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a b s t r a c t 

Several algorithms for finding a lower bound on the makespan for the Resource Constrained Project

Scheduling Problem (RCPSP) were proposed in the literature. However, fast computable lower bounds

usually do not provide the best estimations and the methods that obtain better bounds are mainly based

on the cooperation between linear and constraint programming and therefore are time-consuming. In this

paper, a new pseudo-polynomial algorithm is proposed to find a makespan lower bound for RCPSP with

time-dependent resource capacities. Its idea is based on a consecutive evaluation of pairs of resources and

their cumulated workload. Using the proposed algorithm, several bounds for the PSPLIB benchmark were

improved. The results for industrial applications are also presented where the algorithm could provide

good bounds even for very large problem instances.
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. Introduction

The Resource Constrained Project Scheduling Problem (RCPSP)

s a well-known problem in scheduling theory. This problem is

nown to be NP -hard in the strong sense ( Garey & Johnson, 1975 ).

n this research, we consider a generalized statement of the prob-

em with a time-dependent resource capacity function defined as

ollows. There is a set of tasks N and a set of renewable resources

 . The amount of resource X ∈ R which can be used by tasks of set

 during time slot [ t, t + 1) is defined by capacity function c X ( t ).

he statement of a constant resource capacity is a particular case

f this formulation. For any task j ∈ N , the following parameters are

iven: 

• p j – processing time;
•
 a jX – required amount of resource X ∈ R .
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Precedence relations between tasks are given by directed

cyclic graph G ( N , E ). If an edge ( i → j ) ∈ E exists, it means that task

 must be finished before the starting time of task j . 

Further, the following parameters can be calculated for each

ask taking into account the precedence and resource constraints: 

• r j – release time, the earliest time from which task j can be

started;
• D j – deadline, the latest time for finishing task j if a global

deadline T for the project is known.

It should be noted that these task parameters can be also given

s initial data and incorporated in the algorithm described below. 

The objective is to find a schedule with the lowest makespan i.e.

ith the shortest project duration. 

A schedule π is feasible for the sets of resources R and tasks N ,

f for any j ∈ N starting time S j ( π ) ≥ r j is defined and all precedence

nd resource capacity constraints are satisfied. The set of all feasi-

le schedules is noted by �( N , R ). The objective is to find a feasible

chedule with the minimal makespan value i.e. 

min 

∈ �(N,R )
max 

j∈ N
C j (π ) , 

here C j (π ) = S j (π ) + p j ≤ D j – the completion time of task j ,

here D j – deadline of task j . 
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In the literature, a number of algorithms to calculate lower

bounds on the makespan were proposed. Their overview is pre-

sented in Section 2 , more details can be found in the follow-

ing comprehensive surveys ( Neron et al., 2006 ) and ( Knust, 2015 ).

In this paper, a novel pseudo-polynomial algorithm is developed

which extends the relaxation of RCPSP to a Cumulative Schedul-

ing Problem by considering pairs of resources. Our approach uses

”time-tabling” techniques to adjust the capacity function of re-

sources first and then it calculates a lower bound on the makespan

by evaluating highest possible resource loads for each time slot. 

The rest of the paper is organized as follows. The main algo-

rithm for lower bound calculation is presented in Section 3 . The re-

sults of the numerical experiments are discussed in Section 4 . Con-

cluding remarks and research perspectives are given in Section 5 . 

2. Previous research

There is a large number of publications devoted to the discus-

sion on lower bounds for RCPSP. Recent comprehensive reviews

can be found in Neron et al. (2006) and Knust (2015) . The anal-

ysis of the computational complexity of some algorithms and the

quality of the obtained bounds are discussed in Gafarov, Lazarev,

and Werner (2010) . The majority of efficient algorithms can be re-

ferred to as ”destructive” methods. Such an algorithm starts with

a defined project deadline T and tries to find a feasible schedule

for it. If a feasible solution does not exist, the deadline is increased

(usually by incrementing the deadline with 1 unit of time) and the

calculation procedure restarts. The calculation continues until the

algorithm cannot reveal any contradiction with the defined dead-

line or until the end of the allocated calculation time. Similarly,

constraint programming methods can be applied as for example in

Schutt, Feydy, Stuckey, and Wallace (2011) and Laborie (2003) . 

Here below are shortly discussed the most effective methods

for finding a lower bound on the makespan for RCPSP. For more

details on these algorithms, the reader can consult the recent com-

prehensive reviews ( Neron et al., 2006 ) and Knust (2015) . 

1. Disjunctive bounds

In the study of Baptiste and Pape (20 0 0) , each renewable re-

source is considered as a system of several identical processors

with the number of processors equal to the capacity of the re-

source. The problem is formulated using mixed integer program-

ming and heuristics are used to solve it. 

Several algorithms ( Applegate & Cook, 1991; Baptiste, Pape, &

Nuijten, 1999; Carlier & Pinson, 1989; Carlier & Pinson, 1990; Car-

lier & Pinson, 1994 ) aim to facilitate the lower bound calcula-

tion by constructing complementary precedence relations with the

verification of the assumptions that certain requirements of set

A must / cannot be satisfied before / after some considered set

of requirements B. These algorithms have polynomial runtime for

one iteration, but the number of iterations increases exponentially

when the number of requirements A and B increases. 

2. Cumulative bounds

The algorithm of Carlier and Latapie (1991) is based on the

identification of such sets of tasks for which the available amount

of resource is insufficient for their parallel execution. Each resource

is considered as a system of several identical processors where the

number of processors per resource is less than its capacity. In the

further studies of Carlier and Pinson (1998) and Carlier and Pinson

(2004) , it is assumed that each processor can execute more than

one task per unit of time and the same task can be completed by

several processors. 

Polynomial time algorithms were proposed to solve a relaxed

problem ( Brucker, 2002; Haouari & Gharbi, 2003; Tercinet, Lente,

& Neron, 2004 ) where the planning horizon (between the starting

point and the deadline) was split into intervals and each resource

was considered as a multiprocessor system with the number of
rocessors equal to the capacity of the resource. Further, the in-

erruption of tasks at the boundaries of intervals was allowed. 

The relaxation to so called Cumulative Scheduling Problem was

lso explored. It is obtained from the initial problem by ignoring

ll resources except one and replacing the precedence relations by

elease times and deadlines. The optimal makespan for this prob-

em provides a lower bound for the initial problem. However, the

btained Cumulative Scheduling Problem is also NP-hard in the

trong sense. Nevertheless, methods developed for the calculation

f a lower bound on the makespan for such a formulation provide

 lower bound for the makespan of the initial problem as well

 Brucker & Knust, 20 0 0; Carlier & Neron, 20 0 0; Carlier & Neron,

003; Mingozzi, Maniezzo, Ricciardelli, & Bianco, 1998 ). Satisfia-

ility tests SAT can also be performed by dividing the planning

orizon into intervals and checking the amount of the available re-

ource in each of the considered intervals ( Baptiste et al., 1999;

rschler, Lopez, & Thuriot, 1991; Lopez, Erschler, & Esquirol, 1992;

chwindt, 2005 ). 

3. Methods based on Constraint Programming

Among the studies using different techniques of Constraint Pro-

ramming, for example Schutt et al. (2011) and Laborie (2003) , the

echniques developed in Nuijten (1994) and Caseau and Laburthe

1996) are based on reducing the time intervals calculated for each

ask due to the analysis of the available amount of each resource

or a chosen set of tasks. Such algorithms are time consuming be-

ause of the large number of possible sets under consideration. 

4. Algorithms based on the exploration of multi-resource con-

traints 

Such algorithms ( Baptiste & Demassey, 2004; Garaix, Artigues,

 Demassey, 20 05; Laborie, 20 05 ) are based on the research of

critical sets” (MCS - minimum critical set, FS - forbidden set) i.e.

ets of tasks that cannot be performed simultaneously because of

esource capacity constraints, while any subset of such a critical

et does not violate resource constraints and can be performed si-

ultaneously. 

5. Linear programming relaxations

A lower bound can also be obtained by a relaxation of the

nitial problem to a linear programming problem ( Christofides,

lvarez-Valdes, & Tamarit, 1987; Pritsker, Watters, & Wolfe., 1969 ).

A detailed analysis of these algorithms can be found in recent

urveys ( Neron et al., 2006 and Knust, 2015 ). The conclusion of

his analysis is that fast algorithms usually do not provide the

est lower bounds and the methods that obtain better bounds are

ainly based on the cooperation between linear and constraint

rogramming and therefore are time-consuming. In this paper, a

ew pseudo-polynomial algorithm is proposed which aims to pro-

ide good lower bounds in acceptable computational time. 

. A novel algorithm for finding a lower bound on the

makespan

The considered decision version of RCPSP is formulated as fol-

ows: 

roblem 1. Given set of tasks N , set of resources R and deadline

time horizon) T , does any feasible schedule π ∈ �( N , R ) exist with

 makespan inferior or equal to T , i.e. 

ax 
j∈ N

C j (π ) ≤ T . (1)

Without loss of generality, it is assumed that the project can

e started at time t = 0 . We introduce two dummy tasks 0 , n + 1 ∈
which represent the start and the end of the project, i.e. r 0 =

 n +1 = 0 , p 0 = p n +1 = 0 , D 0 = D n +1 = T and for any j ∈ N \ { 0 , n +
 } precedences 0 → j and j → n + 1 exist. 

The general scheme of finding a lower bound on the makespan

s based on the four following procedures: 



Fig. 1. Compulsory part of a time interval of task j .
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Fig. 2. Amount of resource X ∈ R which can be used to perform non-compulsory 

parts of tasks.

Fig. 3. Update of deadlines.
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rocedure 1. Pre-processing. This procedure updates the release

times and deadlines for tasks under condition that

the makespan is inferior or equal to T . If during these

calculations one of the existing constraints cannot be

satisfied, there is no feasible solution with such a

bound on the makespan. 

rocedure 2. This procedure calculates an upper bound on the re-

source consumption by set of tasks N during time

interval [0 , t + 1) considering all pairs of resources

X , Y . Precedence constraints are replaced by release

times and deadlines. In this way, also precedence

constraints with time lags can be taken into account. 

rocedure 3. Procedure 2 is applied for original precedence graph

G ( N , E ) and the graph with reversed precedence rela-

tions G (N, E ) . The objective is to compare, for any re-

source X ∈ R , the sum of upper bounds on its amount

consumed in intervals [0, t ) and ( t , T ] with the total

amount of resource required for all tasks 
∑

j∈ N a jX p j .
If the latter is lower than the former, the considered

problem is considered infeasible. 

rocedure 4. Finally, the binary search part changes time horizon T

and then the calculation is restarted. 

In the following, each part of the algorithm is discussed in de-

ails. 

.1. Procedure 1: pre-processing 

We denote the length of a longest path from i ∈ N to j ∈ N by P ij 
f there is a path from i to j in graph G ( N , E ). The calculation of

 ij ≥ 0 for all pairs of tasks i , j ∈ N having a path from i to j in G

an be done using Dijkstra’s algorithm ( Dijkstra, 1959 ). 

Let us consider all pairs of tasks i , j ∈ N such that P ij ≥ 0 and

pdate release times and deadlines using formulae 

 j := max { r j , r i + P i j } ,

 i := min { D i , D j − P i j } .
f for any j ∈ N , holds D j − r j < p j , then inequality (1) is violated

nd the algorithm terminates. Otherwise, the compulsory part of

he time interval (between the release time and deadline) is cal-

ulated for each task j ∈ N [ C P s 
j 
, C P e 

j 
) using formulae CP s 

j 
= D j − p j ,

P e 
j 

= r j + p j ( Fig. 1 ). This idea was formulated in Lahrichi (1982) . 

If C P s 
j 
< C P e 

j 
, then under any schedule π , which satisfies given

elease dates and deadlines, task j consumes exactly a jX of resource

 ∈ R at each moment of time t ∈ [ C P s 
j 
, C P e 

j 
) . Therefore, the amount

f resource X ∈ R that can be used by other tasks at each moment

f time t ∈ [ C P s 
j 
, C P e 

j 
) is not more than c X (t) − a jX . This idea leads

s to replace capacity function c X ( t ) by function c ′ 
X 
(t) representing

he amount of resource X ∈ R which can be used to perform non-

ompulsory parts of tasks ( Fig. 2 ) 

 

′ 
X (t) = c X (t) −

∑

j∈ N| t∈ [ C P s 
j 
,C P e 

j
)

a jX . 

If for any X ∈ R and t = 0 , . . . , T − 1 inequality c ′ 
X 
(t) < 0 holds,

here is no feasible schedule which satisfies deadline T . The num-

er of breakpoints of function c ′ (t) is not superior to 2 n + m,

X 
here m is the number of breakpoints of c X ( t ) in horizon T . The

omplexity of c ′ 
X 
(t) calculation for all X ∈ R can be estimated by

 ((n + m ) r) operations, where n = | N| and r = | R | . Note that the

alculation of c ′ X (t) is similar to the Resource profile calculation

resented in Fox (1990) ; Pape (1988) . 

The idea of the following algorithm is close to sweep algo-

ithms presented in Beldiceanu and Carlsson (20 01, 20 02) ; Letort,

eldiceanu, and Carlsson (2012) , the difference lies in the uti-

ization of function c ′ 
X 
(t) which is actively used and dynamically

hanged in our algorithm. 

For each task j ∈ N and resource X ∈ R , its demand in resource X

s compared with the availability of resource X i.e. the value of ca-

acity function c ′ 
X 
(t) for all m 

′ breakpoints of function c ′ 
X 
(t) which

oes not belong to compulsory interval [ C P s 
j 
, C P e 

j 
) . If for any set of

reakpoints t 0 , . . . , t m 

′ , c ′ X (t) < a jX i.e. the amount of resource X is

ot sufficient to perform task j , the following updates are realized:

• if for any l ∈ { 0 , . . . , m 

′ − 1 } such that t l < max { C P s 
j 
, C P e 

j 
} and

r j ≤ t l+1 holds c ′ 
X 
(t l ) < a jX , update r j := t l+1 ; 

• if for any l ∈ { 1 , . . . , m 

′ } such that max { C P s 
j 
, C P e 

j 
} < t l and t l−1 <

D j holds c ′ 
X 
(t l−1 ) < a jX , update D j := t l−1 ( Fig. 3 ). 

If for any task j ∈ N , its release date or deadline is updated, the

reprocessing part is restarted with the new values of r j and D j .

therwise, the preprocessing algorithm terminates successfully. 

emma 1. The complexity of the preprocessing part is O (n 2 (n +
 ) T r) operations, where n is the number of tasks, m is the highest

umber of breakpoints of the resource capacity function, T is the time

orizon and r is the number of resources. 

roof. The calculation of P ij for all i , j ∈ N takes O (n | E| + n 2 log n )

perations, where | E | is the number of edges in graph G . Each

teration of the first round for release and deadline calculation

akes O ( n 2 ) operations for checking all paths and O (n (n + m ) r) for

esource inequalities verification. The number of iterations is no

ore than nT since each task cannot have more than T release time

r deadline updates. Therefore, the total complexity of the prepro-

essing part can be estimated by O (n 2 (n + m ) T r) operations. �

.2. Inner cycle: relative resource load calculation 

Let us consider two resources: X and Y . The earliest possible

oment of time when j ∈ N can start to use resources X , Y ∈ R is r j .

or any t ≤ p j in time interval [ r j , r j + t) , the amount of resources

 and Y consumed by task j cannot be more than t · a jX and t · a jY 
espectively. If [ C P s 

j 
, C P e 

j 
) � = ∅ task j uses exactly a jX and a jY in each

f time slots [ C P s 
j 
, C P s 

j 
+ 1) , . . . , [ C P e 

j 
− 1 , C P e 

j 
) . 

Let 

 jX (t) = ( min { t, CP s j , CP e j } − min { t, r j − 1 } ) · a jX



Fig. 4. A jX ( t ) – the highest possible amount of resource X used by the non- 

compulsory part of task j in interval [0 , t + 1) . 
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– be the highest possible amount of resource X used by the non-

compulsory part of task j in interval [0 , t + 1) ( Fig. 4 ).

The inner cycle procedure processes time slot by time slot start-

ing at the moment t = 0 . In each time slot, the highest possible

consumption of resources X and Y by all tasks of set N is esti-

mated by taking into account only non-compulsory parts of tasks.

The amount of resource X used by non-compulsory part of task

j ∈ N in interval [0 , t + 1) is denoted by u jX ( t ), and the total con-

sumption of resource X by all tasks in interval [0 , t + 1) is denoted

by U X (t) = 

∑ 

j∈ N u jX (t) .

The main idea behind the developed algorithm is to calculate

an upper bound on the possible consumption of resources X and Y

taking into account the non-compulsory parts of the tasks that can

be assigned to each time interval. In a general case, the demand in

resources of all such tasks will be superior to the resource capac-

ity, but not necessarily in the same proportion for resource X as

for resource Y . The originality of the proposed approach is to take

into account the fixed proportion of usage of different resources

by each task. To calculate the upper bound, a linear combination of

fractional parts of such tasks that use the highest available amount

of both resources is researched. Among different combinations us-

ing the totality of the available resources, a geometric algorithm is

used to choose the combination for which the validity of the lower

bound on the makespan is proven by Theorems 1 and 2. For exam-

ple, in a general case, this algorithm will prefer the combination of

the tasks using both resources to the combination using the tasks

requiring only one resource. This is done in order to provide more

flexibility in the resource usage for remaining time intervals. 

For resources X and Y , the consumption scheme ϕ is defined

when non-compulsory used amounts of resources u jX ( t ) and u jY ( t )

are known for any task j ∈ N and time slot t = 0 , . . . , T − 1 . The

consumption scheme is valid if for any task j ∈ N and time slot

 = 0 , . . . , T − 1 the following conditions hold: 

u jX (t) ≤ A jX (t) ,

u jY (t) ≤ A jY (t) ,

u jX (t) 

u jY (t)
= 

a jX 

a jY 
.

The first and the second inequalities are associated with the def-

initions of A jX ( t ) and A jY ( t ), respectively. The last equality is very

important, since it requires that the proportion of resources X and

Y used by task j ∈ N remains the same in the considered consump-

tion scheme as in any feasible schedule. Note that each feasible

schedule with deadline T possesses valid consumption schemes for

all resources. 

All time slots t = 0 , . . . , T − 1 are considered one by one in an

iterative way and for each of them, the following optimization

problem is solved: 
roblem 2. For each j ∈ N values u jX (t − 1) and u jY (t − 1) are

iven and functions A jX ( t ), A jX ( t ) are defined. The objective is to

etermine u jX (t) ≥ u jX (t − 1) and u jY (t) ≥ u jY (t − 1) for all tasks

 ∈ N such that U X ( t ) and U Y ( t ) reach the highest possible value

since we are interested in an upper bound on resource consump-

ion). The following constraints should be taken into account: 

u jX (t) − u jX (t − 1) 

u jY (t) − u jY (t − 1)
= 

a jX 

a jY 
,

 jX (t) ≤ A jX (t) , u jY (t) ≤ A jY (t) ,

 

j∈ N
(u jX (t) − u jX (t − 1)) ≤ c ′ X (t) ,

j∈ N
(u jY (t) − u jY (t − 1)) ≤ c ′ Y (t) .

f for any time slot there is more than one solution which satisfy

hese conditions, the solution will be chosen using the following

riterion: 

in 

∑

j∈ N

√
(u jX (t) − u jX (t − 1)) 2 + (u jY (t) − u jY (t − 1)) 2 . (2)

The necessity of this criterion is explained by Theorem 1 . This

roblem can be reformulated in terms of vectors. 

roblem 3. For time slot t we have a set of two-dimensional

ectors v 1 = (A 1 X (t) − u 1 X (t − 1) , A 1 Y (t) − u 1 Y (t − 1)) , . . . , v n =
(A nX (t) − u nX (t − 1) , A nY (t) − u nY (t − 1)) associated with all

asks of set N . The objective is to find a set of coefficients

 α1 , . . . , αn } ∈ [0 , 1] such that the linear combination

 = α1 v 1 + · · · + αn v n 

as the highest possible projections on the axes (it corresponds

o the highest usage of the resources) and satisfies the inequali-

ies L X ≤ c ′ 
X 
(t) and L Y ≤ c ′ 

Y 
(t) . If there is more than one solution,

hoose the one with the lowest sum of the vectors lengths i.e. (it

orresponds to criterion 2 ): 

in 

∑ 

j∈ N
α j | v j | . (3)

emma 2. Problems 2 and 3 are equivalent. 

roof. In problem 2 we have to find u jX ( t ), u jY ( t ) such that A jX (t) ≥
 jX (t) ≥ u jX (t − 1) , A jY (t) ≥ u jY (t) ≥ u jY (t − 1) and

u jX (t) − u jX (t − 1) 

u jY (t) − u jY (t − 1)
= 

a jX 

a jY 
.

ince values u jX (t − 1) , u jY (t − 1) , A jX ( t ) and A jY ( t ) are given, each

air of values u jX ( t ), u jY ( t ) can be associated with a vector v j =
(u jX (t) − u jX (t − 1) , u jY (t) − u jY (t − 1)) where u jX (t) = u jX (t −
) + α j (A jX (t) − u jX (t − 1)) and u jY (t) = u jY (t − 1) + α j (A jY (t) −
 jY (t − 1)) , αj ∈ [0, 1]. Therefore linear combination L = α1 v 1 +

· · · + αn v n has projections

 X = 

∑

j∈ N
α j (u jX (t) − u jX (t − 1)) = U X (t) − U X (t − 1) , 

 Y = 

∑

j∈ N
α j (u jY (t) − u jY (t − 1)) = U Y (t) − U Y (t − 1) 

n axes OX and OY respectively. Since U X (t − 1) and U Y (t − 1) are

xed, the highest possible values of U X ( t ) and U Y ( t ) correspond to

he highest values of L X and L Y (the highest usage of the resources).

f there is more than one linear combination which satisfies the



Fig. 5. Polygon construction.

Fig. 6. Geometric algorithm: subcase 2a.
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Fig. 7. Geometric algorithm: subcase 2b.

Fig. 8. Geometric algorithm: subcase 2c.

Fig. 9. Geometric algorithm: step 3.
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bove conditions, the second objective (3) is applied to choose the

olution. Note, that 
 

j∈ N
α j | v j | = 

∑

j∈ N

√
(u jX (t) − u jX (t − 1)) 2 + (u jY (t) − u jY (t − 1)) 2 ,

ence (3) is equivalent to (2) . �

The following geometric algorithm is designed to solve opti-

ally Problem 3 . 

1. Construct the convex centrally symmetric polygon of possible

linear combinations of vectors v 1 , . . . , v n with coefficients in

[0,1] as follows. Let OV = v 1 + · · · + v n . The upper and lower

borders of this polygon are associated with the sequences of

vectors placed in descending and ascending orders of tangents

of the angle formed with the abscissa axis ( Fig. 5 ). Further, it

is assumed that these vectors are already sorted in ascending

order of tangents.

2. Consider point C(c ′ 
X 
(t) , c ′ 

Y 
(t)) . If C is outside the polygon, three

following subcases are possible. 

(a) C belongs to zone Z1, i.e. C X ≥ V X , C Y ≥ V Y . The procedure re-

turns α j = 1 for each j ∈ N ( Fig. 6 ).

(b) C belongs to zone Z2, i.e. C Y < V Y and the projection of C

on the axis of ordinates intersects the polygon. The pro-

cedure returns a set of coefficients αj , such as 
∑ 

j∈ N α j v j
corresponds to the rightmost intersection of polygon and

Y = c ′ 
Y 
(t) ( Fig. 7 ). 

(c) C belongs to zone Z3, i.e. C X < V X and the projection of C on

the axe of abscissa intersects the polygon. The procedure re-

turns a set of coefficients αj , such as 
∑ 

j∈ N α j v j corresponds

to the highest intersection of polygon and X = c ′ X (t) ( Fig. 8 ).

3. If point C is inside the polygon (zone Z4), we make a trans-

lation of the lower border on vector OC(c ′ 
X 
(t) , c ′ 

Y 
(t)) and find

the set of coefficients { β1 , . . . , βn } which defines the path from

point C to V (dashed line in Fig. 9 ), the translated lower border
and the borders of the initial polygon, i.e. β1 v 1 + · · · + βn v n =
OV − OC. Then the procedure returns the set of coefficients { 1 −
β1 , . . . , 1 − βn } that corresponds to a polyline which is shown

on Fig. 9 . 

he following lemma is required to prove the correctness of the

eometric algorithm. 

emma 3. Let two sets of vectors A = { v A 
1 
, . . . , v A 

l 
} and B =

 v B 
1 
, . . . , vB 

k 
} such that

∑ l 
j=1 vA

j
= 

∑ k 
j=1 v B j and the polygon associated

ith A be totally included into the polygon associated with B ( Fig. 10 ).

hen the total length of vectors of set A is not superior to the total



Fig. 10. Lemma 3 . Polygon associated with A be totally included into the polygon

associated with B .

Fig. 11. Proof of Lemma 3 .
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length of vectors of set B , i.e. 

l∑ 

j=1

| v A j | ≤
k∑ 

j=1

| v B j | .

If A � = B , then the inequality is strict. 

Proof. Let us compare polygons A and B vector by vector. If we

find a difference on vector v i , let us do an additional construc-

tion as on Fig. 11 , extending vector v i to the intersection with

the polygon B . Then, let us make a centrally symmetric construc-

tion for upper border vectors to obtain new polygon B ′ , such as

A ⊂ B ′ ⊂ B . Then, let us replace polygon B by polygon B ′ . Obviously,

such a change reduces the perimeter. Repeating it no more times

than the number of edges of polygon A , we obtain two identical

polygons. �

Lemma 4. The proposed geometric algorithm finds an optimal solu-

tion for Problem 3 in O ( n 2 ) operations. 

Proof. Let us show that in each case algorithm finds the set of

vectors which sum has the greatest possible projections on the

axes (which correspond to the highest possible consumptions of

the available resources). If point C is outside the polygon, then the

coefficients associated either with the initial set of vectors (2a) or

with the intersection of line Y = C Y with a lower border line of the

polygon (2b) or with the intersection of line X = C X with an up-

per border line of the polygon (2c) is returned. All this points have

the highest possible coordinates among all points of the polygon,

which coordinates are not higher than C X and C Y . If C lays inside

the polygon, then algorithm returns the set of vectors which sum

has the coordinates ( C X , C Y ). 

Now let us show that the obtained set of vectors

{ α1 v 1 , . . . , αn v n } has the shortest total length among all those with

the maximal sum of the coordinates. In the cases where point C is

located in zones Z1, Z2 and Z3, there is only one solution which

satisfies this condition. When C lies in zone Z4, the algorithm finds

the set of vectors { β1 v 1 , . . . , βn v n } that corresponds to polyline CV

with the longest possible length. Finally, the algorithm returns the

set of coefficients { α1 , . . . , αn } = { (1 − β1 ) , . . . , (1 − βn ) } . Since
∑ 

j∈ N
| α j v j | = 

∑ 

j∈ N
| v j | −

∑ 

j∈ N
| β j v j | ,
et of vectors { α1 v 1 , . . . , αn v n } has the shortest possible sum of

ector lengths. Therefore obtained solution is optimal with respect

o criterion 3 . Thus Lemma 4 is verified. 

The greatest number of operations is required for the case

hen C lies in zone Z 4. In this case, a lower border translation is

equired, the intersection point with the polygon border line can

e found in O ( n 2 ) operations. �

The following lemmas should be proved ahead Theorem 1 . 

emma 5. Let us have a set of two-dimensional vectors A =
 v 1 , . . . , v m 

} placed in tangents ascending order and a point V

hich belongs to the polygon associated with A. Suppose that A 

′ =
 α1 v 1 , . . . , αm 

v m 

} is a set of vectors, such that ∀ j = 1 , . . . , m : α j ∈
0 , 1] , 

∑ m 

j=1 αm 

v m 

= OV and the sum of vector lengths 
∑ m 

j=1 αm 

| v m 

|
s minimal. Then, for any set of vectors B = { β1 v 1 , . . . , βm 

v m 

} , such

hat β ∈ [0, 1] and 

∑

j v j ∈ B 
β j v j =

∑

α j v j ∈ A ′ 
α j v j = OV,

he polygon associated with A 

′ belongs to the polygon associated

ith B. 

roof. Let us assume the contrary. Suppose that there is a set of

ectors B which satisfies the Lemma’s conditions but the polygon

ssociated with A 

′ does not belong to the polygon associated with

 . Lemma 3 implies that the polygon associated with B cannot fully

elong to the polygon associated with A 

′ . Therefore, we have to

eal only with the situation where the considered polygons are in-

ersected. Hence, polygons’ lower border lines have at least four in-

ersection points including O and V . Let us take a look at two con-

ecutive intersection points K and L , such that lower border seg-

ent KL A 
′ 

lies under KL B . Since both polylines OV A 
′ 

and OV 

B consist

f vectors placed in the ascending order of tangents, the vectors

hich constitute polyline KL B cannot belong to the set of vectors

hich constitute OK 

A ′ and LV A 
′ 
. Hence, we can replace KL A 

′ 
by LB B 

nd thus decrease the perimeter of the polygon associated with A 

′ .
his violates the assumption that the sum of vectors lengths of A 

′ 
s minimal. Lemma 5 is proved. �

emma 6. Suppose that there are two sets of two-dimensional

ectors A = { v A 
1 
, . . . , v A m 

} and B = { v B 
1 
, . . . , v B 

k 
} such that 

∑ 

j∈ A v A j 
=

∑
j∈ B v B j and the polygon associated with set A is totally included in

he polygon associated with set B. Therefore, there is a set of coeffi-

ients α1 
1 , . . . , α

1 
k 
, . . . , αm 

1 
, . . . , αm 

k 
∈ [0 , 1] , which satisfies the follow-

ng: 

m∑

j=1

α j 
1 

= 1 , 

. . .

m∑

j=1

α j 

k 
= 1 , 

k∑

i =1

α1 
i v 

B 
k = v A 1 , 

. . .

k∑

i =1

αm 

i v B k = v A m 

.

roof. Let us find coefficients α1 
1 
, . . . , α1 

k 
explicitly, using the

raphic approach described in Figs. 12–14 . The polygon asso-

iated with A is totally included in the polygon associated

ith B ′ , which is included in the polygon associated with B .



Fig. 12. Lemma 6 .

Fig. 13. Finding v A 1 = 

∑ k 
i =1 α

1 
i 
v B 

k 
. 

Fig. 14. New polygons A ′ and B ′ . 
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Fig. 15. The highest possible consumption subject to C ∈ Z 2 . 
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herefore the polygons associated with sets A 

′ = A \ { v A 
1 
} and

 

′ = { v B 
1 

− α1 
1 
v B 

1 
, . . . , v B

k
− α1 

k 
v B 

k 
} satisfy the initial conditions of

emma 6 . We can iterate this procedure to find all required sets

f coefficients which correspond to all vectors of set A . �

The presented geometric algorithm considers the time slots one

y one in an iterative way. At each step, an optimal solution for

roblem 2 is found for each pair of resources X and Y . Let U X | Y ( t )

nd U Y | X ( t ) be respectively the amounts of resources X and Y used

y set of tasks N in time interval [0 , t + 1) . The following theorem

roves that U X | Y ( t ) and U Y | X ( t ) provide upper bounds on the con-

umption of resources X and Y during time interval [0 , t + 1) . 

heorem 1. Under any valid consumption scheme, the amount of re-

ources X and Y consumed in interval [0 , t + 1) is not more than 

 X| Y (t) + 

t∑ 

t ′ =0 

(c X (t ′ ) − c ′ X (t ′ ))

nd 

 Y | X (t) + 

t∑ 

t ′ =0 

(c Y (t ′ ) − c ′ Y (t ′ ))

espectively. 

roof. Assume the contrary. Suppose that there is a consump-

ion scheme ϕ∗ which violates the initial assumption and uses

ore than U X| Y (t) + 

∑ t
t ′ =0 (c X (t) − c ′ X (t)) resource X in time inter-

al [0 , t + 1) . If there is more than one of such schemes, consider
he one which uses the highest total amount of resources X and

 in time interval [0 , t + 1) . Let u ∗
jX 

(t) be the amount of resource

 used by task j under consumption scheme ϕ∗ in time interval

0 , t + 1) . 

Let us consequently consider the resource consumption at

 

∗
jX 

(t ′ ) for t ′ = 0 , . . . , t . Suppose t ′ is the first moment of time

hich satisfies u ∗
jX 

(t ′ ) � = u jX (t ′ ) or u ∗
jY 

(t ′ ) � = u jY (t ′ ) for some j ∈ N .

e consider polygon OV associated with the set of vectors v j =
(A jX (t ′ ) − u jX (t ′ − 1) , A jY (t ′ ) − u jY (t ′ − 1)) corresponding to the

onsumptions of resources by each task j ∈ N . The vertex of OV with

he highest coordinates X and Y is denoted by V . We also consider

oint C(c ′ 
X 
(t) , c ′ 

Y 
(t)) . 

There are four possible cases of positioning C in zones Z 1 , Z 2 ,

 3 , Z 4 in relation to polygon OV . 

1. C ∈ Z 1 . Each resource cannot be totally used, i.e. ( 
∑ 

j∈ N v j ) X <
c ′ 

X 
(t ′ ) and ( 

∑ 

j∈ N v j ) Y < c ′ 
Y 
(t ′ ) . In this case, for any j ∈ N , the fol-

lowing conditions hold u jX (t ′ ) = A jX (t ′ ) and u jY (t ′ ) = A jY (t ′ ) .
Therefore, we can change the consumption during time slot

[ t ′ , t ′ + 1) for ϕ∗ using the full amounts of resources as well

as under ϕ without violation of any assumption. 

2. C ∈ Z 2 . Resource Y cannot be totally used. If under ϕ∗ not full

amount of resource X is used, we can use it by one of task

j ∈ N which a jX > 0 and u jX ( t 
′ ) < A jX ( t 

′ ). Such a change will not

decrease the values of functions U 

∗
jY 

(t) and U 

∗
jX 

(t) for any

t . Therefore, we can consider only the case where U 

∗
jX 

(t ′ ) −
U 

∗
jX 

(t ′ − 1) = c ′ 
X 
(t ′ ) . Note that the highest resource consump-

tion can be achieved only by using a linear combination of

vectors with the highest possible ratio 
a jY 
a jX

( Fig. 15 ). Hence, if

there is a difference in resource consumption between ϕ and

ϕ∗, then there is a task j ∈ N such that u jY (t ′ ) > u ∗
jY 

(t ′ ) and

there is a task i ∈ N which holds u iY (t ′ ) < u ∗
iY 

(t ′ ) and 

a jY 
a jX 

< 

a iY 
a iX 

.

This means that we can replace the part of task i used in time

slot [ t ′ , t ′ + 1) by j under ϕ∗ without violation of any con-

straint. Such a change will not decrease the values of functions

U 

∗
jY 

(t) and U 

∗
jX 

(t) for any t . Let us apply the same changes until

u jY (t ′ ) = u ∗
jY 

(t ′ ) does not hold for any j ∈ N . 

3. C ∈ Z 3 . This case is similar to the previous one. We only need to

swap resources X and Y in the description of case 2.

4. C ∈ Z 4 . This means that under ϕ the full capacities of both re-

sources can be achieved.

Suppose that under ϕ∗ full capacities of resources X and Y

are achieved in time slot [ t ′ , t ′ + 1) . According to Lemma 4 we

obtain that the polygon related to the resource consumption

in [ t ′ , t ′ + 1) under ϕ has the lowest perimeter of all poly-

gons related to the highest consumption of resources X and

Y . Lemma 5 implies that it is totally included in the polygon



Fig. 16. Master algorithm.
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related to ϕ∗. Therefore, we can change resource consumption

under ϕ∗ in time slot [ t ′ , t ′ + 1) to the consumption used un-

der ϕ by taking required parts of α j v j from the future times-

lots of interval [ t ′ + 1 , T ) . Lemma 6 implies that it is possible

to replace correctly all parts of vectors v 1 , . . . , v n used for this

procedure by linear combinations of vectors v ∗
1 
, . . . , v ∗n , which

were used in ϕ∗ previously. Thus, we can make a change in ϕ∗

without violating the conditions of the Theorem and we ob-

tain equal consumptions of ϕ∗ and ϕ for time slot [ t ′ , t ′ + 1)

without increasing or decreasing any amount of resources X

and Y being used in any time slot [ t ′ + 1 , t ′ + 2) , . . . , [ t, t + 1) .

For the case where full capacities of resources X and Y are not

achieved together in time slot [ t ′ , t ′ + 1) under ϕ∗, the con-

sumption scheme ϕ∗ is modified similarly. 

Depending on the case we face in time slot [ t ′ , t ′ + 1) we ap-

ply the procedure which does not decrease the values of func-

tions U X ( t ) or U Y ( t ). After having been proceeded with all time

slots, we obtain u jX (t) = u ∗
jX 

(t) and u jY (t) = u ∗
jY 

(t) for any j ∈ N

and t = 0 , . . . , T − 1 . �

3.3. Main cycle: master algorithm 

The master part of our algorithm uses Procedure 2 for G ( N , E )

and the graph with reversed precedence relations G (N, E ) to com-

pare, for any resource X ∈ R , a sum of upper bounds on its possi-

ble consumed amount in intervals [0, t ) and ( t , T ] with the total

amount of resource required for all tasks 
∑

j∈ N a jX p j . If the latter

is lower that the former, the considered problem is considered in-

feasible for time horizon T . 

Then, this verification is made for all moments of times t =
0 , 1 , 2 , . . . , T − 1 for all pairs of resources X , Y ∈ R , for which func-

tions U X | Y ( t ) and U Y | X ( t ) are calculated. Each feasible schedule de-

fines a valid consumption scheme. Theorem 1 implies that for

each resource X ∈ R and any t , an upper bound of the consumption

of resource X by tasks in non-compulsory parts of time interval

[0 , t + 1) under any valid consumption scheme can be estimated

by function 

B X (t) = min 

Y ∈ R
U X| Y (t) . 

Further, the same procedures, including preprocessing, are applied

to set of tasks N but for the graph with reversed precedence rela-

tions G (N, E ) , the values of functions U 

′
X| Y (t) are calculated. As a

result, for each resource X ∈ R we obtain a function 

B 

′ 
X (t) = min 

Y ∈ R
U 

′ 
X| Y (t) 

which is an upper bound on the consumption of resource X in non-

compulsory parts of time interval (T − t − 1 , T ] for the tasks of set

N . 

After that, the algorithm repeats the same cycle on all moments

of time t = 1 , . . . , T − 1 to check if for any resource X ∈ R a sum of

upper bounds on its available capacity in intervals [0 , t + 1) and

(t + 1 , T ] ( Fig. 16 ) is not lower than the sum of the demands in
his resource by all tasks, i.e. 

 

j∈ N
a jX p j ≥ UB X (t) + UB 

′ 
X (T − t − 2) + 

T −1∑ 

t=0

(c X (t) − c ′ X (t)) .

f this condition is violated, then the problem is infeasible for time

orizon T . 

heorem 2. Suppose that the master algorithm was used for set of

asks N , set of resources R and time horizon T. If for any X ∈ R and

 = 0 , . . . , T − 1 , the following inequality does not hold: 

 

j∈ N
a jX p j ≤ UB X (t) + UB 

′ 
X (T − t − 2) + 

T −1∑ 

t=0

(c X (t) − c ′ X (t)) , (4)

hen there is no feasible schedule with makespan inferior or equal to

. 

Proof: According to Theorem 1 we obtain that for any feasi-

le schedule π ∈ �( N , R ), the amount of resource X used by tasks

n time interval [0 , t + 1) does not exceed UB X (t) + 

∑ t
t ′ =0 (c X (t ′ ) −

 

′ 
X 
(t ′ )) . The amount of resource X used in non-compulsory parts

f interval (t + 1 , T ] for tasks does not exceed UB ′ X (T − t − 2) +
 T −1
t ′ = t+1 

(c X (t ′ ) − c ′ 
X 
(t ′ )) . Therefore, taking into account compulsory

arts for any feasible schedule π , the amount of resource X used

n horizon [0, T ] does not exceed 

B X (t) + UB 

′ 
X (T − t − 2) + 

T −1∑ 

t=0

(c X (t) − c ′ X (t)) .

f inequality (4) is violated, then for each feasible schedule

∈ �( N , R ) the amount of resource X required for processing all

asks of set N cannot be used during time interval [0, T ]. This

roves the statement of the Theorem. 

.4. Binary search 

In this part, a simple binary search is used to find the highest

ossible value of the time horizon T which satisfies the conditions

n Theorem 2 . 

heorem 3. The developed algorithm finds a lower bound on the

akespan in O (n 2 r(n + m + r) T log T ) operations, where n is the

umber of tasks, T is the time horizon, r is the number of resources, m

s the highest number of breakpoints of the capacity function of one

esource. 

roof. The number of bi-section search iterations can be estimated

y O (log T ) operations. At each iteration, the preprocessing takes

 (n 2 (n + m ) rT ) operations. The master part takes O ( n 2 T ) opera-

ions for each pair of resources. Number of pairs of resources is

 ( r 2 ). Therefore, the total complexity of the algorithm can be esti-

ated by O (n 2 r(n + m + r) T log T ) operations. �

. Numerical experiments

The algorithm was implemented in C++. Two series of numeri-

al experiments were carried out using Intel Core i7 2.8 gigahertz

PU with 16 gigabytes RAM. In the first one, the algorithm was

ested on the well-known PSPLIB benchmark ( Kolisch & Sprecher,

997 ). In the second one, the algorithm was applied to large-scaled

CPSP instances based on real data provided by Kuznetsov Design

ureau. The results of the tests are presented in Tables 1 and 2 ,

espectively. 

The first series of tests was performed for the problem in-

tances from PSPLIB benchmark. The objective was to compare

he results provided by our approach with the best known lower

ounds (BKLB), presented at PSPLIB website (consulted in July

017). The results are given in Table 1 ). They show that for 66% of
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