slightly modified for this purpose, leading to a utility function v : C x & x £ — R.

T
u(c,p,e) = B, Z r(7)|e,o,e] for 1<t<T ©))
T=time

where ¢ € @ and ¢ € C. The requirements ¢ are themselves expectations of what the
environment £ "wants” from the design(s). They are subject to modifications, depending on
the environment’s response r(t). This second interpretation of verification captures nicely
the distinction between verification and validation in systems engineering, where verification
checks if the design satisfies the requirements and validation checks if the requirements were

the right ones [T6].

5 Limitations

Design Godel machines are subject to the same limitations as the original Godel machine
[35] such as the Gddel incompleteness theorem [I2] and Rice’s theorem [29].

Apart from these theoretical limitations, a basic limitation of the design G6del machine
presented here is that it is based on a formal language. Computing systems that are not
based on a formal language could not be addressed by this approach.

As Orseau [25] has remarked, the Godel machine is expected to be computationally
extremely expensive for reasonably complex practical applications.

An important limitation of this paper is that we have not provided an implementation
of the design Godel machine together with a proof of concept demonstration. This remains
a task for future work. Furthermore, for an application in a real-world context, the problem
to be solved by the machine needs to be carefully selected. For example, which tasks based
on which inputs and outputs are interesting for automation [31]? Apart from the possibility
of proper formalization, economic criteria will certainly play an important role.

6 Conclusions

In this paper, we proposed to integrate a formal creativity framework from Wiggins into the
Godel machine framework of a self-referential general problem solver. Such an integration
would be a step towards creating a ”general designing machine”, i.e. a machine that is
capable of solving a broad range of design problems. We call this version of the Gddel
machine a design Godel machine. The design Godel machine is able to improve its initial
design program, once it has proven that a modification would yield a higher utility. The main
contribution of this paper to the artificial general intelligence literature is the integration of a
framework from computational creativity into an artificial general intelligence framework. In
particular, exploratory and transformational creative systems are integrated into the Godel
machine framework, where the initial design program is part of the exploratory creative
system and the proof searcher is part of the transformational creative system. Of particular
practical interest would be a design Godel machine that can solve complex software and
hardware design problems. Elements of such a machine are sketched out. However, a practical
implementation would require a more extended formal systems engineering framework than
those existing today. An interesting area for future work would be the integration of Wiggin’s
framework into other artificial general intelligence frameworks such as Hutter’s AIXI and
Orseau and Ring’s space-time embedded intelligence.

[1]
2]

Bibliography

M. Boden. Computer models of creativity. Al Magazine, 30(3):23, 2009.

N. Bostrom. Superintelligence: Paths, dangers, strategies. Oxford University Press,
2014.

M. Broy. A logical basis for component-oriented software and systems engineering. The
Computer Journal, 53(10):1758-1782, 2010.

M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T. F. Gritzner, and R. Weber. The
design of distributed systems: an introduction to focus. Technical report, Technische
Universitat Miinchen. Institut fiir Informatik, 1992.

M. Broy, M. Feilkas, M. Herrmannsdoerfer, S. Merenda, and D. Ratiu. Seamless model-
based development: From isolated tools to integrated model engineering environments.
Proceedings of the IEEE, 98(4):526-545, 2010.

M. Cherti. Deep generative neural networks for movelty generation: a foundational
framework, metrics and experiments. PhD thesis, Université Paris-Saclay, 2018.

S. Colton, J. Goodwin, and T. Veale. Full-FACE Poetry Generation. In ICCC, pages
95-102, 2012.

D. Cope. Computer models of musical creativity. MIT Press, 2005.

A. Elgammal, M. Papazoglou, and B. Kriamer. Design for Customization: A New
Paradigm for Product-Service System Development. In Procedia CIRP, 2017.

B. Fallenstein and N. Soares. Problems of Self-reference in Self-improving Space-Time
Embedded Intelligence. In International Conference on Artificial General Intelligence
2014, pages 21-32. Springer, 2014.

J. Gero. Creativity, emergence and evolution in design. Knowledge-Based Systems,
9(7):435-448, 1996.

K. Gédel. Uber formal unentscheidbare Sétze der Principia Mathematica und ver-
wandter Systeme I. Monatshefte fiir mathematik und physik, 38(1):173-198, 1931.

B. Goertzel. Artificial general intelligence: concept, state of the art, and future
prospects. Journal of Artificial General Intelligence, 5(1):1-48, 2014.

B. Golden. A wunified formalism for complex systems architecture. PhD thesis, Ecole
Polytechnique, 2013.

D. Harel and B. Rumpe. Meaningful modeling: what’s the semantics of semantics?
Computer, 37(10):64-72, 2004.

C. Haskins, K. Forsberg, and M. Krueger. INCOSE Systems Engineering Handbook.
International Council On Systems Engineering INCOSE, 2007.

A. Hatchuel, P. Le Masson, Y. Reich, and B. Weil. A systematic approach of design
theories using generativeness and robustness. In Proceedings of the 18th International
Conference on Engineering Design (ICED 11), 2011.

A. Hein. Artificial Intelligence Probes for Interstellar Exploration and Colonization.
arXi, arXiv:1612, 2016.

A. M. Hein. The Greatest Challenge: Manned Interstellar Travel. In Beyond the Bound-
ary: Ezploring the Science and Culture of Interstellar Spaceflight, pages 349-376. Lulu,
2014.

A. M. Hein, M. Pak, D. Piitz, C. Biihler, and P. Reiss. World Ships—Architectures
& Feasibility Revisited. Journal of the British Interplanetary Society, 65(4):119-133,
2012.

C. Herrmann, H. Krahn, B. Rumpe, and M. Schindler. An algebraic view on the seman-
tics of model composition. In Model Driven Architecture-Foundations and Applications,
pages 99-113. Springer, 2007.

S. I. J. Herzig and M. Brandstétter. Applying Software Engineering Methodologies
to Model-Based Systems Engineering. In 4th International Workshop on System €&
Concurrent Engineering for Space Applications - SECESA 2010, 2010.

M. Hutter. Universal artificial intelligence: Sequential decisions based on algorithmic
probability. Springer, 2004.

G. H. Mealy. A method for synthesizing sequential circuits. Bell Labs Technical Journal,
34(5):1045-1079, 1955.

[25]
[26]

[27]

[28]

L. Muehlhauser. Laurent Orseau on Artificial General Intelligence, 2013.

J. Myhill. The abstract theory of self-reproduction. In Views on general systems theory,
pages 106—-118. 1964.

L. Orseau, M. R. AGI, and U. 2012. Space-Time Embedded Intelligence. In Interna-
tional Conference on Artificial General Intelligence, pages 209-218. Springer, 2012.

L. Orseau and M. Ring. Self-modification and mortality in artificial agents. Springer,
2011.

H. Rice. Classes of recursively enumerable sets and their decision problems. Transac-
tions of the American Mathematical Society, 74(2):358-366, 1953.

M. Riedl and R. Young. Story planning as exploratory creativity: Techniques for ex-
panding the narrative search space. New Generation Computing, 24(3):303-323, 2006.
E. Rigger, K. Shea, and T. Stankovic. Task categorisation for identification of design
automation opportunities. Journal of Engineering Design, 29(3):131-159, 2018.

G. Ritchie. The JAPE riddle generator: technical specification. Technical report, 2003.
S. Russell, D. Dewey, and M. Tegmark. Research priorities for robust and beneficial
artificial intelligence. Ai Magazine, 36(4):105-114, 2015.

J. Schmidhuber. Developmental robotics, optimal artificial curiosity, creativity, music,
and the fine arts. Connection Science, 18(2):173-187, jun 2006.

J. Schmidhuber. Ultimate Cognition & la Gédel. Cognitive Computation, 1(2):177-193,
jun 2009.

J. Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990-2010).
IEEFE Transactions on Autonomous Mental Development, 2(3):230-247, 2010.

J. Schmidhuber. A Formal Theory of Creativity to Model the Creation of Art. In Com-
puters and Creativity, pages 323-337. Springer Berlin Heidelberg, Berlin, Heidelberg,
2012.

H. Simon and G. Lea. Problem solving and rule induction: A unified view. 1974.

P. Simons. Parts: A study in ontology. Oxford University Press, 1987.

N. Soares. Formalizing two problems of realistic world-models. In Tech. rep. Machine
Intelligence Research Institute, 2014.

S. Todd and W. Latham. Fvolutionary Art and Computers. Academic Press, 1992.

G. Wiggins. A preliminary framework for description, analysis and comparison of cre-
ative systems. Knowledge-Based Systems, 19(7):449-458, 2006.

	Can Machines Design? An Artificial General Intelligence Approach

