Dmitry Arkhipov

Olga Battaïa
email: olga.battaia@isae.fr

Alexander Lazarev

Discrete Optimization

Keywords:

Several algorithms for finding a lower bound on the makespan for the Resource Constrained Project Scheduling Problem (RCPSP) were proposed in the literature. However, fast computable lower bounds usually do not provide the best estimations and the methods that obtain better bounds are mainly based on the cooperation between linear and constraint programming and therefore are time-consuming. In this paper, a new pseudo-polynomial algorithm is proposed to find a makespan lower bound for RCPSP with time-dependent resource capacities. Its idea is based on a consecutive evaluation of pairs of resources and their cumulated workload. Using the proposed algorithm, several bounds for the PSPLIB benchmark were improved. The results for industrial applications are also presented where the algorithm could provide good bounds even for very large problem instances.

Introduction

The Resource Constrained Project Scheduling Problem (RCPSP) is a well-known problem in scheduling theory. This problem is known to be NP -hard in the strong sense [START_REF] Garey | Complexity results for multiprocessor scheduling under resource constraints[END_REF]. In this research, we consider a generalized statement of the problem with a time-dependent resource capacity function defined as follows. There is a set of tasks N and a set of renewable resources R . The amount of resource X ∈ R which can be used by tasks of set N during time slot [t, t + 1) is defined by capacity function c X (t). The statement of a constant resource capacity is a particular case of this formulation. For any task j ∈ N , the following parameters are given:

• p j -processing time;

• a jX -required amount of resource X ∈ R .

It should be noted that these task parameters can be also given as initial data and incorporated in the algorithm described below.

The objective is to find a schedule with the lowest makespan i.e. with the shortest project duration.

A schedule π is feasible for the sets of resources R and tasks N , if for any j ∈ N starting time S j (π) ≥ r j is defined and all precedence and resource capacity constraints are satisfied. The set of all feasible schedules is noted by (N , R). The objective is to find a feasible schedule with the minimal makespan value i.e. min π ∈ (N,R)

max j∈ N C j (π) ,
In the literature, a number of algorithms to calculate lower bounds on the makespan were proposed. Their overview is presented in Section 2 , more details can be found in the following comprehensive surveys [START_REF] Neron | Lower bounds for resource constrained project scheduling problem[END_REF] and [START_REF] Knust | Lower bounds on the minimum project duration[END_REF]. In this paper, a novel pseudo-polynomial algorithm is developed which extends the relaxation of RCPSP to a Cumulative Scheduling Problem by considering pairs of resources. Our approach uses "time-tabling" techniques to adjust the capacity function of resources first and then it calculates a lower bound on the makespan by evaluating highest possible resource loads for each time slot.

The rest of the paper is organized as follows. The main algorithm for lower bound calculation is presented in Section 3 . The results of the numerical experiments are discussed in Section 4 . Concluding remarks and research perspectives are given in Section 5 .

Previous research

There is a large number of publications devoted to the discussion on lower bounds for RCPSP. Recent comprehensive reviews can be found in [START_REF] Neron | Lower bounds for resource constrained project scheduling problem[END_REF] and [START_REF] Knust | Lower bounds on the minimum project duration[END_REF] . The analysis of the computational complexity of some algorithms and the quality of the obtained bounds are discussed in [START_REF] Gafarov | On Lower and Upper Bounds for the Resource-Constrained Project Scheduling Problem[END_REF] . The majority of efficient algorithms can be referred to as "destructive" methods. Such an algorithm starts with a defined project deadline T and tries to find a feasible schedule for it. If a feasible solution does not exist, the deadline is increased (usually by incrementing the deadline with 1 unit of time) and the calculation procedure restarts. The calculation continues until the algorithm cannot reveal any contradiction with the defined deadline or until the end of the allocated calculation time. Similarly, constraint programming methods can be applied as for example in [START_REF] Schutt | Explaining the cumulative propagator[END_REF] and [START_REF] Laborie | Algorithms for propagation of resource constraints in AI planning and scheduling: Existing approaches and new results[END_REF] .

Here below are shortly discussed the most effective methods for finding a lower bound on the makespan for RCPSP. For more details on these algorithms, the reader can consult the recent comprehensive reviews [START_REF] Neron | Lower bounds for resource constrained project scheduling problem[END_REF] and [START_REF] Knust | Lower bounds on the minimum project duration[END_REF] .

Disjunctive bounds

In the study of Baptiste and Pape (20 0 0) , each renewable resource is considered as a system of several identical processors with the number of processors equal to the capacity of the resource. The problem is formulated using mixed integer programming and heuristics are used to solve it.

Several algorithms (Applegate & Cook, 1991;Baptiste, Pape, & Nuijten, 1999;Carlier & Pinson, 1989;Carlier & Pinson, 1990;Carlier & Pinson, 1994) aim to facilitate the lower bound calculation by constructing complementary precedence relations with the verification of the assumptions that certain requirements of set A must / cannot be satisfied before / after some considered set of requirements B. These algorithms have polynomial runtime for one iteration, but the number of iterations increases exponentially when the number of requirements A and B increases.

Cumulative bounds

The algorithm of Carlier and Latapie (1991) is based on the identification of such sets of tasks for which the available amount of resource is insufficient for their parallel execution. Each resource is considered as a system of several identical processors where the number of processors per resource is less than its capacity. In the further studies of Carlier and Pinson (1998) and [START_REF] Carlier | Jackson's pseudo preemptive schedule and cumulative scheduling problems[END_REF] , it is assumed that each processor can execute more than one task per unit of time and the same task can be completed by several processors.

Polynomial time algorithms were proposed to solve a relaxed problem (Brucker, 2002;[START_REF] Haouari | An improved max-flow-based lower bound for minimizing maximum lateness on identical parallel machines[END_REF][START_REF] Tercinet | Mixed satisfiability tests for multiprocessor scheduling with release dates and deadlines[END_REF] where the planning horizon (between the starting point and the deadline) was split into intervals and each resource was considered as a multiprocessor system with the number of processors equal to the capacity of the resource. Further, the interruption of tasks at the boundaries of intervals was allowed.

The relaxation to so called Cumulative Scheduling Problem was also explored. It is obtained from the initial problem by ignoring all resources except one and replacing the precedence relations by release times and deadlines. The optimal makespan for this problem provides a lower bound for the initial problem. However, the obtained Cumulative Scheduling Problem is also NP-hard in the strong sense. Nevertheless, methods developed for the calculation of a lower bound on the makespan for such a formulation provide a lower bound for the makespan of the initial problem as well (Brucker & Knust, 20 0 0;Carlier & Neron, 20 0 0;Carlier & Neron, 2003;[START_REF] Mingozzi | An exact algorithm for the multiple resource-constrained project scheduling problem based on a new mathematical formulation[END_REF]. Satisfiability tests SAT can also be performed by dividing the planning horizon into intervals and checking the amount of the available resource in each of the considered intervals (Baptiste et al., 1999;[START_REF] Erschler | Raisonnement temporel sous contraintes de ressources et problemes d'ordonnancement[END_REF][START_REF] Lopez | Ordonnancement de taches sous contraintes: une approche energetique[END_REF][START_REF] Schwindt | Resource allocation in project management[END_REF].

3. Methods based on Constraint Programming Among the studies using different techniques of Constraint Programming, for example [START_REF] Schutt | Explaining the cumulative propagator[END_REF] and [START_REF] Laborie | Algorithms for propagation of resource constraints in AI planning and scheduling: Existing approaches and new results[END_REF] , the techniques developed in [START_REF] Nuijten | Time and resource constrained scheduling: A constraint satisfaction approach[END_REF] and [START_REF] Caseau | Cumulative scheduling with task intervals[END_REF] are based on reducing the time intervals calculated for each task due to the analysis of the available amount of each resource for a chosen set of tasks. Such algorithms are time consuming because of the large number of possible sets under consideration.

Algorithms based on the exploration of multi-resource constraints

Such algorithms (Baptiste & Demassey, 2004; Garaix, Artigues, & Demassey, 20 05; Laborie, 20 05) are based on the research of "critical sets" (MCS -minimum critical set, FS -forbidden set) i.e. sets of tasks that cannot be performed simultaneously because of resource capacity constraints, while any subset of such a critical set does not violate resource constraints and can be performed simultaneously.

Linear programming relaxations

A lower bound can also be obtained by a relaxation of the initial problem to a linear programming problem [START_REF] Christofides | Project scheduling with resource constraints: a branch and bound approach[END_REF][START_REF] Pritsker | Multi-project scheduling with limited resources: a zero-one programming approach[END_REF].

A detailed analysis of these algorithms can be found in recent surveys [START_REF] Neron | Lower bounds for resource constrained project scheduling problem[END_REF][START_REF] Knust | Lower bounds on the minimum project duration[END_REF]. The conclusion of this analysis is that fast algorithms usually do not provide the best lower bounds and the methods that obtain better bounds are mainly based on the cooperation between linear and constraint programming and therefore are time-consuming. In this paper, a new pseudo-polynomial algorithm is proposed which aims to provide good lower bounds in acceptable computational time.

A novel algorithm for finding a lower bound on the makespan

The considered decision version of RCPSP is formulated as follows: Problem 1. Given set of tasks N , set of resources R and deadline (time horizon) T , does any feasible schedule π ∈ (N , R) exist with a makespan inferior or equal to T , i.e. max j∈ N C j (π) ≤ T .

(1) Without loss of generality, it is assumed that the project can be started at time t = 0 . We introduce two dummy tasks 0 , n + 1 ∈ N which represent the start and the end of the project, i.e. r 0 = r n +1 = 0 , p 0 = p n +1 = 0 , D 0 = D n +1 = T and for any j ∈ N \ { 0 , n + 1 } precedences 0 → j and j → n + 1 exist.

The general scheme of finding a lower bound on the makespan is based on the four following procedures: Procedure 1. Pre-processing. This procedure updates the release times and deadlines for tasks under condition that the makespan is inferior or equal to T . If during these calculations one of the existing constraints cannot be satisfied, there is no feasible solution with such a bound on the makespan. Procedure 2. This procedure calculates an upper bound on the resource consumption by set of tasks N during time interval [0 , t + 1) considering all pairs of resources X , Y . Precedence constraints are replaced by release times and deadlines. In this way, also precedence constraints with time lags can be taken into account. Procedure 3. Procedure 2 is applied for original precedence graph G (N , E) and the graph with reversed precedence relations G (N, E) . The objective is to compare, for any resource X ∈ R , the sum of upper bounds on its amount consumed in intervals [0, t) and (t , T] with the total amount of resource required for all tasks j∈ N a jX p j . If the latter is lower than the former, the considered problem is considered infeasible. Procedure 4. Finally, the binary search part changes time horizon T and then the calculation is restarted.

In the following, each part of the algorithm is discussed in details.

Procedure 1: pre-processing

We denote the length of a longest path from i ∈ N to j ∈ N by P ij if there is a path from i to j in graph G (N , E). The calculation of P ij ≥ 0 for all pairs of tasks i , j ∈ N having a path from i to j in G can be done using Dijkstra's algorithm [START_REF] Dijkstra | A note on two problems in connexion with graphs[END_REF].

Let us consider all pairs of tasks i , j ∈ N such that P ij ≥ 0 and update release times and deadlines using formulae

r j := max { r j , r i + P i j } , D i := min { D i , D j -P i j } .
If for any j ∈ N , holds D jr j < p j , then inequality (1) is violated and the algorithm terminates. Otherwise, the compulsory part of the time interval (between the release time and deadline) is calculated for each task j ∈ N [C P s j , C P e j) using formulae CP s j = D jp j , CP e j = r j + p j (Fig. 1). This idea was formulated in [START_REF] Lahrichi | Ordonnancements. la notion de "parties obligatoires" et son application aux problemes cumulatifs[END_REF] . If C P s j < C P e j , then under any schedule π , which satisfies given release dates and deadlines, task j consumes exactly a jX of resource X ∈ R at each moment of time t ∈ [C P s j , C P e j) . Therefore, the amount of resource X ∈ R that can be used by other tasks at each moment of time t ∈ [C P s j , C P e j) is not more than c X (t)a jX . This idea leads us to replace capacity function c X (t) by function c X (t) representing the amount of resource X ∈ R which can be used to perform noncompulsory parts of tasks (Fig. 2)

c X (t) = c X (t) - j∈ N| t∈ [C P s j ,C P e j)
a jX .

If for any X ∈ R and t = 0 , . . . , T -1 inequality c X (t) < 0 holds, there is no feasible schedule which satisfies deadline T . The number of breakpoints of function c X (t) is not superior to 2 n + m, where m is the number of breakpoints of c X (t) in horizon T . The presented in [START_REF] Fox | Non-chronological scheduling[END_REF] ; [START_REF] Pape | Des systemes d'ordonnancement flexibles et opportunistes[END_REF] .

The idea of the following algorithm is close to sweep algorithms presented in Beldiceanu and Carlsson (20 01, 20 02) ; [START_REF] Letort | A scalable sweep algorithm for the cumulative constraint[END_REF] , the difference lies in the utilization of function c X (t) which is actively used and dynamically changed in our algorithm.

For each task j ∈ N and resource X ∈ R , its demand in resource X is compared with the availability of resource X i.e. the value of capacity function c X (t) for all m breakpoints of function c X (t) which does not belong to compulsory interval [C P s j , C P e j) . If for any set of breakpoints t 0 , . . . , t m , c X (t) < a jX i.e. the amount of resource X is not sufficient to perform task j , the following updates are realized:

• if for any l ∈ { 0 , . . . , m -1 } such that t l < max { C P s j , C P e j } and r j ≤ t l+1 holds c X (t l) < a jX , update r j := t l+1 ;

• if for any l ∈ { 1 , . . . , m } such that max { C P s j , C P e j } < t l and t l-1 < D j holds c X (t l-1) < a jX , update D j := t l-1 (Fig. 3).

If for any task j ∈ N , its release date or deadline is updated, the preprocessing part is restarted with the new values of r j and D j . Otherwise, the preprocessing algorithm terminates successfully.

Lemma 1. The complexity of the preprocessing part is O (n 2 (n + m) T r) operations, where n is the number of tasks, m is the highest number of breakpoints of the resource capacity function, T is the time horizon and r is the number of resources.

Proof. The calculation of

P ij for all i , j ∈ N takes O (n | E| + n 2 log n) operations,
where | E | is the number of edges in graph G . Each iteration of the first round for release and deadline calculation takes O (n 2) operations for checking all paths and O (n (n + m) r) for resource inequalities verification. The number of iterations is no more than nT since each task cannot have more than T release time or deadline updates. Therefore, the total complexity of the preprocessing part can be estimated by O (n 2 (n + m) T r) operations.

Inner cycle: relative resource load calculation

Let us consider two resources: X and Y . The earliest possible moment of time when j ∈ N can start to use resources X , Y ∈ R is r j .

For any t ≤ p j in time interval [r j , r j + t) , the amount of resources X and Y consumed by task j cannot be more than t • a jX and t • a jY respectively. If [C P s j , C P e j) = ∅ task j uses exactly a jX and a jY in each of time slots [C P s j , C P s j + 1) , . . . , [C P e j -1 , C P e j) .

Let -be the highest possible amount of resource X used by the noncompulsory part of task j in interval [0 , t + 1) (Fig. 4). The inner cycle procedure processes time slot by time slot starting at the moment t = 0 . In each time slot, the highest possible consumption of resources X and Y by all tasks of set N is estimated by taking into account only non-compulsory parts of tasks. The amount of resource X used by non-compulsory part of task j ∈ N in interval [0 , t + 1) is denoted by u jX (t), and the total consumption of resource X by all tasks in interval [0

A jX (t) = (min { t, CP s j , CP e j } -min { t, r j -1 }) • a jX
, t + 1) is denoted by U X (t) = j∈ N u jX (t) .
The main idea behind the developed algorithm is to calculate an upper bound on the possible consumption of resources X and Y taking into account the non-compulsory parts of the tasks that can be assigned to each time interval. In a general case, the demand in resources of all such tasks will be superior to the resource capacity, but not necessarily in the same proportion for resource X as for resource Y . The originality of the proposed approach is to take into account the fixed proportion of usage of different resources by each task. To calculate the upper bound, a linear combination of fractional parts of such tasks that use the highest available amount of both resources is researched. Among different combinations using the totality of the available resources, a geometric algorithm is used to choose the combination for which the validity of the lower bound on the makespan is proven by Theorems 1 and 2. For example, in a general case, this algorithm will prefer the combination of the tasks using both resources to the combination using the tasks requiring only one resource. This is done in order to provide more flexibility in the resource usage for remaining time intervals.

For resources X and Y , the consumption scheme ϕ is defined when non-compulsory used amounts of resources u jX (t) and u jY (t) are known for any task j ∈ N and time slot t = 0 , . . . , T -1 . The consumption scheme is valid if for any task j ∈ N and time slot t = 0 , . . . , T -1 the following conditions hold:

u jX (t) ≤ A jX (t) , u jY (t) ≤ A jY (t) , u jX (t) u jY (t) = a jX a jY .
The first and the second inequalities are associated with the definitions of A jX (t) and A jY (t), respectively. The last equality is very important, since it requires that the proportion of resources X and Y used by task j ∈ N remains the same in the considered consumption scheme as in any feasible schedule. Note that each feasible schedule with deadline T possesses valid consumption schemes for all resources. All time slots t = 0 , . . . , T -1 are considered one by one in an iterative way and for each of them, the following optimization problem is solved: Problem 2. For each j ∈ N values u jX (t -1) and u jY (t -1) are given and functions A jX (t), A jX (t) are defined. The objective is to determine u jX (t) ≥ u jX (t -1) and u jY (t) ≥ u jY (t -1) for all tasks j ∈ N such that U X (t) and U Y (t) reach the highest possible value (since we are interested in an upper bound on resource consumption). The following constraints should be taken into account:

u jX (t) -u jX (t -1) u jY (t) -u jY (t -1) = a jX a jY , u jX (t) ≤ A jX (t) , u jY (t) ≤ A jY (t) , j∈ N (u jX (t) -u jX (t -1)) ≤ c X (t) , j∈ N (u jY (t) -u jY (t -1)) ≤ c Y (t) .
If for any time slot there is more than one solution which satisfy these conditions, the solution will be chosen using the following criterion:

min j∈ N (u jX (t) -u jX (t -1)) 2 + (u jY (t) -u jY (t -1)) 2 .
(

) 2
The necessity of this criterion is explained by Theorem 1 . This problem can be reformulated in terms of vectors. Problem 3. For time slot t we have a set of two-dimensional vectors

v 1 = (A 1 X (t) -u 1 X (t -1) , A 1 Y (t) -u 1 Y (t -1)) , . . . , v n = (A nX (t) -u nX (t -1) , A nY (t) -u nY (t -1)) associated with all tasks of set N . The objective is to find a set of coefficients { α 1 , . . . , α n } ∈ [0 , 1] such that the linear combination L = α 1 v 1 + • • • + α n v n
has the highest possible projections on the axes (it corresponds to the highest usage of the resources) and satisfies the inequalities L X ≤ c X (t) and L Y ≤ c Y (t) . If there is more than one solution, choose the one with the lowest sum of the vectors lengths i.e. (it corresponds to criterion 2):

min j∈ N α j | v j | . (3
)
Lemma 2. Problems 2 and 3 are equivalent.

Proof.

In problem 2 we have to find u jX (t), u jY (t

) such that A jX (t) ≥ u jX (t) ≥ u jX (t -1) , A jY (t) ≥ u jY (t) ≥ u jY (t -1) and u jX (t) -u jX (t -1) u jY (t) -u jY (t -1) = a jX a jY .
Since values u jX (t -1) , u jY (t -1) , A jX (t) and A jY (t) are given, each pair of values u jX (t), u jY (t) can be associated with a vector above conditions, the second objective (3) is applied to choose the solution. Note, that j∈ N

v j = (u jX (t) -u jX (t -1) , u jY (t) -u jY (t -1)) where u jX (t) = u jX (t - 1) + α j (A jX (t) -u jX (t -1)) and u jY (t) = u jY (t -1) + α j (A jY (t) - u jY (t -1)) , α j ∈ [0, 1]. Therefore linear combination L = α 1 v 1 + • • • + α n v n has projections L X = j∈ N α j (u jX (t) -u jX (t -1)) = U X (t) -U X (t -1) , L Y = j∈ N α j (u jY (t) -u jY (t -1)) = U Y (t) -U Y (t -1)
α j | v j | = j∈ N (u jX (t) -u jX (t -1)) 2 + (u jY (t) -u jY (t -1)) 2 , hence (3) is equivalent to (2) .
The following geometric algorithm is designed to solve optimally Problem 3 .

1. Construct the convex centrally symmetric polygon of possible linear combinations of vectors v 1 , . . . , v n with coefficients in [0,1] as follows. Let OV = v 1 + • • • + v n . The upper and lower borders of this polygon are associated with the sequences of vectors placed in descending and ascending orders of tangents of the angle formed with the abscissa axis (Fig. 5). Further, it is assumed that these vectors are already sorted in ascending order of tangents.

Consider point C(c X (t) , c Y (t))

. If C is outside the polygon, three following subcases are possible. (a) C belongs to zone Z1, i.e. C X ≥ V X , C Y ≥ V Y . The procedure returns α j = 1 for each j ∈ N (Fig. 6). (c) C belongs to zone Z3, i.e. C X < V X and the projection of C on the axe of abscissa intersects the polygon. The procedure returns a set of coefficients α j , such as j∈ N α j v j corresponds to the highest intersection of polygon and X = c X (t) (Fig. 8).

3. If point C is inside the polygon (zone Z4), we make a translation of the lower border on vector OC(c X (t) , c Y (t)) and find the set of coefficients { β 1 , . . . , β n } which defines the path from point C to V (dashed line in Fig. 9), the translated lower border The following lemma is required to prove the correctness of the geometric algorithm.

Lemma 3. Let two sets of vectors A

= { v A 1 , . . . , v A l } and B = { v B 1 , . . . , v B k } such that l j=1 v A j = k j=1 v B
j and the polygon associated with A be totally included into the polygon associated with B (Fig. 10). Then the total length of vectors of set A is not superior to the total

} = { (1 -β 1) , . . . , (1 -β n) } . Since j∈ N | α j v j | = j∈ N | v j | - j∈ N | β j v j | , set of vectors { α 1 v 1 , .
. . , α n v n } has the shortest possible sum of vector lengths. Therefore obtained solution is optimal with respect to criterion 3 . Thus Lemma 4 is verified.

The greatest number of operations is required for the case when C lies in zone Z 4. In this case, a lower border translation is required, the intersection point with the polygon border line can be found in O (n 2) operations.

The following lemmas should be proved ahead Theorem 1 .

{ α 1 v 1 , . . . , α m v m } is a set of vectors, such that ∀ j = 1 , . . . , m : α j ∈ [0 , 1] , m j=1 α m v m = OV and the sum of vector lengths m j=1 α m | v m | is minimal. Then, for any set of vectors B = { β 1 v 1 , . . . , β m v m } , such that β ∈ [0, 1] and β j v j ∈ B β j v j = α j v j ∈ A α j v j = OV,
the polygon associated with A belongs to the polygon associated with B.

Proof. Let us assume the contrary. Suppose that there is a set of vectors B which satisfies the Lemma's conditions but the polygon associated with A does not belong to the polygon associated with B . Lemma 3 implies that the polygon associated with B cannot fully belong to the polygon associated with A . Therefore, we have to deal only with the situation where the considered polygons are intersected. Hence, polygons' lower border lines have at least four intersection points including O and V . Let us take a look at two consecutive intersection points K and L , such that lower border segment KL A lies under KL B . Since both polylines OV A and OV B consist of vectors placed in the ascending order of tangents, the vectors which constitute polyline KL B cannot belong to the set of vectors which constitute OK A and LV A . Hence, we can replace KL A by LB B and thus decrease the perimeter of the polygon associated with A . This violates the assumption that the sum of vectors lengths of A is minimal. Lemma 5 is proved. Lemma 6. Suppose that there are two sets of two-dimensional

vectors A = { v A 1 , . . . , v A m } and B = { v B 1 , . . . , v B k } such that j∈ A v A j = j∈ B v B
j and the polygon associated with set A is totally included in the polygon associated with set B. Therefore, there is a set of coeffi-

cients α 1 1 , . . . , α 1 k , . . . , α m 1 , . . . , α m k ∈ [0 , 1] , which satisfies the follow- ing: m j=1 α j 1 = 1 , . . . m j=1 α j k = 1 , k i =1 α 1 i v B k = v A 1 , . . . k i =1 α m i v B k = v A m .
Proof. Let us find coefficients α 1 1 , . . . , α 1 k explicitly, using the graphic approach described in Figs. 12-14 . The polygon associated with A is totally included in the polygon associated with B , which is included in the polygon associated with B . Therefore the polygons associated with sets

v A 1 = k i =1 α 1 i v B k .
A = A \ { v A 1 } and B = { v B 1 -α 1 1 v B 1 , . . . , v B k -α 1 k v B k }
satisfy the initial conditions of Lemma 6 . We can iterate this procedure to find all required sets of coefficients which correspond to all vectors of set A .

The presented geometric algorithm considers the time slots one by one in an iterative way. At each step, an optimal solution for Problem 2 is found for each pair of resources X and Y . Let U X | Y (t) and U Y | X (t) be respectively the amounts of resources X and Y used by set of tasks N in time interval [0 , t + 1) . The following theorem proves that U X | Y (t) and U Y | X (t) provide upper bounds on the consumption of resources X and Y during time interval [0 , t + 1) .

Theorem 1. Under any valid consumption scheme, the amount of resources X and Y consumed in interval [0 , t + 1) is not more than U X| Y (t)

+ t t =0 (c X (t) -c X (t)) and U Y | X (t) + t t =0 (c Y (t) -c Y (t)) respectively.
Proof. Assume the contrary. Suppose that there is a consumption scheme ϕ * which violates the initial assumption and uses more than U X| Y (t)

+ t t =0 (c X (t) -c X (t)) resource X in time inter- val [0 , t + 1) .
If there is more than one of such schemes, consider the one which uses the highest total amount of resources X and Y in time interval [0 , t + 1) . Let u * jX (t) be the amount of resource X used by task j under consumption scheme ϕ * in time interval [0 , t + 1) .

Let us consequently consider the resource consumption at u * jX (t) for t = 0 , . . . , t. Suppose t is the first moment of time which satisfies u * jX (t) = u jX (t) or u * jY (t) = u jY (t) for some j ∈ N . We consider polygon OV associated with the set of vectors v j = (A jX (t)u jX (t -1) , A jY (t)u jY (t -1)) corresponding to the consumptions of resources by each task j ∈ N . The vertex of OV with the highest coordinates X and Y is denoted by V . We also consider

point C(c X (t) , c Y (t)) .

There are four possible cases of positioning C in zones Z 1 , Z 2 , Z 3 , Z 4 in relation to polygon OV .

1. C ∈ Z 1 . Each resource cannot be totally used, i.e. (j∈ N v j) X < c X (t) and (j∈ N v j) Y < c Y (t) . In this case, for any j ∈ N , the following conditions hold u jX (t) = A jX (t) and u jY (t) = A jY (t) .

Therefore, we can change the consumption during time slot

[t , t + 1) for ϕ * using the full amounts of resources as well as under ϕ without violation of any assumption. 2. C ∈ Z 2 . Resource Y cannot be totally used. If under ϕ * not full amount of resource X is used, we can use it by one of task j ∈ N which a jX > 0 and u jX (t) < A jX (t). Such a change will not decrease the values of functions U * jY (t)

Main cycle: master algorithm

The master part of our algorithm uses Procedure 2 for G (N , E) and the graph with reversed precedence relations G (N, E) to compare, for any resource X ∈ R , a sum of upper bounds on its possible consumed amount in intervals [0, t) and (t , T] with the total amount of resource required for all tasks j∈ N a jX p j . If the latter is lower that the former, the considered problem is considered infeasible for time horizon T .

Then, this verification is made for all moments of times t = 0 , 1 , 2 , . . . , T -1 for all pairs of resources X , Y ∈ R , for which functions U X | Y (t) and U Y | X (t) are calculated. Each feasible schedule defines a valid consumption scheme. Theorem 1 implies that for each resource X ∈ R and any t , an upper bound of the consumption of resource X by tasks in non-compulsory parts of time interval [0 , t + 1) under any valid consumption scheme can be estimated by function

UB X (t) = min Y ∈ R U X| Y (t) .
Further, the same procedures, including preprocessing, are applied to set of tasks N but for the graph with reversed precedence relations G (N, E) , the values of functions U X| Y (t) are calculated. As a result, for each resource X ∈ R we obtain a function

UB X (t) = min Y ∈ R U X| Y (t)
which is an upper bound on the consumption of resource X in noncompulsory parts of time interval (Tt -1 , T] for the tasks of set N .

After that, the algorithm repeats the same cycle on all moments of time t = 1 , . . . , T -1 to check if for any resource X ∈ R a sum of upper bounds on its available capacity in intervals [0 , t + 1) and (t + 1 , T] (Fig. 16) is not lower than the sum of the demands in this resource by all tasks, i.e. Proof: According to Theorem 1 we obtain that for any feasible schedule π ∈ (N , R), the amount of resource X used by tasks in time interval [0 , t + 1) does not exceed UB X (t) + t t =0 (c X (t)c X (t)) . The amount of resource X used in non-compulsory parts of interval (t + 1 , T] for tasks does not exceed UB X (Tt -2) + T -1 t = t+1 (c X (t)c X (t)) . Therefore, taking into account compulsory parts for any feasible schedule π , the amount of resource X used in horizon [0, T] does not exceed

UB X (t) + UB X (T -t -2) + T -1 t=0 (c X (t) -c X (t)) .
If inequality (4) is violated, then for each feasible schedule π ∈ (N , R) the amount of resource X required for processing all tasks of set N cannot be used during time interval [0, T]. This proves the statement of the Theorem.

Binary search

In this part, a simple binary search is used to find the highest possible value of the time horizon T which satisfies the conditions in Theorem 2 .

Numerical experiments

The algorithm was implemented in C++. Two series of numerical experiments were carried out using Intel Core i7 2.8 gigahertz CPU with 16 gigabytes RAM. In the first one, the algorithm was tested on the well-known PSPLIB benchmark [START_REF] Kolisch | PSPLIB -a project scheduling problem library: OR software -ORSEP operations research software exchange program[END_REF]. In the second one, the algorithm was applied to large-scaled RCPSP instances based on real data provided by Kuznetsov Design Bureau. The results of the tests are presented in Tables 1 and2 , respectively.

The first series of tests was performed for the problem instances from PSPLIB benchmark. The objective was to compare the results provided by our approach with the best known lower bounds (BKLB), presented at PSPLIB website (consulted in July 2017). The results are given in Table 1). They show that for 66% of

Fig. 1 .

 1 Fig. 1. Compulsory part of a time interval of task j .

Fig. 2 .Fig. 3 .

 23 Fig. 2. Amount of resource X ∈ R which can be used to perform non-compulsory parts of tasks.

 complexity of c X (t) calculation for all X ∈ R can be estimated by O ((n + m) r) operations, where n = | N| and r = | R | . Note that the calculation of c X (t) is similar to the Resource profile calculation

Fig. 4 .

 4 Fig. 4. A jX (t) -the highest possible amount of resource X used by the noncompulsory part of task j in interval [0 , t + 1) .

Fig. 5 .

 5 Fig. 5. Polygon construction.

Fig. 6 .

 6 Fig. 6. Geometric algorithm: subcase 2a.

 (b) C belongs to zone Z2, i.e. C Y < V Y and the projection of C on the axis of ordinates intersects the polygon. The procedure returns a set of coefficients α j , such as j∈ N α j v j corresponds to the rightmost intersection of polygon and Y = c Y (t) (Fig. 7).

Fig. 7 .

 7 Fig. 7. Geometric algorithm: subcase 2b.

Fig. 8 .

 8 Fig. 8. Geometric algorithm: subcase 2c.

Fig. 9 .

 9 Fig. 9. Geometric algorithm: step 3.

Fig. 10 .

 10 Fig. 10. Lemma 3 . Polygon associated with A be totally included into the polygon associated with B .

Fig. 11 .

 11 Fig. 11. Proof of Lemma 3 .

Lemma 5 .

 5 Let us have a set of two-dimensional vectors A = { v 1 , . . . , v m } placed in tangents ascending order and a point V which belongs to the polygon associated with A. Suppose that A =

Fig. 12 .

 12 Fig. 12. Lemma 6 .

Fig. 13 .

 13 Fig. 13. Finding v A

Fig. 14 .

 14 Fig. 14. New polygons A and B .

Fig. 15 .

 15 Fig. 15. The highest possible consumption subject to C ∈ Z 2 .

Fig. 16 .

 16 Fig. 16. Master algorithm.

 j ≥ UB X (t) + UB X (Tt -2) + T -1 t=0 (c X (t)c X (t)) .If this condition is violated, then the problem is infeasible for time horizon T .Theorem 2. Suppose that the master algorithm was used for set of tasks N , set of resources R and time horizon T. If for any X ∈ R and t = 0 , . . . , T -1 , the following inequality does not hold:j∈ N a jX p j ≤ UB X (t) + UB X (Tt -2) + T -1 t=0 (c X (t)c X (t)) , (4)then there is no feasible schedule with makespan inferior or equal to T.

Theorem 3 .

 3 The developed algorithm finds a lower bound on the makespan in O (n 2 r(n + m + r) T log T) operations, where n is the number of tasks, T is the time horizon, r is the number of resources, m is the highest number of breakpoints of the capacity function of one resource.Proof. The number of bi-section search iterations can be estimated by O (log T) operations. At each iteration, the preprocessing takes O (n 2 (n + m) rT) operations. The master part takes O (n 2 T) operations for each pair of resources. Number of pairs of resources is O (r 2). Therefore, the total complexity of the algorithm can be estimated by O (n 2 r(n + m + r) T log T) operations.

 , then there is a task j ∈ N such that u jY (t) > u * jY (t) and there is a task i ∈ N which holds u iY (t) < u * iY (t) and

	tion can be achieved only by using a linear combination of vectors with the highest possible ratio a jY a jX (Fig. 15). Hence, if
	there is a difference in resource consumption between ϕ and
	ϕ a jY a jX	<	a iY a iX	.
	This means that we can replace the part of task i used in time
	slot [t , t + 1) by j under ϕ * without violation of any con-
	straint. Such a change will not decrease the values of functions
	U * jY (t) and U * jX (t) for any t . Let us apply the same changes until
	u jY (t) = u * jY (t) does not hold for any j ∈ N .			
	3. C ∈ Z 3 . This case is similar to the previous one. We only need to
	swap resources X and Y in the description of case 2.			

and U * jX (t) for any t . Therefore, we can consider only the case where U * jX (t) -U * jX (t -1) = c X (t) . Note that the highest resource consump-* 4. C ∈ Z 4 . This means that under ϕ the full capacities of both resources can be achieved.

Suppose that under ϕ * full capacities of resources X and Y are achieved in time slot [t , t + 1) . According to Lemma 4 we obtain that the polygon related to the resource consumption in [t , t + 1) under ϕ has the lowest perimeter of all polygons related to the highest consumption of resources X and Y . Lemma 5 implies that it is totally included in the polygon

) . Lemma 6 implies that it is possible to replace correctly all parts of vectors v 1 , . . . , v n used for this procedure by linear combinations of vectors v * 1 , . . . , v * n , which were used in ϕ * previously. Thus, we can make a change in ϕ * without violating the conditions of the Theorem and we obtain equal consumptions of ϕ * and ϕ for time slot [t , t + 1) without increasing or decreasing any amount of resources X and Y being used in any time slot [t + 1 , t + 2) , . . . , [t, t + 1) . For the case where full capacities of resources X and Y are not achieved together in time slot [t , t + 1) under ϕ * , the consumption scheme ϕ * is modified similarly. Depending on the case we face in time slot [t , t + 1) we apply the procedure which does not decrease the values of functions U X (t) or U Y (t). After having been proceeded with all time slots, we obtain u jX (t) = u

* jX (t) and u jY (t) = u * jY (t) for any j ∈ N and t = 0 , . . . , T -1 .

R This research is supported by the Russian Foundation for Basic Research (grant 18-37-00295 mol_a) and the Foundation of ISAE-SUPAERO.

* Corresponding author at: ISAE-SUPAERO, Universitéde Toulouse,