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Preeclampsia and intrauterine growth restriction are related to placental insufficiency and

constitute a major public health challenge. Significant changes in placental microarchitecture have

already been described in these situations, including, for example, increases or decreases in the

number of villi ramifications and the presence of fibrin deposits in terms of villi. These changes

affect the entire placenta and might lead to variations in elasticity compared to normal placentas. In

this context, we proposed to develop a 2-D transient elastography system, dedicated to the placenta

and adapted for in vivo measurements, based on the coupling of a shear wave generated by an

external vibration and ultrasound images acquired at an ultrafast rate. To be particularly sensitive

to the structure of this organ, a frequency analysis of the complex shear modulus has been realized

by applying a fractional rheological model. This model provides a parameter n which could be sen-

sitive to a shape factor, for example, the variations in the number of villi ramifications in the case

of placental insufficiency. An ex vivo feasibility of the method on 20 normal placentas is presented

in this work. Published by AIP Publishing. https://doi.org/10.1063/1.5024309

I. INTRODUCTION

The placenta is a temporary organ, with a continuous

and progressive evolution of its structure and function

throughout pregnancy. At delivery, the human placenta

appears as a round or oval disk measuring 18–20 cm in diam-

eter and weighing about 500 g. Its functional unit is the coty-

ledon representing the intervillous space between two

placental septa in which bathe chorionic villi. The fetal blood

circulates in the chorionic villi, and exchanges between

maternal and fetal compartments are carried out through the

villi structure (Fig. 1).

Placental insufficiency is related to two major diseases:

preeclampsia and intra-uterine growth restriction (IUGR).

Preeclampsia is defined as hypertension and proteinuria after

20 weeks of gestation, while IUGR is an arrested or restricted

fetal growth between two different examinations at 3-week

interval. Preeclampsia occurs in 2%–8% of pregnancies.1 In

the United States, the prevalence of newborns small for the

gestational age (<10th percentile) was 8.3% in 2003.2 These

two clinical expressions of placental insufficiency (pre-

eclampsia or IUGR) both have a major impact on perinatal

health and are a key challenge in safe childbearing and deliv-

ery worldwide.

In clinical practice, the placental function is generally

evaluated by investigating the indirect consequences of pla-

cental insufficiency: fetal growth, amniotic fluid index, and

fetal Doppler indexes. Ultrasound (US) performances for

screening of newborns small for the gestational age are lim-

ited, with a sensitivity of only 20%.3 Moreover, the practice

of ultrasound, even during the third trimester of pregnancy,

has no effect on the frequency of maternal or fetal complica-

tions.4,5 This demonstrates the need for new tools to comple-

ment our understanding of placental insufficiency.

The placenta is usually considered primarily from a

hemodynamic perspective, but can also be studied as a tissue

by investigating its biomechanical properties. US elastogra-

phy is a relevant tool for such an analysis.

Many studies suggest that consistency of placentas with

placental insufficiency may differ from normal functioning

placentas.6,7 As biomechanical properties of cotyledons can-

not be distinguished with conventional US, we hereby pro-

pose the use of an adapted US elastography system including

the method and apparatus accordingly.

Theoretical and physical considerations indicate that the

presence of microscopic obstacles may influence not only

the absolute value of viscoelastic tissue parameters, but also

their relationship with the frequency.8 In the case of placenta

exploration, the shear wave velocity variation as a function

of frequency is assumed to inform about the placental tissue

structure.

Indeed, the frequency analysis could be sensitive to a

shape factor of the tissue under consideration. In both dis-

eases, significant changes in the tissue microarchitecture of

the placenta, which affect the whole placenta, have been

described: for example, increased or decreased villi ramifica-

tions9–11 and/or fibrin deposits12 (Fig. 2). The frequency
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analysis could be very useful for detecting changes in the vil-

lous phenotype in the case of IUGR. These changes in angio-

genesis constitute a shape factor which could modify the

frequency dispersion. Thereby, the analysis of this dispersion

could improve the detection of the differences of elasticity in

comparison to the conventional parameters (Young’s modu-

lus and shear wave velocity at a given frequency).

In this context, we expect to develop a 2D transient elas-

tography method to measure in vivo the dispersion of the

shear wave velocity in placenta.

Recently, some studies have evaluated placental elastog-

raphy, but only one has analyzed the dispersion of shear wave

velocity as a function of frequency.13 Moreover, the main

studies used the radiation force (Shear Wave Elastography).

The safety of the radiation force has not yet been formally

established for use in pregnant women.14 For this reason, we

developed a technique of transient elastography which uses a

low mechanical vibration rather than intense ultrasonic

fields. Recently, Sugitani et al.6 applied the ARFI method to

ex vivo placentas. In the case of IUGR or hypertensive disor-

ders, they observed a higher placental elasticity compared to

normal placentas, but their ultrasonic method did not provide

information about the placental tissue structure. Kilic et al.7

studied placental elasticity by applying SWE to 50 pregnant

women (second or third trimester): 23 preeclampsia and 27

normal pregnancies. In the case of preeclampsia, the median

value of Young’s modulus was 21 kPa and it was 4 kPa in

normal pregnancies. More recently, Abeysekera et al. pub-

lished a multifrequency analysis of shear wave velocity in

placenta using the method called SWAVE.13 The latter

method is different from ours and consists of continuously

transmitting a long wave train. The advantage of SWAVE

compared to TE is to generate a higher signal and therefore a

better signal-to-noise ratio. In addition, this technique allows

the authors to explore higher frequencies than ours. But its

main disadvantage is the reverberation issue: the waves are

reflected in the organ and these reflections may disturb the

elasticity estimation.15 A very large compression wave and a

small shear wave are observed. On this point, the TE meth-

odology may constitute a significant improvement. In addi-

tion, each experiment conducted by SWAVE is done at a

single frequency. To obtain values at different frequencies,

the experiments must be repeated several times. Our TE

method is an impulse method. We immediately emit energy

in a frequency band [20–80 Hz], which saves us having to

repeat the experiment several times.

Preliminary results have been obtained using a 2-D

Transient Elastography (TE) method based on the propaga-

tion of a plane shear wave generated by a plate fixed to a low

frequency (LF) electromechanical actuator and measured

using an ultrafast US scanner.16,17 In the present work, we

FIG. 1. Schematic view of the placenta showing the branching vascular system of the placenta.

FIG. 2. Normal appearance of the villous tree (above) and changes in pla-

cental insufficiency (below): fibrin deposits, decrease or increase in the num-

ber of villi ramifications.
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present ex vivo measurements of shear wave dispersion on

normal human placentas with a new system dedicated to

in vivo application.

II. 2-D TRANSIENT ELASTOGRAPHY SYSTEM

A. Materials and method

To adapt the previously developed system to in vivo
application, the proposed TE method is based on the propa-

gation of a shear wave generated by 2 vibrating rods placed

on either sides of the US probe (128 elements linear probe

SP 5–1 centered at 2.8 MHz – Vermon SA, France), as pro-

posed by Sandrin et al.18 As presented in Fig. 3, 2 electrody-

namical exciters (Visaton, Germany), completely decoupled

from the US probe, induce the LF vibration of the 2 rods.

For the purpose of measuring shear wave velocity in pla-

centa, beamformed demodulated IQ data are acquired with

an ultrafast US scanner (Aixplorer, SuperSonic Imagine,

France): acquisition at 2.8 MHz during 128 ms with a Pulse

Repetition Frequency (PRF) of 4 kHz.

B. Characterization of the system: Green’s function
modelisation

In an elastic, homogeneous, and isotropic medium, the

displacement in the xi direction for an impulse force acting

in the xj direction is given by the elastodynamic Green’s

function19

gij ~x; tð Þ ¼
3cicj � dij
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4pq

1

r3

ðrcs

r
cc

sd t� sð Þ dsþ
cicj

4pq
1

r

d t� r

cc

� �
c2

c

þ
dij � cicj

� �
4pq

1

r

d t� r

cs

� �
c2

s

; ð1Þ

where r ¼ j~xj ¼
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1 þ x2
2 þ x2
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p
is the distance between the

point source and the observation point, ci ¼ xi=r ¼ @r=@xi

the direction cosines for the vector xi, d is the Dirac function,

and q is the material density. cc and cs are the compression

and shear wave celerities, respectively. This Green’s func-

tion describes a far-field compression term (second term,

longitudinal polarization), a far-field shear term (third term,

transverse polarization), and a coupling near-field term (first

term, complex polarization). From the radiation patterns of

these three terms,20 in the case of an unidirectional force

along z (x3), we can observe (Fig. 4) that a shear wave is

generated in the vibration direction, in front of the US probe

elements, between the two rods. On the probe axis (z axis),

due to the symmetrical positioning of both rods, the two

shear contributions in the x direction vanish and we obtain a

purely longitudinal wave propagating in the direction z.

The actual shear wave velocity that originates from the

rods is calculated from the propagation distance Dl between

two ultrafast acquisitions separated from TPRF

cs ¼
Dl

TPRF
: (2)

FIG. 3. (a) 3-D modelisation of the device (b) 2-D Transient Elastography

system applied to a homogeneous elasticity phantom.

FIG. 4. Construction of the shear wave induced by the 2 vibrating rods along

the US probe axis at different distances z0. u1 and u2 correspond to the dis-

placement contributions of the far-field shear term of the rods 1 and 2,

respectively. utot is the total shear displacement induced by the 2 rods.
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But the shear wave velocity calculated by the system

along the z axis is

cs;measured ¼
Dz

TPRF
: (3)

Since cos ðhÞ ¼ Dl=Dz, the relative error between the

actual and measured shear wave velocities can be expressed

as

cs;measured � cs

cs
¼ 1

cos hð Þ
� 1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D2

4z2
0

s
� 1; (4)

where D is the spacing between the rods.

At a distance z close to the rods (z0 ! 0), as presented

in Fig. 4(b), the contributions of the two rods are highly con-

structive. However, the wavefront is almost parallel to the z

axis, and the measured velocity is therefore greatly overesti-

mated. At the opposite, when z0 � D=2, the contributions

are not constructive, but the relative error tends to 0 and the

measured velocity corresponds to the actual velocity.

To precisely study the radiation pattern of our system

from Eq. (1), contributions of the different source points con-

stituting the 2 rods are added. Figure 5 represents the

Green’s function g33 (on the z axis, z0 ¼ kCs ¼ 4 cm) in the

case of 2 rods (5.8 cm length) separated by 2 cm (a) and 4 cm

(b) (configuration shown in Fig. 4). The compression veloc-

ity is 1500 m/s and the shear velocity is 2 m/s. The amplitude

is normalized with respect to the maximum amplitude of the

far-field shear term. The far-field compression contributions

of both line sources (Dirac functions occurring at very short

times) are not visible in the figure because they are negligi-

ble (amplitude around 10�4). Each near-field term has a tri-

angular shape. The sum of all near-field contributions has a

triangular shape until the arrival time of the source point

closest to the observation point (constructive summation),

then a decrease to 0 (fewer contributions and from source

points farther away from the observation point). The end of

the near-field displacement corresponds to the duration of

propagation at the shear velocity between the farthest point

source and the observation point. The far-field shear contri-

butions are Dirac functions occurring at the times of flight

between the source points and the observation point at the

shear velocity. We can observe that in each case the main

contribution to the shear displacement is due to the far-field

shear term.

Radiation patterns of the system along x and z axes mea-

sured in a homogeneous phantom are presented in Fig. 6. To

measure the component x [Figs. 6(c) and 6(d)], the US probe

is no longer positioned between the vibrating rods but at 90

degrees, on the z axis (the vibrating rods are always placed

on either side of the y axis). Results are in agreement with

the directivities of the different Green’s function terms21 g13

and g33, respectively. In the probe plane (YZ plane), as pre-

dicted by Fig. 4, displacements g33 are constructive and give

birth to the quasi plane wave. As expected, displacements

g13 in the XZ plane are in phase opposition with respect to

the central axis.

In the case of a pulse sinusoidal excitation at 50 Hz (1

period), the resulting displacements for a spacing between

the rods of 2 and 4 cm (corresponding to the device) are plot-

ted in Fig. 7 (cc ¼ 1500 m=s and cs ¼ 2 m=s).

As shown in Fig. 4, when z is small, the wavefronts

which come from the rods are parallel to the source lines

(rods). Thus, the propagation velocity of the shear wave

measured on the z axis will be very large (overestimation).

This overestimation is also due to the near-field term of

Equation (1). As stated in Ref. 22, this term dominates

within the near-field and its phase velocity is greater than the

shear wave velocity. In addition, for small z, the contribution

of surface waves is not negligible.23

This is seen more particularly in Fig. 7(b) where, due to

all these reasons, the shear wave velocity is overestimated in

the near-field of propagation. In this case (corresponding to

the previously described experimental set-up), the shear

wavefront can be considered as plane after about few cm

propagation. This value depends on the distance D between

the two vibrating rods [Eq. (4)].

C. Shear wave velocity measurement

Algorithms developed in this work are based on 2D

autocorrelation techniques to estimate the velocity displace-

ment of tissue. The IQ signal can be written as

IQðm; nÞ ¼ Iðm; nÞ þ jQðm; nÞ ¼ Aðm; nÞej/ðm;nÞ; (5)

FIG. 5. Representation of the Green’s function g33 at z0 ¼ 4 cm generated by 2 line sources spaced: (a) 2 cm and (b) 4 cm (experimental set-up).
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where A is the signal amplitude and U(m,n) is the phase of

the signal returned from the mth depth and the nth pulse. The

velocity estimator is defined in (5). It is an extension of the

autocorrelation estimator developed by Hoeks et al.24 This

estimates the mean velocity using multiple, spatially contig-

uous IQ sample volumes in time. This approach increases

the accuracy of the velocity estimated at the expense of

decreasing spatial resolution. The mathematical expression

is

Vðm; nÞ ¼ k
4pT

Arg

(XLapz

a¼0

XLapt

b¼0

IQðm� a; n� bÞ:IQ

� ðm� a; n� b� 1Þ
)
; (6)

where k is the wave length and T is the time interval between

two acquisitions. Lapz is the number of samples defining the

volume of interest and Lapt is the number of temporal sam-

ples in the autocorrelation over which the mean velocity

Vz(z,t) is estimated. Figure 8 represents the compression and

shear waves induced by the 2D TE system in a 3.5 kPa elas-

ticity phantom.

The compression wave propagates almost instantaneously

with respect to the shear wave. It has a longer wavelength and

its amplitude varies according to z mainly because of diffrac-

tion effects. A spatial derivation with respect to z applied to

the velocity data makes it possible to strongly reduce the

amplitude of this compression wave without affecting the

shear wave. Moreover, there are also reflected waves (shear

and compression) that must be removed. For that, a

segmentation is carried out by manually selecting on the elas-

togram two straight lines: the first on the left of the shear

wave to eliminate the remaining compression wave and the

second on the right to eliminate the reflected waves.

To study the shear wave velocity dispersion, next steps

are performed in the Fourier domain: Vz(z,x). Based on a

plane wave approximation of the longitudinal component of

the shear wave, this component can then arise as a combina-

tion of cosine and sine whose spatial period is directly

related to shear wave velocity

Vz z;x0ð Þ ¼ D zð Þ:A
�

cos
x0

cs x0ð Þ
zþ U

� �

þ j sin
x0

cs x0ð Þ
zþ U

� ��
; (7)

with D(z) a term for diffraction and attenuation effects. A

least-squares approximation is used to fit the sinusoidal shape

of the real and imaginary parts of Vz(z,x) (Fig. 9). As previ-

ously mentioned, the shear wave velocity can then be deduced

from the period of the real or imaginary part of Vz(z,x).

Repeated at any frequency of the LF bandwidth, this allows

us to study the shear wave velocity dispersion. The measure-

ment bandwidth is limited by the bandwidth of the excitation:

typically between 20 and 80 Hz in placenta ex vivo to have a

signal of amplitude high enough to be analyzed.

D. Validation on calibrated elasticity phantoms

The 2D transient elastography system has been tested

on tissue-mimicking phantoms. Figure 10 shows the shear

FIG. 6. Measurement of the components z [x¼ 0; (a) t ¼ t0 and (b) t > t0] and x [y¼ 0; (c) t ¼ t0 and (d) t > t0] of the particle velocity (normalized ampli-

tude). The arrows represent the positions of the 2 rods.
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wave velocity dispersion in two calibrated homogeneous

elastic phantoms (phantom A: E¼ 12.1 kPa; phantom B: E

¼ 3.5 kPa) made of a mixture of a triblock SEBS copolymer

(Kraton Polymers, Univar, France) dissolved in with min-

eral oil.25 As expected, there is almost no dispersion in

these media which can be assumed to be purely elastic.

Moreover, the shear wave velocity measurements are in

agreement with phantom data. For example, the shear

wave velocity of phantom A (2 m/s) is in agreement with

its calibrated elasticity (E¼ 12.1 kPa; q ¼ 1000 kg/m3; Cs

¼ �(E/3q) ¼ 2m/s).

III. EX VIVO MEASUREMENTS IN PLACENTAS

A. Measurement protocol

The method has been applied on 20 normal delivered

placentas (<12 h after delivery). The local ethics committee

approved this study. Measurements (3 times with reposition-

ing) have been performed in 2 placental regions: a central

region (behind the umbilical cord) and a peripheral region

(edge of the placenta). At the same time, measurements of

the Young’s modulus (3 times with repositioning) have been

performed using Supersonic Shear Imaging (SSI). Figure 11

represents the experimental set-up.

Figure 12 presents an example of an ex vivo measure-

ment in the placenta. The results are of course more noisy

than in the case of a tissue-mimicking phantom (Fig. 8), but

it is possible to isolate the shear wave and to calculate the

frequency dispersion of the shear wave velocity.

FIG. 7. Simulation of the shear wave propagation induced along the US axis

probe by 2 vibrating rods spaced: (a) 2 cm and (b) 4 cm (experimental set-

up).

FIG. 8. Particle velocity Vz(z,t) mea-

sured in a 3.5 kPa elasticity phantom

(normalized amplitude).

FIG. 9. Interpretation of the real part of Vz(z,x) using the plane wave

approximation.
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B. Rheological model

There is a physical link between the propagation of

shear waves in a viscoelastic medium and their viscoelastic

properties.26,27 In particular, the frequency behaviour of tis-

sue mechanical parameters may be modelled as a power

law, in which case the exponent parameter represents a

mechanical property inherent to a given material.28–30 This

behaviour can also not be modelled by the classical Voigt

model widely used in elastography. The Voigt model pre-

dicts a constant dynamic modulus G0ðxÞ as a function of

frequency and a linearly rising loss modulus G00ðxÞ ¼ x1,

which is in obvious contradiction with a fractional law

behaviour. A rheological model that is capable of describ-

ing power law behaviour for the complex shear modulus is

the so-called springpot model. This model has its mechani-

cal interpretation in terms of a hierarchical organization of

springs and dashpots29 and can continuously interpolate

between a pure solid material (exponent parameter c ¼ 0)

and a pure liquid (c ¼ 1) material with respect to the power

law exponent for G�ðxÞ ¼ G0ðxÞ þ iG00ðxÞ � xy.

As presented in Fig. 13, two different models have been

used to fit the experimental data obtained with the TE

method: the classical Voigt model and a fractional rheologi-

cal model developed by Nicole et al.31

G� ixð Þ ¼ Ge þ K: ix½ �n: (8)

FIG. 10. Shear wave velocity dispersion in calibrated elasticity phantom: (a)

12.1 kPa; (b) 3.5 kPa.

FIG. 11. Ex vivo measurement in placenta.

FIG. 12. Example of an ex vivo measurement in the placenta: (a) Particle velocity Vz(z,t) (normalized amplitude); (b) Segmentation of (a) to keep only the

incident shear wave; (c) Interpretation of the real part of Vz(z, x) using plane wave approximation.
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In this last model, the frequency behavior is modeled as

a power law. The exponent parameter n represents a mechan-

ical property inherent to a given material. Measurements

have been performed in the bandwidth [20 Hz–80 Hz].

This parameter n depends in particular, on the shape of

the tissue under consideration, and this tissue shape is modi-

fied in the case of placental insufficiency. In addition, the vil-

lous tree is a structure measuring several centimeters and

occupying the entire thickness of the placenta. Before study-

ing abnormal placentas, we wished to obtain data from nor-

mal placentas.

C. Results and discussion

Table I presents results of shear wave velocity measured

with both SSI and TE (at 50 Hz), and values of parameter n

obtained from the dispersion curves (fit with the fractional

model). In agreement with the literature, elasticity measured

at a fixed frequency by SWE and TE is in the same order of

magnitude for both regions. That is why the results presented

in Table I are taken into account for all the measurements in

both regions. We do not know the frequency bandwidth of

the Young’s modulus measurement by SWE, which is highly

dependent on the observed organ. It is therefore difficult to

compare precisely our results with the values given by SWE.

The group velocity measured by SWE and that estimated by

TE at 50 Hz are, however, relatively close.

Moreover, we observe that values of celerities and

parameter n are in the same order as values obtained with the

previously developed plane shear wave TE method.17

However, standard deviations found in the present study are

higher than those with the previous method, not adapted for

in vivo measurements. First, in the present 2D TE method,

the shear wave is not a plane wave, as presented in Figs. 5

and 6, inducing a bias in the measurement. Second, the sys-

tem is no more fixed but maintained in the hand. The posi-

tion of the US probe is then never exactly the same, and the

pre-stress applied to the placenta different at each measure-

ment, inducing a lower reproducibility.

However, the velocity values found in our study had the

same order of magnitude as those found in other studies,

either ex vivo6 (mean Cs: 1.31 m/s) or in vivo7 (median E:

4 kPa). A low inter-individual variation of the different

parameters is found. Perspectives of this work will be to test

the sensitivity of this 2D TE system to distinguish these bio-

mechanical parameters between IUGR and healthy pla-

centas. This will help to conclude about the added-value of

the elasticity frequency analysis for placental exploration.

The correlation coefficient r has been calculated for the

two models. We found r¼ 0.926 6 0.031 for the Voigt

model, and r¼ 0.94 6 0.026 for the fractional model. The

correlation coefficient of the fractional model is therefore

slightly higher. This result is consistent with the fact that the

fractional model takes into account the power law of the dis-

persion, unlike the Voigt model.

As previously stated, the nonlinear fit is made both on

the real and imaginary parts of Vz(z,x). This gives a certain

robustness to the method because a slowly varying curve

such as a maximum of sinusoid, where the fit is difficult to

achieve, is counterbalanced by a rapidly varying curve such

as the passage of a sine to 0 (real and imaginary parts in

phase quadrature), where the fit is more efficient. From expe-

rience, half a wavelength is needed to correctly fit in vivo
data. In the case of a 4 cm placenta, therefore the wavelength

is 8 cm and the minimum frequency is 37 Hz for a shear

wave velocity of 3 m/s (unfavorable case of preeclampsia).

For in vivo application, the shear wave must cross sev-

eral types of different tissues (skin, fat, muscle, etc.) before

reaching the placenta. Even if the presence of fat, for exam-

ple, does not seem to modify the dispersion curve of the

shear wave,32 all these tissues will lengthen the propagation

distance of the wave which is in this case more attenuated by

FIG. 13. Shear wave velocity dispersion in a placenta (ex vivo measure-

ment). Stars: experimental data; black line: fit with the Voigt model; red

line: fit with the fractional model.

TABLE I. Ex vivo measurements in 20 placentas.

Placenta Cs SSI (m/s) Cs TE (m/s) STD (m/s) n STD

1 1.53 1.89 0.39 1.31 0.27

2 1.42 1.42 0.4 1.41 0.18

3 1.66 1.61 0.64 1.29 0.25

4 1.54 1.11 0.29 1.40 0.12

5 1.58 1.58 0.33 1.32 0.09

6 1.66 1.38 0.45 1.35 0.15

7 1.54 1.45 0.58 1.21 0.18

8 1.40 1.26 0.22 1,28 0.11

9 1.81 1.26 0.22 1.35 0.19

10 1.83 1.91 0.44 1.28 0.09

11 1.88 2.81 1.07 1.10 0.20

12 1.54 1.73 0.46 1.23 0.17

13 1.57 2.6 0.36 1.32 0.1

14 2.1 2.6 0.43 1.22 0.18

15 1.93 1.7 0.53 1.42 0.08

16 2.22 1.9 0.6 1.2 0.2

17 2.07 1.78 0.33 1.16 0.16

18 1.6 1.54 0.76 1.42 0.17

19 2.83 2.63 0.57 1.07 0.18

20 1.81 1.56 0.29 1.05 0.25
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diffraction and viscosity. The presence of multiple interfaces

can induce compression waves from shear waves by mode

conversion, and inversely. If the latter effect is not negligible

in the study of the placenta, the directivity pattern of the

shear wave in the organ can be strongly modified and may

limit the relevance of our method. In this case, we will have

to use more suitable methods such as passive elastography33

which does not need a precise directivity of the shear wave.

IV. CONCLUSION AND PERSPECTIVES

Many studies found in the literature suggest that consis-

tency of placentas with vascular pathology may differ from

the consistency of normal placentas. The objective of the

study was to develop an optimized 2D TE system adapted to

in vivo placenta exploration. Feasibility of the method for

placental exploration has been demonstrated, and reproduc-

ibility of celerity and parameter n values has been studied.

Future work will consist of ex vivo and in vivo measure-

ments comparing normal and IUGR placentas. A clinical

protocol on 2 groups (normal and IUGR) during the third tri-

mester of pregnancy is then planned.
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