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PARATUCK Semi-Blind Receivers for Relaying
Multi-Hop MIMO Systems

Pedro Marinho R. de Oliveira, C. Alexandre Rolim Fernandes, Gérard Favier and Rémy Boyer

Abstract—In this paper, two receivers are proposed for a
multiple-input multiple-output (MIMO) relaying multi-hop com-
munication system using a Khatri-Rao space-time (KRST) coding
at the source and amplify-and-forward (AF) relays. It is shown
that the third-order tensor of signals received at the destination
satisfies a PARATUCK-(K+1) tensor model, where K is the
number of relays. After formulating the system model, the
expressions of the Cramér-Rao bound (CRB) for the communi-
cation channels are derived for the particular case of at two-hop
system, i.e., K = 1. The presented tensorial modeling enables
a joint semi-blind estimation of the transmitted symbols and
the channels. The first proposed estimation algorithm is a non-
iterative technique based on a rearrangement of the Kronecker
product, while the second proposed receiver is based on the
Alternating Least Squares (ALS) algorithm. The uniqueness of
the tensor decomposition and the identifiability conditions of the
proposed algorithms are discussed. The performance of these
receivers is evaluated by means of Monte Carlo simulations.

Index Terms—Relaying Systems, PARATUCK, Multi-Hop,
MIMO, Semi-Blind Receivers.

I. INTRODUCTION

A IMING to provide an increase in the coverage area and
received signal quality, the concept of relaying commu-

nication systems was developed, in which at least one relay
node is used to assist the communication between the source
and the destination [1]. An advantage provided by relaying
communications is the spatial diversity gain due to the use of
relays. In this work, the amplify-and-forward (AF) protocol is
used, due to its easy implementation and good performance.

Multi-hop systems, with several relays connected in a serial
way, have the advantage of needing less transmission power
than two-hop networks (with only one relay), as the distance
between the source and the destination is divided in several
smaller links, leading to less severe path losses [1].

Furthermore, multiple-input multiple-output (MIMO) sys-
tems provided great advances to the wireless communications,
due to the increase in coverage area, capacity and spatial
diversity gains. This technology is widely used nowadays,
being present in several standards (WIMAX-IEEE 802.16,
WLAN-IEEE 802.11N, and many others) [2]. In relaying
MIMO schemes, the system benefits from a distributed spatial
diversity gain, due to the allocation of relays, and from a
concentrated spatial diversity gain, due to the antenna array.
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In multi-hop systems, channel estimation is a challenging
and relevant problem. Channel state information (CSI) plays
an important role for optimizing MIMO relay systems in terms
of power allocation, adaptive relaying protocols and space-
time coding design.

On the other hand, due to its advantage in exploring the
multidimensional nature of signals, tensor decompositions
have found applications in several areas, including array
signal processing [3] and telecommunications [4], [5], [6],
[7]. Tensor decompositions have some advantages over matrix-
based methods as, for instance, their uniqueness properties
under mild conditions and the fact that the rank of a tensor
can exceed its dimensions. Also, tensor analysis has shown to
be an efficient approach for channel and/or symbol estimation
in relaying MIMO systems [8], [9], [10], [11], [12].

Matrix-based techniques for conventional multi-hop MIMO
schemes can be found in [13], [14], [15]. These works show
the advantages of multi-hop relaying networks. However,
when compared with tensor-based approaches, matrix-based
methods generally require stronger constraints in order to
guarantee the uniqueness of the estimated parameters, due to
the constraint on the matrix rank which is limited by the lowest
dimension.

In [8], three semi-blind receivers are proposed for a two-
hop MIMO AF relaying system using the Khatri-Rao space-
time (KRST) coding [16]. These receivers combine two tensor
models (PARAllel FACtor - PARAFAC and PARATUCK-2)
that enables the joint estimation of symbols and channels. The
tensor modeling of the present paper generalizes the tensor
modeling of [8] for the multi-hop case. Moreover, we propose
both iterative and non-iterative receivers, contrarily to [8]
that only presents iterative methods. In addition, the iterative
algorithm proposed in the present paper has some advantages
over the ones of [8], as it will be illustrated by the simulation
results. In a two-hop MIMO AF relaying system, the work [9]
exploited a nested-PARAFAC tensor model and proposed two
semi-blind receivers, jointly estimating the symbols and the
channels of the communication links. In [10], a tensor space-
time coding is used in a MIMO relaying system modeled as
a nested Tucker decomposition.

Regarding the use of the PARATUCK decomposition in
wireless communications, a blind receiver based on a general-
ized fourth-order PARATUCK-2 decomposition is proposed in
[17] for space-time frequency (STF) MIMO systems. In this
tensor model, the core tensor of the PARATUCK-2 decomposi-
tion is a spatial coding matrix combined with two third-order
tensors. The PARATUCK-2 tensor model is used in [18] to
represent a MIMO wireless communication system with space-
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time spreading-multiplexing. As [17] and [18] used point-to-
point systems, [12] used the PARATUCK-3 decomposition to
model a three-hop MIMO relaying system and to propose iter-
ative receivers, using channel training sequences. Contrarily to
the present paper, the receivers proposed in [12] are restricted
to the three-hop case and they consider a supervised scenario.
Moreover, in [12], no closed-form algorithm is proposed and
the used coding scheme is different from the one of the present
paper.

In this work, we propose two semi-blind receivers that
jointly estimate the symbols and the channels in a multi-hop
AF MIMO relaying system. It is used a simplified KRST
coding [16] at the source node, combined with the AF protocol
at the relay nodes. The third-order tensor of signals received
by the destination node satisfies a PARATUCK-(K+1) decom-
position [19], where K is the number of relays. By imposing a
simple restriction on the AF relay gains, we derive an alterna-
tive representation for the receiver signal tensor, expressing
the PARATUCK-(K+1) decomposition as a PARATUCK-2
model. Sufficient uniqueness conditions are provided for the
considered tensor decomposition. We also derive the expres-
sions of the expected Cramér-Rao bound (CRB) [20], [21],
[22], [23] for the communication channels, considering the
particular case of using a single relay, i.e., when the system
has only two hops, satisfying the PARATUCK-2 tensor model.

The first proposed receiver is non-iterative and based on a
rearrangement of the Kronecker product between the symbols
and channel matrices. The second presented receiver is an iter-
ative ALS-based algorithm, to jointly and alternately estimate
the tensor factors. Both algorithms estimate the transmitted
symbols, the channel matrix of the last hop and a global
channel matrix that depends on all the other channel matrices.
The identifiability conditions of the proposed algorithms are
discussed and their performance is evaluated by means of
computational simulations using Monte Carlo runs, showing
the good performance of the proposed receivers.

In this paper, we extend the work [11] through the gen-
eralization of the system model to the multi-hop case, the
proposition of a new receiver and the derivation of uniqueness
and identifiability conditions.

The main original contributions of the paper can be sum-
marized as follows:

• We present a MIMO relaying multi-hop communication
system using a KRST coding at the source and AF relays.

• We derive a PARATUCK-(K+1) representation for the
tensor of received signals. Moreover, we derive an alter-
native representation for the received signals tensor as a
PARATUCK-2 model.

• We derive the expressions of the expected CRB for the
communication channels of the PARATUCK-2 model. To
the best of our knowledge, this is the first time that a
mean square error (MSE) lower bound is derived for such
wireless communication systems.

• Two different sets of sufficient uniqueness conditions for
the tensor model are provided.

• Two receivers for the considered multi-hop system are
proposed.

• The identifiability conditions of the proposed algorithms
are derived.

• Simulations are provided to illustrate the performance of
the receivers.

The rest of this paper is organized as follows. In Section
II, the notation and the tensor prerequisites are introduced. In
Section III, the system model is described, while, in Section
IV, two semi-blind receivers are proposed. In Section V we
derive the expressions of the expected CRB for the communi-
cation channels, considering the two-hop case. Sections VI and
VII present the uniqueness properties of the PARATUCK-N
tensor model and the identifiability conditions of the proposed
algorithms, respectively. In Section VIII the simulation results
are presented and, finally, Section IX concludes the paper and
presents some perspectives for future work.

II. NOTATION AND TENSOR PREREQUISITES

Scalars, vectors, matrices and tensors are represented, re-
spectively, by lower-case (a, b, c, ...), boldface lower-case (a,
b, c, ...), boldface capital (A, B, C, ...) and calligraphic (A,
B, C, ...) letters.
am,i is the (m, i)th element of the matrix A ∈ CM×I and

am,i,p is the (m, i, p)th element of the tensor A ∈ CM×I×P .
The transpose, hermitian, Moore-Penrose pseudo-inverse, con-
jugate, mth row and nth column of the matrix A, are respec-
tively represented by AT , AH , A†, A∗, Am. and A.n. || · ||F , ⊗
and �, denote the Frobenius norm, the Kronecker product and
the Khatri-Rao (column-wise Kronecker) product, respectively.
The operator diag(a) generates a diagonal matrix with the
vector argument a as the main diagonal, Dm(A) represents the
diagonal matrix with the mth row of A as the main diagonal,
Bdiag{A1, ...,AP } creates a block diagonal matrix by aligning
the input matrices A1, ...,AP along the diagonal, the operator
vec(·) vectorizes its matrix argument by stacking its columns,
while the operator unvec(·) unvectorizes its vector argument to
the original matrix. The operator SV D(A) computes the SVD
of the matrix argument A. Moreover, â, â and Â represent the
estimates of a, a and A, respectively.
<{·} and ={·} represent the real and imaginary parts of

its argument, respectively. Trace{·} computes the trace of its
matrix argument and E is the expectation operator.

In this work, the four following properties will be used:

vec(ABCT ) = (C⊗ A)vec(B), (1)

Di(A)⊗Di(D) = Di((AT � DT )T ), (2)

(A⊗ D)(B⊗ E) = (AB⊗ DE), (3)

vec(Bdiag(λ)CT ) = (C � B)λ, (4)

where A ∈ CI×P , B ∈ CP×M , C ∈ CK×M , D ∈ CI×M ,
E ∈ CM×K and λ ∈ CM×1. Given an arbitrary third-order
tensor A ∈ CM×I×P , its horizontal, lateral and frontal slices
are respectively represented by Am.. ∈ CI×P , A.i. ∈ CP×M

and A..p ∈ CM×I .
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Fig. 1. PARATUCK-Z decomposition in matrix slice terms.

Fig. 2. MIMO cooperative system model with K relays.

The PARATUCK-Z decomposition of a third-order tensor
A ∈ CM×I×P , in matrix slices terms, is illustrated in Figure
1 and given by:

A..p = X(Z+1)Dp(C(Z))X(Z)...Dp(C(2))X(2)Dp(C(1))×

× X(1)T ∈ CM×I , (5)

for p = 1, ..., P , where C(z) ∈ CP×Rz , for z = 1, ..., Z,
X(z) ∈ CRz×Rz−1 , for z = 2, ..., Z, X(1) ∈ CI×R1 and
X(Z+1) ∈ CM×RZ . In scalar form, the PARATUCK-Z de-
composition can be written as:

am,i,p =

R1∑
r1=1

R2∑
r2=1

...

RZ∑
rZ=1

x(Z+1)
m,rZ c(Z)

p,rZx
(Z)
rZ ,rZ−1

...

c(2)p,r2x
(2)
r2,r1c

(1)
p,r1x

(1)
i,r1

. (6)

III. SYSTEM MODEL

In the present work, a (K+1)-hop one-way MIMO AF relay
system with one source (S) node, one destination (D) node and
K relays (R1, R2, ..., RK) nodes is considered, as illustrated
in Figure 2, where MX denotes the number of antennas at
node X (e.g, MS denotes the number of antennas at node S).
All the channels are assumed to be invariant during the total
transmission time and to undergo frequency flat fading. The
transmitted symbols are Quadrature Amplitude Modulation
(QAM)-modulated or Phase Shift Keying (PSK)-modulated.
The relays are half-duplex and the transmission runs in K+ 1
phases. In the first phase, the source transmits the information
signals to the first relay, in the second phase, the first relay
transmits towards the second relay and so on, until the Kth

relay (the last one) transmits towards the destination in the
(K + 1)th phase.

Consider that H(SR1) ∈ CMR1
×MS , H(Rk−1Rk) ∈

CMRk
×MRk−1 and H(RKD) ∈ CMD×MRK are MIMO channel

matrices of the SR1, Rk−1Rk and RKD links, respectively,
for k = 2, ...K. S ∈ CN×MS is the matrix with the
information symbols multiplexed to the MS antennas during
N consecutive symbol periods. A simplified KRST coding
[16] is used at the source to introduce time redundancy:

X..p = Dp(G0)ST ∈ CMS×N (7)

where p = 1, ..., P , X..p is the pth slice of the transmitted
signal tensor X ∈ CMS×N×P , G0 ∈ CP×MS is the coding
matrix of the source node and P is the number of transmission
blocks, each block being composed of N symbol periods. The
signals received by the first relay during the pth transmission
block are given by the pth matrix slice of the tensor Ỹ(R1) ∈
CMR1

×N×P :

Ỹ
(R1)

..p = H(SR1)X..p + V(R1)
..p ∈ CMR1

×N , (8)

where V(R1)
..p ∈ CMR1

×N is the pth matrix slice of the additive
white Gaussian noise (AWGN) tensor V(R1) ∈ CMR1

×N×P

during the pth transmission block at the relay R1.
It is considered that all the relays use the AF protocol.

Let Gk ∈ CP×MRk be the gain matrix of the Rk node,
for k = 1, ...,K. The amplified signal Dp(Gk−1)Ỹ

(Rk−1)

..p ∈
CMRk−1

×N is transmitted by Rk−1 to Rk, during the pth

transmission block, for k = 2, ...,K. The signals received
by Rk can then be written as the matrix slice of the tensor
Ỹ(Rk) ∈ CMRk

×N×P :

Ỹ
(Rk)

..p = H(Rk−1Rk)Dp(Gk−1)Ỹ
(Rk−1)

..p +

V(Rk)
..p ∈ CMRk

×N . (9)

where V(Rk)
..p ∈ CMRk

×N is the pth matrix slice of the AWGN
tensor V(Rk) ∈ CMRk

×N×P during the pth transmission block
at the relay Rk.

The amplified signal Dp(GK)Ỹ
(RK)

..p is then transmitted by
RK to the destination. Finally, the signals during the pth

transmission block received by the destination are given by
the pth matrix slice of the tensor Ỹ(D) ∈ CMD×N×P :

Ỹ
(D)

..p = H(RKD)Dp(GK)Ỹ
(RK)

..p +

V(D)
..p ∈ CMD×N , (10)

where V(D)
..p ∈ CMD×N is the pth matrix slice of the AWGN

tensor V(D) ∈ CMD×N×P at the destination node.
We can re-express (10) as:

Ỹ
(D)

..p = Y(D)
..p + Ṽ

(D)

..p ∈ CMD×N , (11)

where Y(D)
..p is the pth matrix slice of the noiseless signal

tensor Y(D) ∈ CMD×N×P given by:

Y(D)
..p = H(RKD)Dp(GK)H(RK−1RK)Dp(GK−1)...

H(SR1)Dp(G0)ST ∈ CMD×N , (12)

or, in a recursive way:

Y(D)
..p = H(RKD)Dp(GK)[
K∏
i=2

H(Ri−1Ri)Dp(Gi−1)

]
H(SR1)Dp(G0)ST ∈ CMD×N ,

(13)

and Ṽ
(D)

..p ∈ CMD×N is the pth matrix slice of the global noise
tensor Ṽ(D)

..p ∈ CMD×N×P , given by:

Ṽ
(D)

..p = H(RKD)Dp(GK)Ṽ
(RK)

..p + V(D)
..p , (14)
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with the global noise matrix at node k defined recursively as:

Ṽ
(Rk)

..p = H(Rk−1Rk)Dp(Gk−1)Ṽ
(Rk−1)

..p + V(Rk)
..p , (15)

for k = 2, ...,K and Ṽ
(R1)

..p = V(R1)
..p .

The received signals in (12) define a third-order tensor
which satisfies a PARATUCK-(K+1) decomposition [19] that
can be rewritten in scalar form as:

y(D)
mD,n,p =

MS∑
mS=1

MR1∑
mR1

=1

...

MRK∑
mRK

=1

h(RKD)
mD,mRK

g(K)
p,mRK

×

× h(RK−1RK)
mRK

,mRK−1
g(K−1)p,mRK−1

...h(SR1)
mR1

,mS
g(0)p,mS

sn,mS
. (16)

The received signal model described by (12) and (16) is
equivalent to the PARATUCK-Z decomposition introduced in
(5) and (6), with the following correspondences:

(K + 1, P,N,MS ,MR1
, ...,MRK ,MD)

⇐⇒ (Z,P, I,R1, R2, ..., RZ ,M) (17)

and

(H(RKD),H(RK−1RK), ...,H(SR1),S,GK , ...,G0)

⇐⇒ (X(Z+1),X(Z), ...,X(2)X(1),C(Z), ...,C(1)). (18)

The rate of the source coding is given by MS/P and the
total transmission rate of the proposed system is MS/P (K +
1).

IV. SYMBOLS AND CHANNELS ESTIMATION

This section presents two algorithms that jointly and semi-
blindly estimate the symbols and the channels of the multi-hop
MIMO relaying system presented in Section III. The first al-
gorithm is called least-squares Kronecker rearrangement-based
(LS-KR) and it is based on a rearrangement of the Kronecker
product that provides rank-1 matrices. The second algorithm is
an iterative ALS-based algorithm called PARATUCK-ALS. In
order to simplify the presentation of the proposed algorithms,
from now on, we will work with the noiseless part of the
received signals.

Before presenting the proposed algorithms, we will develop
some mathematical expressions for the tensor of received
signals. Applying Properties (1) and (3) to (12), we have:

y(D)
p = (S⊗H(RKD))(Dp(G0)⊗Dp(GK))×
× vec(H(RK−1RK)Dp(GK−1)...Dp(G1)H(SR1)). (19)

Now applying (2) to (19), we get:

y(D)
p = (S⊗H(RKD))Dp((GT

0 �GT
K)T )×

× vec(H(RK−1RK)Dp(GK−1)...Dp(G1)H(SR1)). (20)

Let us define G0K = GT
0 � GT

K ∈ CMRK
MS×P . Note that

G0K depends on the coding matrices of the first and last hops.
(20) can be rewritten as:

y(D)
p = (S⊗H(RKD))×

× diag(vec(H(G)
..p ))(G0K).p ∈ CMDN×1. (21)

with

H(G)
..p = H(RK−1RK)Dp(GK−1)...Dp(G1)H(SR1)

∈ CMRK
×MS . (22)

where H(G)
..p is the pth matrix slice of the global channel

tensor H(G) ∈ CMRK
×MS×P that depends on all the channel

matrices, but the last one H(RKD), and on the gain matrices
G1, ...,GK−1. Assuming that the matrices G1, ..., GK−1 are
identical, which implies MRk = MR, for k = 1, ...,K − 1,
and stacking the column vectors y(D)

p , for p = 1, ..., P , side
by side into a matrix, we have:

Y(D)
1 =

[
y(D)
1 . . . y(D)

P

]
(23)

= (S⊗H(RKD))diag(vec(H(G)))G0K , (24)

with H(G) = H(G)
..p , for p = 1, ..., P . Note that the assumption

that G1, ...,GK−1 are identical means that the same relay gain
is used for all transmission blocks. Note that, under this as-
sumption, the PARATUCK-(K+1) received signals tensor can
be expressed as a PARATUCK-2 model, with the following
matrix factors: H(RKD), GK , H(G), G0 and S. Indeed, in this
case, (12) can be re-expressed as:

Y(D)
..p = H(RKD)Dp(GK)H(G)Dp(G0)ST . (25)

We can write from (24):

Y(D)
1 = (S⊗H(RKD))diag(h(G))G0K ∈ CMDN×P , (26)

where h(G) = vec(H(G)). Assume that G0K has a right
inverse, i.e. G0KG†0K = IMRK

MS
. This means that G0K is

full-row rank, which implies P ≥MRKMS .
From (26), we may then write:

Y(D)
1 G†0K = (S⊗H(RKD))diag(h(G))

∈ CMDN×MRK
MS . (27)

A. Least-Squares Kronecker Rearrangement-Based (LS-KR)
Algorithm

In [24], a rearrangement of a given Kronecker product
matrix as a rank-1 matrix is exploited to estimate the matrix
factors of the Kronecker product. Let us define W as:

W = (S⊗H(RKD))diag(h(G)) ∈ CMDN×MRK
MS , (28)

which can be reexpressed as:

W =


W11 W12 . . . W1MS

W21 W22 . . . W2MS

...
...

. . .
...

WN1 WN2 . . . WNMS

 , (29)

where

Wnm = snmH(RKD)diag(H(G)
.m ) ∈ CMD×MRK , (30)

for n = 1, ..., N and m = 1, ...,MS . That leads to:

vec(Wnm)T = snmvec(H(RKD))T diag(H(G)
.m ⊗ 1MD

)

∈ C1×MDMRK . (31)
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where 1MD
is the column vector of length MD composed by

1s . Let us define:

Wm =

 vec(W1m)T

...
vec(WNm)T

 ∈ CN×MDMRK , (32)

for m = 1, ...,MS . From (31) and (32), we can write:

Wm = S.mvec((H(RKD))
T

)diag(H(G)
.m ⊗ 1MD×1), (33)

which is a rank-1 matrix.
The first step of the LS-KR algorithm consists in estimating

W from (27) by means of the LS method. The second
step of the proposed algorithm consists in performing the
rearrangement described in (29), (31) and (32), and, then, in
estimating S.m as the dominant left singular vector of Ŵm and
vec(H(RKD)) as the conjugate of the dominant right singular
vector of Ŵm, for m = 1, ...,MS . At the end, there will be
one estimation of S and MS estimations of H(RKD). We can
then choose any value of m (1 ≤ m ≤ MS) for estimating
H(RKD). In the simulations, we have used m = 1.

These estimates have the following ambiguities:
Ŝ.m = S.mδm and vec(Ĥ

(RKD)
) = diag(1MD

⊗
H(G)

.m )vec(H(RKD))/δm, where δm is a scalar, for
m = 1, ...,MS . Applying the unvec(·) operator to the
latter equation leads to: Ĥ

(RKD)
= diag(H(G)

.m )δmH(RKD),
which means that the rows of H(RKD) can only be estimated
with scalar ambiguities

Moreover, by concatenating the estimations of S.m for
m = 1, ...,MS , we get Ŝ = S∆s, where ∆s =
diag([δ1, ..., δMS

]T ) ∈ CMS×MS is a diagonal ambiguity
matrix. This means that the columns of S can only be estimated
with scalar ambiguities. The ambiguity matrix ∆s can be
estimated and canceled from S by assuming that the first row
of S is known. This can be done by using one pilot symbol
per transmit antenna. Concerning the scaling ambiguity of the
matrix Ĥ

(RKD)
, we assumed that the first column of H(RKD)

is known. In practice, this information can be obtained by a
simple LS estimation using a training sequence generated by
the relays [9].

The final step of the proposed algorithm is to estimate the
global channel matrix H(G). Applying Property (4) to (24),
we have:

vec(Y(D)
1 ) =

[
GT

0K � (S⊗H(RKD))
]

vec(H(G)) (34)

= C(D)h(G) ∈ CMDNP×1, (35)

where

C(D) =
[
GT

0K � (S⊗H(RKD))
]
∈ CMDNP×MRK

MS . (36)

The global channel matrix estimation is then given by Ĥ
(G)

=

unvec(ĥ
(G)

), where:

ĥ
(G)

=
(

Ĉ
(D)
)†

vec(Ỹ
(D)

1 ) (37)

where Ỹ
(D)

1 is the noisy version of Y(D)
1 and Ĉ

(D)
=[

GT
0K � (Ŝ⊗ Ĥ

(RKD)
)
]
.

Algorithm 1 - (LS-KR)

1: Ŵ = Ỹ
(D)

1 G†0K ;
2: for m = 1 to MS do

3: Ŵm =

 vec(Ŵ1m)T

...
vec(ŴNm)T

 ;

4: UΣVH = SV D(Ŵm);
5: Ŝ.m = U.1;
6: if m = 1 then
7: Ĥ

(RKD)
= unvec(V∗.1);

8: end if
9: end for

10: ĥ
(G)

=
[
GT

0K � (Ŝ⊗ Ĥ
(RKD)

)
]†

vec(Ỹ
(D)

1 );

11: Remove ambiguities

Note that Ĥ
(G)

will also have ambiguities. Indeed, as
ĥ
(RKD)
md,mr has a scalar ambiguity in the form: ĥ

(RKD)
md,mr =

h
(RKD)
md,mr h

(G)
mr,m/δm, where m corresponds to the index used for

estimating H(RKD) from Ŵm, ĥ(G)
mr,ms will have the following

ambiguity:

ĥ(G)
mr,ms

= h(G)
mr,ms

δm/h
(G)
mr,m (38)

which leads to

Ĥ
(G)

= ∆hH(G), (39)

where ∆h = δmdiag([1/h
(G)
1,m, ..., 1/h

(G)
MRK

,m]T ) ∈
CMRK

×MRK is a diagonal ambiguity matrix. This means
that the rows of H(G) can only be estimated with scalar
ambiguities. Such ambiguities can be eliminated assuming
that the first column of H(RKD) is known, as already
mentioned. This proposed algorithm, denoted by Kronecker
Rearrangement (KR), is summarized in Algorithm 1.

Considering that the computational complexity of the SVD
of a M × N matrix is O(MN min{M,N}) and the one
of the product of two matrices of dimensions M × N and
N × P is O(MNP ), the complexity of this algorithm is
dominated by the sum of the complexities of lines 1, 4 and
10, given by: O(PMRKMS [min{MRKMS , P} + MDN ]),
O(MSNMDMRKmin{N,MDMRK}) and O(MDNPMRK

MS [1 + min{MDNP,MRKMS}]), respectively. The total
complexity is then given by:

O(MDNM
2
RKMS [MD + PMS ]). (40)

If PMS > MD, then the complexity becomes
O(MDNM

2
RK

M2
SP ).

B. PARATUCK-ALS Algorithm

In this subsection we present the second proposed algorithm,
based on the ALS method. By stacking Y(D)T

..p in (12) for
p = 1, ..., P , we get the mode-2 unfolded matrix given by:
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Y(D)
2 =


(Y(D)

..1 )T

...
(Y(D)

..P )T

 (41)

= B(D)(H(RKD))T ∈ CNP×MD , (42)

where

B(D) =


SD1(G0)H(G)TD1(GK)

...
SDP (G0)H(G)TDP (GK)

 ∈ CNP×MRK . (43)

By stacking Y(D)
..p in (12) for p = 1, ..., P , we get the mode-

3 unfolded matrix:

Y(D)
3 =


Y(D)

..1
...

Y(D)
..P

 =


D(D)

..1
...

D(D)
..P

ST (44)

= D(D)ST ∈ CMDP×N . (45)

where

D(D)
..p = H(RKD)Dp(GK)H(G)Dp(G0)

∈ CMD×MS . (46)

We can then alternately estimate H(RKD), H(G) and S from
(42), (35) and (45), respectively, by means of the ALS method.
The PARATUCK-ALS algorithm is summarized in Algorithm
2, where Âi corresponds to the estimate of the matrix A at the
ith iteration, Ỹ

(D)

2 , Ỹ
(D)

3 and vec(Ỹ
(D)

1 ) are the noisy versions
of Y(D)

2 , Y(D)
3 and vec(Y(D)

1 ), respectively. At each iteration,
we estimate one of the matrices using the estimates of the
other matrices obtained in the previous steps. The iterations
will run until the following convergence criteria is satisfied:

|εi − εi−1| ≤ δ, (47)

where δ is the convergence threshold and

εi =
||Ỹ(D)

3 − D̂
(D)

i ST
i ||2F

||Ỹ(D)

3 ||2F
. (48)

At convergence, as it will be shown in the next section, we
have the estimation of the symbols and channels matrices with
ambiguities, such that:

Ĥ
(RKD)

∆RKD = H(RKD), (49)

Ŝ∆S = S, (50)

and
∆−1RKDĤ

(G)
∆−1S = H(G), (51)

where ∆RKD ∈ CMRK
×MRK and ∆S ∈ CMS×MS are

the ambiguity matrices. Assuming that the first row of S is
known by the receiver (through the use of pilot symbols, as
mentioned before), ∆S can be estimated and canceled out from
Ŝ and Ĥ

(G)
, leading to Ĥ

(RKD)
∆RKD = H(RKD), Ŝ = S

Algorithm 2 - (PARATUCK-ALS)
1: i = 0;
2: Ŝ← 16-QAM modulated values;
3: Ĥ

(RKD)
← gaussian random values;

4: ε1 = 0;
5: repeat
6: i = i+ 1;

7: B̂
(D)

i =


Ŝi−1D1(G0)Ĥ

(G)T

i−1 D1(GK)
...

Ŝi−1DP (G0)Ĥ
(G)T

i−1 DP (GK)

 ;

8: Ĥ
(RKD)

i =

(
B̂
(D)†

i Ỹ
(D)

2

)T

;

9: Ĉ
(D)

i = GT
0K � (Ŝi−1 ⊗ Ĥ

(RKD)

i );

10: ĥ
(G)

i =
(

C(D)
)†

vec(Ỹ
(D)

1 );

11: Ĥ
(G)

i = unvec(ĥ
(G)

i );

12: D̂
(D)

i =


Ĥ

(RKD)

i D1(GK)Ĥ
(G)

i D1(G0)
...

Ĥ
(RKD)

i DP (GK)Ĥ
(G)

i DP (G0)

 ;

13: Ŝi =

(
D̂

(D)†

i Ỹ
(D)

3

)T

;

14: εi =
||Ỹ(D)

3 −D̂(D)
i STi ||

2
F

||Ỹ(D)
3 ||2F

;

15: until |εi − εi−1| ≤ δ
16: Remove ambiguities

and ∆−1RKDĤ
(G)

= H(G). The PARATUCK-ALS algorithm is
summarized in Algorithm 2.

The complexity per iteration of this algorithm is dominated
by the complexity of line 7, which is given by:

O(PN3M3
SM

3
RK ). (52)

V. EXPECTED CRB FOR THE PARATUCK-2 TENSOR
MODEL

The CRB is a lower bound for the MSE, or normalized
MSE (NMSE), of any unbiased estimator θ̂ of the parameter
vector of interest θ, such that:

E||θ − θ̂||2 ≥ Trace{CRB(θ)}, (53)

where CRB(θ) is the CRB matrix defined as the inverse of
the Fisher Information Matrix (FIM) denoted by F(θ).

An extension of the above CRB for complex-valued random
parameters structured as θc = [θ̄

T
θ̃
T

]T , where θ̄ = <{θc}
and θ̃ = ={θc}, with respect to random nuisance parameter
γ is given by

E||θc − θ̂c||2 ≥ Eθ̄,θ̃,γ

{
Trace{CRB(θ̄)}+

Trace{CRB(θ̃)}
}
. (54)

We also recall that if the observation follows a complex
circular Gaussian distribution such as y ∼ CN (µ,R) then



7

the FIM relatively to a real vector θ is given by the Slepian-
Bangs (SB) formula [21], [22]:

[F(θ)]k,j = 2<

{(
∂µ

∂[θ]k

)H

R−1
∂µ

∂[θ]j

}
(55)

+ Trace

{
∂R

∂[θ]k
R−1

∂R

∂[θ]j
R−1

}
. (56)

In our context, two remarks can be formulated:
1) The symbol matrix S is discrete-valued. This structure

violates the regularity conditions of the CRB. The source
matrix is then viewed as a random unknown nuisance
parameters. This strategy is for instance exploited in
[20], for instance.

2) The vectorized entries of the channels are be stacked in
θc and γ = vec(S). The derivation of the above CRB is
mathematically intractable, so we promote the following
two alternative strategies.

A. Lower Bound for the Channel Between Source and Relay

The channel from R1 to D is viewed as a random unknown
nuisance parameter and the CRB is derived for the channel
from S to R1. In this case, we have

θc = [(h̄(SR1))T (h̃(SR1))T ]T , (57)

γ = [(h̄(R1D))T (h̃(R1D))T vec(S)T ]T . (58)

where h̄(SR1) = vec(H̄(SR1)), h̃(SR1) = vec(H̃(SR1)),
h̄(R1D) = vec(H̄(R1D)) and h̃(R1D) = vec(H̃(R1D)).

For the two-hop case, we define the observation ỹ
(D)
1 given

by equation (35) corrupted by the following additive noise:

b(D)
1 =


(IN ⊗ [H(R1D)D1(G1)])v(R1)

1,1
...

(IN ⊗ [H(R1D)DP (G1)])v(R1)
P,1

+ v(D)
1 , (59)

where v(R1)
p,1 = vec(V(R1)

...p ) ∈ CMDN×1 and v(D)
1 =

vec([vec(V(D)
..1 )...vec(V(D)

..P )]) ∈ CMDNP×1.
By (59) conditioned to the observations of the matrices

H(SR1), H(R1D) and S, the statistics of the noise observation
is given by:

ỹ
(D)
1 ∼ CN (µ1,R1), (60)

where ỹ
(D)
1 = vec(Ỹ

(D)
1 ) and

µ1 = C(D)h(SR1), (61)

R1 = σ2
R1

Bdiag{I⊗Λ1, . . . , I⊗ΛP }+ σ2
DI, (62)

with

Λp = H(R1D)|Dp(G1)|2(H(R1D))H . (63)

Using the SB formula where the second term vanishes, the
(2MSMR1

)× (2MSMR1
) the FIM is given by

F1(θc) = 2

[
M̄1 −M̃1

M̃T
1 M̄1

]
(64)

where M̄1 = <{(C(D))HR−11 C(D)} and M̃1 =
={(C(D))HR−11 C(D)}. The CRB is obtained as the inverse
matrix of the FIM. We obtain

Trace{CRB(h̄(SR1))} =
1

2
Trace{(M̄1 + M̃1M̄

−1
1 M̃1)−1},

(65)

Trace{CRB(h̃(SR1))} =
1

2
Trace{M̄−1

1 − M̄−1
1 M̃1(M̄1+

M̃1M̄
−1
1 M̃1)−1M̃1M̄

−1
1 }. (66)

Finally, summing the two above expressions and taking the
mathematical expectation with respect to the channel and the
symbol matrices, we obtain the lower bound.

B. Lower Bound for the Channel Between Relay and Desti-
nation

The channel from S to R1 is viewed as a random unknown
nuisance parameter and the CRB is derived for the channel
from R1 to D. In this case, we get:

θc = [(h̄(R1D))T (h̃(R1D))T ]T , (67)

γ = [(h̄(SR1))T (h̃(SR1))T vec(S)T ]T . (68)

Consider the following noisy observation:

ỹ
(D)
2 = vec(Ỹ

(D)
2 ) = (I⊗B(D))h(R1D) + b

(D)
2 , (69)

where the p-th block of matrix B(D) is given by
SDp(G0)(H(SR1))TDp(G1) and the additive noise is given
by

b
(D)
2 =


([H(R1D)D1(G1)]⊗ IN )v

(R1)
1,2

...
([H(R1D)DP (G1)]⊗ IN )v

(R1)
P,2

+ v
(D)
2 , (70)

where v(R1)
p,2 = vec(V(R1)

...p )T ∈ CMDN×1 and v(D)
2 =

vec([vec(V(D)
..1 )T ...vec(V(D)

..P )T ]T ) ∈ CNPMD×1.
Conditioned to the observations of the matrices H(SR1),

H(R1D) and S, the statistics of the noise observation is given
by:

ỹ
(D)
2 ∼ CN (µ2,R2), (71)

where

µ2 = (I⊗B(D))h(R1D), (72)

R2 = σ2
R1

Bdiag{Λ1 ⊗ I, . . . ,ΛP ⊗ I}+ σ2
DI. (73)

As the covariance matrix R2 is dependent of the parameters
of interest, the second term in the SB formula cannot vanished
and have to be evaluated. We then have

∂R2

∂[θc]k
= σ2

R1
Bdiag

{∂H(R1D)|D1(G1)|2(H(R1D))H

∂[θc]k
⊗ I,

...,
∂H(R1D)|DP (G1)|2(H(R1D))H

∂[θc]k
⊗ I
}

(74)
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where

∂H(R1D)|Dp(G1)|2(H(R1D))H

∂[h̄(R1D)
]k=f(i,j)

= Γi,j |Dp(G1)|2(H(R1D))H

+ H(R1D)|Dp(G1)|2Γj,i,
(75)

∂H(R1D)|Dp(G1)|2(H(R1D))H

∂[h̃
(R1D)

]k=f(i,j)

= iΓi,j |Dp(G1)|2(H(R1D))H

− iH(R1D)|Dp(G1)|2Γj,i,
(76)

since

∂H̄(R1D)

∂[h̄(R1D)
]k=f(i,j)

= Γi,j ,
∂H̃

(R1D)

∂[h̃
(R1D)

]k′=f(i′,j′)

= Γi′,j′

(77)

in which Γi,j is the null matrix with its (i, j)-th entry equals
to one and f(., .) is the vectorization function of a matrix. The
above expressions allow the computation of the second term
of the SB formula. The first term is derived in a similar way
as (64) with C(D) → (I⊗B(D)) and R1 → R2. By summing
the two terms, we obtain F2(θc). Taking the inverse and using
expression (54), we obtain the desired lower bound.

VI. UNIQUENESS PROPERTIES

A. Uniqueness Property

Assuming that the matrices G1, ..., GK−1 are identical,
we have H(G) = H(G)

..p , for p = 1, ..., P . In this case, the
PARATUCK-(K+1) model (12) leads to:

Y(D)
..p = H(RKD)Dp(GK)H(G)Dp(G0)ST . (78)

The uniqueness of the PARATUCK-2 tensor model was
established in [19]. It was demonstrated that, if the following
conditions are satisfied:
• H(RKD), GK , H(G), G0 and S are full rank matrices;
• H(G) has entries different from zero;
• GK and G0 have the same number of columns, i.e. MS =
MRK ;

then any alternate representation of the tensor Y of the form:

Y(D)
..p = H̃

(RKD)
Dp(G̃K)H̃

(G)
Dp(G̃0)S̃

T
, (79)

where H̃
(RKD)

, G̃K , H̃
(G)

, G̃0 and S̃ have the same di-
mensions of their counterparts in (78), satisfies the following
relationships:

H̃
(RKD)

(ΠRKD∆RKD) = H(RKD), (80)

S̃(ΠS∆S) = S, (81)

(∆GK∆−1RKDΠT
RKD)H̃

(G)
(ΠS∆−1S ∆G0

) = H(G), (82)

(zpΠT
RKD)Dp(G̃K)(ΠRKD∆−1GK

) = Dp(GK), (83)

(z−1p ΠT
S )Dp(G̃0)(ΠS∆−1G0

) = Dp(G0), (84)

for p = 1, ..., P, where ∆RKD ∈ CMRK
×MRK , ∆S ∈

CMS×MS , ∆GK ∈ CMRK
×MRK and ∆G0

∈ CMS×MS are di-
agonal matrices, ΠRKD ∈ CMRK

×MRK and ΠS ∈ CMS×MS

are permutation matrices, and zp are nonzero scalars.
Assuming that GK and G0 are known at the receiver, we get

ΠRKD = IMRK
, ΠS = IMS

zp∆−1GK
= IMRK

and z−1p ∆−1G0
=

IMS
, for p = 1, ..., P, where IM is the identity matrix of

dimension M . This leads to z1 = z2 = ... = zP = z and
∆GK = zIMRK

and ∆G0
= z−1IMS

.
(80), (81) and (82) can then be respectively rewritten as

H̃
(RKD)

∆RKD = H(RKD), S̃∆S = S and ∆−1RKDH̃
(G)

∆−1S =

H(G).

B. Alternative Uniqueness Condition

The following theorem establishes sufficient alternative
uniqueness conditions for the PARATUCK-2 tensor model,
based on the fact GK , G0 and the first row of S are known.

Theorem: Assuming that GK , G0 and the first row of S
are known, if r (G0K) = MRKMS , where r (A) denotes the
rank of the matrix A and G0K = GT

0 � GT
K ∈ CMRK

MS×P ,
the PARATUK2 model (78) is unique up the following ambi-
guities: H̃

(RKD)
= H(RKD)∆RKD and ˜H(G) = ∆−1RKDH(G),

where ∆RKD ∈ CMRK
×MRK is a diagonal matrix.

Proof: Let us consider an alternate representation of the
tensor Y of the form:

Y(D)
1 = (S̃⊗ H̃

(RKD)
)diag(h̃

(G)
)G0K . (85)

where S̃, H̃
(RKD)

and h̃
(G)

have the same dimensions of their
counterparts in (24). If G0K is full row rank, then:

(S⊗H(RKD))diag(h(G)) = (S̃⊗ H̃
(RKD)

)diag(h̃
(G)

). (86)

We can deduce from (86):

H(RKD)Dm

(
H(G)T

)
sn,m = H̃

(RKD)
Dm

(
˜H(G)

T
)
s̃n,m,

(87)
for n = 1, ..., N and m = 1, ...,MS . From (87), we can con-
clude that H(RKD) is unique up column scaling ambiguities,
i.e. H̃

(RKD)
= H(RKD)∆RKD, with ∆RKD ∈ CMRK

×MRK

being a diagonal matrix.
Let us denote by wms,mr ∈ CN×1 the vector containing

the elements 1, (MD + 1), (2MD + 1), ..., [(N − 1)MD + 1]
of the [(ms − 1)MRK + mr]th column of the matrix (S ⊗
H(RKD))diag(h(G)), for 1 ≤ ms ≤MS and 1 ≤ mr ≤MRK .
We can write from (87):

wms,mr
= sms

h
(RKD)
1,mr

h(G)
mr,ms

(88)

where sms ∈ CN×1 is the mth
s row of S. We can then conclude

from (86):

sms
h
(RKD)
1,mr

h(G)
mr,ms

= s̃ms
h̃
(RKD)
1,mr

h̃(G)
mr,ms

, (89)

which means that S is unique up column scaling ambiguities,
i.e. S̃ = S∆S , with ∆S ∈ CMS×MS being a diagonal matrix.
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Moreover, assuming that the first row of S is known, ∆S can
be estimated and canceled out from S̃ leading to S̃ = S.

From (89), we can then write:

h
(RKD)
1,mr

h(G)
.mr

= h̃
(RKD)
1,mr

h̃(G)
.mr
∈ C1×MS , (90)

where h
(G)
.mr is the mth

r row of H(G), for 1 ≤ mr ≤ MRK ,
which means that H(G) is unique up row scaling ambiguities,
i.e. ˜H(G) = ∆GH(G), with ∆G ∈ CMRK

×MRK being a
diagonal matrix. In addition, it can deduced from (90) that
∆G∆RKD = IMRK

.
�

Note that the above uniqueness conditions imply P ≥
MRKMS . It should be remarked that the uniqueness con-
ditions of Subsections V.A and V.B are sufficient, but not
necessary, which means that the conditions of these two
subsections do not have to be satisfied simultaneously.

VII. IDENTIFIABILITY CONDITIONS

A. LS-KR Algorithm

The identifiability conditions for the LS-KR Algorithm are:
i. r (G0K) = MRKMS ,

ii. r
(

C(D)
)

= MRKMS .

Condition i. implies MRKMS ≤ P . In this work, we consider
that the coding matrices G0 ∈ CP×MS and GK ∈ CP×MRK

are such that G0K = F
(MRK

MS)

P ∈ CMRK
MS×P , where

F
(MRK

MS)

P is a truncated Discrete Fourier Transform (DFT)
matrix, i.e., F

(MRK
MS)

P is a matrix that contains the first
MRKMS rows of a DFT matrix of order P , with MRKMS ≤
P , which leads to r (G0K) = MRKMS . The (p+1)th column
of F

(MRK
MS)

P can be represented by the following Kronecker
product:


1
ωp

...
ω(MRK

MS−1)p

 =


1

ωpMRK

...
ω(MS−1)pMRK

⊗


1
ωp

...
ω(MRK

−1)p

 .
(91)

for p = 0, ..., P − 1 and ω = e−
2πj
P . We then set the coding

matrices G0 and GK to be equal to [25]:

G0 =


1 1 . . . 1

1 ωMRK . . . ω(P−1)MRK

...
...

. . .
...

1 ω(MS−1)MRK . . . ω(MS−1)(P−1)MRK


T

.

(92)
and

GK =


1 1 . . . 1
1 ω . . . ω(P−1)

...
...

. . .
...

1 ω(MRK
−1) . . . ω(MRK

−1)(P−1)


T

. (93)

The matrix G0K used in the proposed receivers is then
orthogonal, avoiding noise amplification.

Regarding Condition ii, assuming that all the elements
of H(RKD) are independent and drawn from a continuous
distribution, this channel matrix have full rank. Moreover,
if the modulation cardinality and the number N of sym-
bols are not small, then the matrix S has full rank with a
high probability. Using (36) and the following relationships:
r (A � B) ≥ max (r (A) , r (B)) and r (A⊗ B) = r (A) r (B),
we get:

r
(

C(D)
)
≥ max

(
r
(

GT
0K

)
, r (S) r

(
H(RKD)

))
(94)

≥ max (MRKMS ,min (N,MS) min (MD,MRK ))

≥ MRKMS .

On the other hand, the rank of C(D) should be smaller than
or equal to its dimensions, i.e. min (MDNP,MRKMS) ≥
r
(

C(D)
)

. Thus, if MDNP ≥ MRKMS , we get r(C(D)) =

MRKMS .

C(D) =
[
GT

0K � (S⊗H(RKD))
]
∈ CMDNP×MRK

MS . (95)

B. PARATUCK-ALS Algorithm

The ALS algorithm requires the following identifiability
conditions:

i. r
(

B(D)
)

= MRK ,

ii. r
(

C(D)
)

= MRKMS ,

iii. r
(

D(D)
)

= MS .

where B(D), C(D) and D(D) are respectively defined in
(43), (36) and (46). These conditions requires, respectively:
MRK ≤ NP , MDNP ≥ MRKMS and MS ≤ MDP . Note
that Condition ii is the same for the LS-KR Algorithm.

Assuming that all the elements of the channel matrices
H(RKD), H(SR1) and H(Rk−1Rk), for k = 2, ...,K, are
independent and drawn from a continuous distribution, all
these channel matrices have full rank. Moreover, as above
explained, we can consider that the matrix S has full rank
with a high probability. Assuming that the matrices G0, ...,GK

have no zeros, we can then conclude:

r
(

SDp(G0)H(SR1)
T
...H(RK−1RK)TDp(GK)

)
=

min (MS ,MR1 , ...,MRK , N) , (96)

for p = 1, ..., P . Then, from (43), a sufficient but not
necessary relationship for assuring the above stated Condition
i is MRK ≤MS ,MR1 , ...,MRK−1

N .
Finally, from (46), we can then conclude that:

r
(

D(D)
p

)
= min (MS ,MR1

, ...,MRK ,MD) , (97)

which means that a sufficient but not necessary relationship
for assuring the Condition iii is MS ≤MR1 , ...,MRK ,MD.

VIII. SIMULATIONS RESULTS

In this section, simulation results that evaluate the perfor-
mance of the proposed receivers by means of Monte Carlo
simulations are presented. The criteria of performance used are
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the symbol error rate (SER), the block error rate (BLER) and
the normalized mean squared error (NMSE) of the channels,
given by:

NMSE =
1

SMC

(
SMC∑
s=1

||Hs − Ĥs||
2

F

||Hs||2F

)
, (98)

where SMC is the number of Monte Carlo samples, Hs is
channel matrix (H(RKD) or H(G)) and Ĥs is the estimate of
Hs at the sth Monte Carlo run. The SER and NMSE are shown
as a function of the SNR in dB at each communication link,
that is given by:

SNR = 10 log10

(
Pt

σ2
V (K + 1)

)
, (99)

where Pt is the total transmission power and σ2
V is the noise

variance. The gain matrix Gk, for 1 ≤ k ≤ K − 1 has
equal rows, with the elements of the row being independent
and identically distributed (i.i.d) and drawn form a zero-mean
complex Gaussian distribution. When not stated otherwise it
is used 16-QAM, P = 8, N = 100,MS = MRk = MD = 2,
for k = 1, ...,K. The wireless channels undergo frequency-flat
Rayleigh fading, with the elements of the channel matrices be-
ing i.i.d with variance following a large scale exponential path-
loss model with exponent equal to 4. The source, relays and
destination nodes are placed in a straight line, with the relays
being equally spaced between the source and destination. The
total transmission power is equal to 1 and it is equally divided
by the source and the relays. The convergence threshold δ of
the PARATUCK-ALS algorithm is 10−6.

The proposed receivers were compared to the iterative
receiver proposed in [8], also based on the ALS algorithm.
The proposed receivers were also compared to a PARATUCK2
Zero Forcing (PARATUCK2-ZF) receiver that estimates the S
matrix assuming that all the channels are known, using the
following estimator:

ŜZF = [D(D)†Ỹ
(D)

3 ]T , (100)

Figure 3 shows the SER versus the SNR, comparing the
proposed receivers with the receiver proposed in [8], using
its original coding matrix and the DFT coding matrix, and
with the PARATUCK2-ZF receiver. In this simulation it was
considered a single relay (K = 1) and a 4-QAM modulation,
as the receiver of [8] only works for two-hop systems. We can
see that both proposed receivers have a similar performance.
One should expect the PARATUCK-ALS to provide a small
SER due to the fact the estimations are refined at each iteration
for this algorithm. However, the DFT-based coding used leads
to an orthogonal matrix G0K , which considerably enhances
the estimations of the LS-KR method, since it does not change
the noise norm. Moreover, as expected, the PARATUCK2-ZF
method outperformed all the other techniques. However, the
proposed methods provided SERs close to the ZF receiver.
Note also that the proposed techniques provided much better
SERs than the receiver of [8], using both types of coding,
which stands out the effectiveness of the proposed receivers.
We should point out that, contrarily to the proposed LS-KR
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Fig. 3. SER versus SNR for the LS-KR, PARATUCK-ALS, PARATUCK2-
ZF receivers and the receiver of [8] using its original Vandermonde matrix
coding and the DFT coding used in the proposed receivers.
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Fig. 4. SER versus SNR for the LS-KR and PARATUCK-ALS receivers, for
several values of K.

method, the receiver of [8] does not exploit the orthogonality
of the matrix G0K .

Figure 4 shows the SER versus the SNR, varying the
number of relays, for the two proposed receivers. Again, we
can see that both receivers have a similar performance. It
can also be viewed that, as the number of relays increases,
the receivers provide a smaller SER. This is due to the fact
that, when more relays are used to assist the communication,
we will have shorter distances between the nodes, leading to
less severe path-losses. This result stands out the advantage of
multi-hop systems.

Figure 5 shows the SER versus the SNR, varying the
number of antennas at the destination, for the two proposed
receivers, using K = 4. As expected, the values of SER
decrease as the number of antennas is increased. This is due
to the spatial diversity at the destination node. It can also be
seen that both proposed receivers present similar performance.
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Fig. 5. SER versus SNR varying the number of antennas at the destination
for the LS-KR and PARATUCK-ALS receivers.
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Fig. 6. BLER and SER versus SNR for the LS-KR and PARATUCK-ALS
varying the number of antennas at the source, for K = 3.

Figure 6 shows the BLER and SER versus SNR, varying
the number of antennas at the source, for K = 3. As
expected, when the number of antennas at the source increases,
maintaining fixed the number of antennas in the other nodes,
the SER and BLER tend to reach higher values, as more
information is being transmitted without increasing the number
of receive antennas. It can also be observed that BLER and
SER present similar behaviors.

Figure 7 compares the NMSE of the channels H(RKD)

and H(G) versus the SNR, for the two proposed receivers,
using K = 3. We can see that the estimation of H(RKD) is
better than the one of H(G), for both receivers. This is due
to the fact that we estimate and cancel the ambiguity matrix
of H(RKD) assuming that its first row is known, while the
ambiguity matrix of H(G) is estimated from the ambiguity
matrix of H(RKD), without assuming any knowledge of H(G).
Moreover, the PARATUCK-ALS provides better estimations
of H(RKD) than the LS-KR receiver, as the PARATUCK-ALS
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Fig. 7. NMSE versus SNR for H(RKD) and H(G) for the LS-KR and
PARATUCK-ALS receivers, for K = 3.

is an iterative algorithm that refines the estimations at each
iteration. Regarding the estimation of H(G), the PARATUCK-
ALS provides a small performance gain with respect to the LS-
KR receiver. This is due to the fact that the ambiguity matrix
of this channel is estimated in an indirect way, decreasing the
performance of both algorithms.

Figure 7 shows the NMSE of H(RKD) and H(G) provided
by the LS-KR receiver considering that the ambiguities are
removed using pilot symbols sent by the last relay to the
destination. We assumed that, at each symbol period, one
pilot symbol is sent by one of the MRK antennas of the
last relay, while the other antennas remain silent. The training
period occurs during MRK symbol periods, without coding.
These pilot symbols are used to estimate the ambiguity matrix
∆RKD. It can be viewed that the NMSE of both H(RKD)

and H(G) using pilot symbols is quite close to the NMSE
obtained assuming the knowledge of the first row of H(RKD).
This results shows that a priori knowledge of the first row
of H(RKD) is deduced from a short training step inducing no
performance loss.

Figures 8 and 9 show the NMSE of H(G) and H(RKD),
respectively, versus the SNR, by varying the number of relays,
for the two proposed receivers. As in Figure 4, we can see
that the provided NMSEs are better when the number of
relays increases, due to the less severe path-loss. Moreover,
the PARATUCK-ALS always provides better estimations of
H(RKD) than the LS-KR receiver, due to the reason previously
explained for Figure 6. For the H(G) channel, the proposed
techniques provide roughly the same performance, as also
explained for Figure 7.

In order to compare the channel estimates of the proposed
techniques with the one of [8], we use the NMSE of the effec-
tive channel H(eff) = H(RKD)H(G) as the figure of merit, as
the technique of [8] does not estimate the channel matrices in-
dividually, but only the product H(R1D)H(G). Moreover, as the
receiver of [8] only works for two-hop systems, the parameters
of this simulations are the same as in the simulation of Figure
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Fig. 9. NMSE of H(RKD) versus SNR for the LS-KR and PARATUCK-ALS
receivers, for several values of K.

3. Note that, for K = 1, H(G) = H(R1D). Figure 10 compares
NMSE of H(eff) obtained with the proposed receivers and
with the one of [8]. It can be seen that both proposed receivers
provided much better NMSEs than the method of [8] using
both coding matrices. As previously explained, this is due to
the fact that both of the proposed receivers exploit efficiently
the orthogonal matrix G0K , contrarily to the receiver of [8].

Figure 11 shows the CRBs of the channels for the
PARATUCK-2 model, i.e., when only a single relay is used,
as well as the NMSE of these channels provided by the
two proposed receivers. It can be observed that, for channel
H(SR1), the NMSE provided by both receivers is very close to
the lower bound, as the ambiguities of this channel estimate
are eliminated in function of the ambiguity matrices of H(R1D)

and S. For the channel H(R1D), the NMSE provided by the
LS-KR receiver is very close to the lower bound, showing that
this receiver is close to optimality, while the one provided by
the PARATUCK-ALS receiver touches the bound, reaching the
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Fig. 10. NMSE versus SNR for the effective channel H(eff) for the LS-
KR, PARATUCK-ALS receivers and the receiver of [8] using its original
Vandermonde matrix coding and the DFT coding used in the proposed
receivers.
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optimal case.

IX. CONCLUSION

The main contribution of this work is the proposal of
two semi-blind receivers for one-way multi-hop cooperative
MIMO AF relaying systems. The considered communication
system uses the KRST coding at the source and at the relays.
It was shown that the received signals in this transmission
scheme satisfy a PARATUCK-N tensor model. One of the
proposed receivers is non-iterative, based on a rearrangement
of the Kronecker product, while the other is iterative, based
on the ALS algorithm. Uniqueness conditions were derived, as
well as the identifiabiliy conditions of the proposed algorithms.
Also, the expressions of the expected CRB for the two-hop
case were derived and simulated.

Simulation results have shown a better performance of
the proposed receivers in the considered scenarios, when
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compared to the receiver of [8]. Simulation results also showed
that both proposed receivers are close to the optimal case, the
PARATUCK2-ZF receiver. The results corroborated the fact
that increasing the number of hops improves the SER and
NMSE performances, highlighting the advantage of multi-hop
networks.

In future works, we aim to develop more efficient algorithms
and generalize the proposed ones for other system models
(e.g., two-way relaying, OFDM, GFDM, etc.). The use of
the channel state information (CSI) provided by the proposed
techniques in space-time coding setting is also a perspective,
as well as the development of the CRB for the general case
of K relays. Finally, a deeper analysis of the performance of
the proposed receivers using forward error correction (FEC)
coding will be considered in future works.

ACKNOWLEDGEMENTS

This work was supported by CNPq (PQ/Process no
304053/2016-3 and Universal 01/2016) and FUNCAP
(PRONEM 01/2016). Pedro Marinho R. de Oliveira was
funded by a Master scholarship from CAPES. He is now
funded by a PhD scholarship from the IT Doctoral School
(ED STIC) of the Université Côte d’Azur.
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