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Abstract

We investigate the behavior of a simple majority dynamics on networks
of agents whose interaction topology exhibits a community structure. By
leveraging recent advancements in the analysis of dynamics, we prove that,
when the states of the nodes are randomly initialized, the system rapidly
and stably converges to a configuration in which the communities maintain
internal consensus on different states. This is the first analytical result
on the behavior of dynamics for non-consensus problems on non-complete
topologies, based on the first symmetry-breaking analysis in such setting.

Our result has several implications in different contexts in which dy-
namics are adopted for computational and biological modeling purposes.
In the context of Label Propagation Algorithms, a class of widely used
heuristics for community detection, it represents the first theoretical re-
sult on the behavior of a distributed label propagation algorithm with
quasi-linear message complexity. In the context of evolutionary biology,
dynamics such as the Moran process have been used to model the spread
of mutations in genetic populations [LHN05]; our result shows that, when
the probability of adoption of a given mutation by a node of the evolu-
tionary graph depends super-linearly on the frequency of the mutation
in the neighborhood of the node and the underlying evolutionary graph
exhibits a community structure, there is a non-negligible probability for
species differentiation to occur.
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1 Introduction

Dynamics are simple stochastic processes on networks, in which agents update
their own state according to a symmetric function of the state of their neighbors
and of their current state, with no dependency on time or on the topology of
the network [MT17, Nat17]. In previous decades, in the context of automata
networks, this kind of systems has been investigated from a computability point
of view, attracting the interest of mathematicians and physicists. Recently it has
been subject to a renewed interest from computer scientists, as new techniques
for analyzing this class of processes have made possible to answer questions
regarding their efficiency and capability as distributed algorithms [DGM+11,
BCN+15, BCN+16, BCN+17a, CER+15, CRRS17].

In this work we consider the 2-Choices dynamics (Definition 2), in which
at each discrete-time step each agent samples two random neighbors with re-
placement and, if the two have the same state, the agent adopts that state. The
process rapidly converges to consensus, i.e., a configuration where all agents
have the same state, if the proportion of agents supporting one state exceeds a
given function of the second eigenvalue of the graph [CER+15, CRRS17]. Their
proofs leverage an interesting property of the 2-Choices dynamics, i.e., that the
expected number of agents supporting one state can be expressed as a quadratic
form of the transition matrix of a simple random walk on the underlying graph.
This fact allows to relate the behavior of the process to the eigenspaces of the
graph.

Motivated by questions arising in graph clustering and evolutionary biology,
we exploit the aforementioned relation to show a more fine-grained understand-
ing of the consensus behavior of the 2-Choices dynamics. Our new analysis
combines symmetry-breaking techniques [BCN+16, CGG+18] and concentration
of probability arguments with a linear algebraic approach [CER+15, CRRS17]
to obtain the first symmetry-breaking analysis for dynamics on non-complete
topologies.

Informal description of Theorem 1. Let the agents of a network
initially pick a random binary state and then run the 2-Choices dy-
namics. If the network has a community structure there is a significant
probability that it will rapidly converge to an almost-clustered configu-
ration, where almost all nodes within each community share the same
state, but the predominant states in the communities are different. In
other words, with constant probability, after a short time the states of
the nodes constitute a labeling which reveals the clustered structure of
the network.

The aforementioned probability for the labeling to reveal the community
structure can be amplified via Community-Sensitive Labeling [BCN+17a], trans-
forming the 2-Choices dynamics into a distributed label propagation algorithm
with quasi-linear message complexity.

We remark that, because of the stochastic and time-independent behavior of
the 2-Choices dynamics, the process eventually leaves almost-clustered config-
urations and reaches a monochromatic configuration in which all agents have the
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same state. However, before that happens, we prove that the process remains
in almost-clustered configurations for a time equal to a large-degree polynomial
in n. Hence, the event that the process leaves the almost-clustered configura-
tion is negligible for most practical applications. This key transitory property
of some stochastic processes, called metastability [AFPP12, FV15], has recently
attracted a lot of attention in the Theoretical Computer Science community.

1.1 Label Propagation Algorithms

Label Propagation Algorithms (LPAs) are a widely used class of algorithms used
for community detection and inspired by epidemic processes on networks. The
generic pattern of such algorithms can be described as follows: First, a label
taken from a finite set is assigned to each node according to some initialization
rule; then the nodes are activated following some activation rule; active nodes
interact with their neighbors and update their labels according to some local
majority-based update rule.

After the first algorithm, known in literature as LPA, has been proposed and
its effectiveness empirically assessed [RAK07], a new line of research started with
the goal of improving the quality of the detected communities and the efficiency
of the algorithm [LHLC09, LM10, BRSV11, ŠB11a, ŠB11b, XS13, ZRS+17], and
to investigate more general settings, e.g., dynamic networks [XCS13, CDIG+15].
Many variants with small variations on initialization rule, activation rule, and
local update rule have been proposed, but they have only been validated ex-
perimentally. On the other hand, there exist only few theoretical works. One
shows the equivalence of LPA with finding the minima of a generalization of
the Ising model, used in statistical mechanics to describe the spin interaction of
electrons on a crystalline lattice [TK08]. Another is the first and only rigorous
analysis of a variant of LPA on the Stochastic Block Model1 [KPS13]: They
propose Max-LPA, i.e., a synchronous version of LPA that follows a determin-
istic majority rule, and analyze its behavior on G2n,p,q graphs with parameters
p = Ω(n−1/4+ε) and q = O(p2), i.e., on graphs that present very dense commu-
nities of constant diameter separated by a sparse cut.

The absence of substantial theoretical progress in the analysis of LPAs is
largely due to the lack of techniques for handling the interplay between the
non-linearity of the local update rules and the topology of the graph. In this
work we look at the 2-Choices dynamics as a distributed label propagation
algorithm. The randomized nature of the 2-Choices dynamics introduces a
major challenge with respect to deterministic rules such as the one of Max-LPA.

1.1.1 Comparison with our result.

Let a and b respectively be the number of neighbors of each agent in its own
community and in the other community; let d := a + b. The analysis of
Max-LPA [KPS13] essentially requires a ≥ n3/4−ε and b ≤ ca2/n, for some

1The Stochastic Block Model is a generative model for random graphs, that produces
graphs with community structure.

3



arbitrary constants ε and c. Our analysis requires2 λ ≤ n−1/4, which implies
a ≥ n1/2 because of the extremality of Ramanujan graphs, and b/d ≤ n−1/2.
Compared to the analysis of Max-LPA, Theorem 1 holds for much sparser
communities at the price of a stricter condition on the cut. Moreover, given the
distributed nature of the two algorithms, Max-LPA has a message complexity
of Ω(m), with m the number of edges in the graph that is at least n7/4; instead,
the message complexity of the 2-Choices dynamics is O(n log n) regardless of
the actual density of the edges on the graph, since the local update rule only
looks at 2 labels. Our algorithm performs an implicit sparsification of the graph,
an interesting property for the design of sparse clustering algorithms [SZ17], in
particular for opportunistic network settings [BCM+18].

1.2 Evolutionary dynamics

Initial population

Select for
reproduction

Select for
reproduction

Select for
death

Replace

Figure 1: Visual representation of the Moran process (adapted from [LHN05]).
At each time step an individual is randomly chosen for reproduction accord-
ing to its fitness, and a second individual adjacent to it is randomly chosen for
death; the offspring of the first individual then replaces the second. When the
underlying network is regular, the process is equivalent to the Voter dynam-
ics [BGKMT16].

Evolutionary dynamics is the branch of genetics which studies how popu-
lations evolve genetically as a result of the interactions among the individu-
als [Dur11]. The study of evolutionary dynamics on graphs started with the in-
vestigation of the fixation probability of the Moran process (Figure 1) on different
families of graphs, namely the probability that a new mutation with increased
fitness eventually spreads across all individuals in the population [LHN05]. The
Moran process has since then attracted the attention of the computer science
community due to the algorithmic questions associated to its fixation probabil-
ity [Gia16, GGG+17].

However, no simple dynamics has been proposed so far in the context of evo-
lutionary graph theory for explaining one of evolution’s fundamental phenom-
ena, namely speciation [CO04]. Two fundamental classes of driving forces for
speciation can be distinguished: allopatric speciation and sympatric/parapatric
speciation. The former, which refers to the divergence of species resulting from
geographical isolation, is nowadays considered relatively well understood [SAL+06];

2λ is the maximum eigenvalue, in absolute value and different from 1, of the transition
matrices of the subgraphs induced by the communities.
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on the contrary, the latter, namely divergence without complete geographical
isolation, is still controversial [SAL+06, BF07]. In several evolutionary settings
the spread of a mutation appears nonlinear with respect to the number of in-
teracting individuals carrying the mutation, exhibiting a drift towards the most
frequent phenotypes [CO04]. In this work we look at the 2-Choices dynamics
as a quadratic evolutionary dynamics on a clustered graph representing sym-
patric and parapatric scenarios. We regard the random initialization of the
2-Choices process as two inter-mixed populations of individuals with different
genetic pools. The interactions for reproduction purposes between the two pop-
ulations can be categorized in frequent interactions among individuals within an
equal-size bipartition of the populations, i.e., the communities, and less frequent
interactions between these two communities which, in later stages of the differ-
entiation process, may be interpreted as genetic admixture, i.e. interbreeding
between two genetically-diverging populations [MDN+13].

Within the aforementioned framework our Theorem 1 provides an analytical
evolutionary graph-theoretic proof of concept on how speciation can emerge
from the simple nonlinear underlying dynamics of the evolutionary process at
the population level.

1.3 Computational dynamics

Dynamics are rules to update an agent’s state according to a function which
is invariant with respect to time, network topology, and identity of an agent’s
neighbors, and whose arguments are only the agent’s current state and those
of its neighbors [MT17, Nat17]. Simple models of interaction between pairs of
nodes in a network have been studied since the first half of the 20th century in
statistical mechanics [Lig12] and in the second half in diverse sciences, such as
economics and sociology, where averaging-based opinion dynamics such as the
DeGroot model have been investigated [Fre56, Deg74, Jac10]. The first study in
computer science of a dynamics from a computational point of view is that of a
synchronous-time version of the Voter dynamics, where, in each discrete-time
round, each node looks at a random neighbor and copies its opinion [HP01].
The Voter dynamics can be regarded as the simplest dynamics, in the sense
that there is arguably no simpler rule by which nodes may meaningfully up-
date their state as a function of their neighbors’ states. Examples of other dy-
namics are: Undecided-State [CGG+18], 3-Majority [BCN+17a, BCN+16],
2-Median [DGM+11], Averaging. The Averaging dynamics has been em-
ployed for solving the Community Detection task [BCN+17b]. However, we
remark that the resulting protocol is not classifiable within LPAs: The configu-
ration space in not described in terms of the finite set of labels initially used by
nodes, but by rational values generated from the averaging update rule. Other
examples of problems for which dynamics have been successfully employed in
order to design an efficient solution are Noisy Rumor Spreading [FN16], Exact
Majority [MNRS17], and Clock Synchronization [BKN17].

We now focus on the 2-Choices dynamics, which is the subject of this
work. It can arguably be considered the simplest type of dynamics after the
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Figure 2: Representation of a (2n, d, b)-clustered regular graph where a := d−b.
Each community induces an a-regular graph while the cut between the two
communities induces a b-regular bipartite graph.

Voter dynamics and, until now, it constitutes one of the few processes whose
behavior has been characterized on non-complete topologies [CER14, CER+15,
CRRS17]. It has been proven that a network of agents, each with a binary
state, will support the initially most frequent opinion with high probability
after a polylogarithmic number of rounds whenever the initial bias (the advan-
tage of a state on the other) is greater than a function of the network’s expan-
sion [CER14]. Such result was later refined with milder assumptions on the
initial bias with respect to the network’s expansion [CER+15] and generalized
to more opinions [CRRS17]. Moreover, in core-periphery networks, depending
on the strength of the cut between the core and the periphery, a phase-transition
phenomenon occurs [CNNS18]: Either one of the colors rapidly spreads over the
rest of the network, or a metastable phase takes place, in which both the colors
coexist in the network for superpolynomial time.

2 Notation

Let G = (V,E) be a (2n, d, b)-clustered regular graph (Definition 1) and let us
define a := d − b. Notice that G is composed by two a-regular communities
connected by a b-regular cut (Figure 2) and that when a > b the graph G
exhibits a well-clustered structure, i.e., each node has more neighbors in its
community than in the other one.

Definition 1 ([BCN+17b]). A (2n, d, b)-clustered regular graph is a graph G =
(V,E) such that:

• V = V1 ∪ V2, V1 ∩ V2 = ∅, and |V1| = |V2| = n;

• every node has degree d;
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• every node in V1 has b neighbors in V2 and every node in V2 has b neighbors
in V1.

Each node of G maintains a binary state that we represent as a color: either
red or blue. We denote the vector of states of all nodes in G at time t as the
configuration vector c(t) and we refer to the state of a node u ∈ V at time t as

c
(t)
u ∈ {red, blue}. We call B(t) the set of nodes colored blue at time t and R(t)

the set of nodes colored red at time t. For each community i ∈ {1, 2} we define

B
(t)
i := Vi ∩B(t) and R

(t)
i := Vi ∩R(t). We call s

(t)
i = |R(t)

i | − |B
(t)
i | the bias in

community i toward color red. Given some initial configuration c(0), we let the
nodes of G run the following 2-Choices dynamics.

Definition 2. The 2-Choices dynamics is a local synchronous protocol that
works as follows: In each round, each node u chooses two neighbors v, w uni-
formly at random with replacement; if v and w support the same color, then u
updates its own color to their color, otherwise u keeps its previously supported
color.

Notice that the random sequence of configurations {c(t)}t∈N generated by
multiple iterations of the 2-Choices dynamics on G is a Markov Chain with
two absorbing states, namely the configurations where all the nodes support the
same color, either red or blue.

Let us now introduce the notion of almost-clustered configuration.

Definition 3. A configuration c(t) is almost-clustered if

|si| ≥ n−O
(

logn
log logn

)
for each i ∈ {1, 2} and the sign of the biases is different, i.e., s1s2 < 0.

Intuitively, almost-clustered configurations are such that the vast majority
of the nodes in one community is supporting one of the two colors, and the vast
majority of nodes in the other community is supporting the other color.

In the rest of the section we introduce the notation used to describe the
spectral properties of the transition matrix of the underlying graph G: The
analysis in expectation of the process (Lemma 2) exploits such spectral prop-
erties and our main result (Theorem 1) makes assumptions on the spectrum of
the transition matrix of G.

Let P = 1
dA be the transition matrix of a simple random walk on G, where

we denote with d the degree of the nodes and with A the adjacency matrix of
G. Note that the transition matrix P can be decomposed as follows:

P =

(
P1,1 P1,2

P2,1 P2,2

)
= A + B =

(
P1,1 0

0 P2,2

)
+

(
0 P1,2

P2,1 0

)
,

where A is the transition matrix of the communities if we disconnect them, while
B is the transition matrix of the bipartite graph connecting the two communi-
ties. Note that since the cut is regular B is symmetric and P ᵀ

1,2 = P2,1.
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We denote with λ1 ≥ . . . ≥ λn the eigenvalues of the transition matrix of the
subgraph induced by the first community P̄1,1 := d

aP1,1 and with µ1 ≥ . . . ≥ µn
the eigenvalues of the transition matrix of the subgraph induced by the second
community P̄2,2 := d

aP2,2. Since both P̄1,1 and P̄2,2 are stochastic matrices we
have that λ1 = µ1 = 1. We consider the case in which both the subgraphs
induced by the communities are connected and not bipartite; thus it holds that
λ2 < 1, µ2 < 1 and that λn > −1, µn > −1.

We define λ := max(|λ2|, |λn|, |µ2|, |µn|). The value of λ is a representa-
tive of the second largest eigenvalues for both the subgraphs induced by the
communities and is closely related to the third largest eigenvalue of P .

In addition to the analysis in expectation, we also provide concentration
bounds for the behavior of the process. In this context, we say that an event
E happens with high probability (for short, w.h.p.) if P (E) ≥ 1 − O(n−γ), for
some constant γ > 0.

3 Analysis of the 2-Choices dynamics

In this section we give a high-level overview of the main steps and ideas used
for the analysis of the process.

Let G be a clustered regular graph (Definition 1). Let each node in G

initially pick a color c
(0)
u ∈ {red, blue} uniformly at random and independently

from the other nodes. Then let the nodes of G run the 2-Choices dynamics
(Definition 2).

The variance in the initialization suggests that with some constant proba-
bility the distribution of the two colors will be slightly asymmetric w.r.t. the
two communities, i.e., the first community will have a bias toward a color, while
the second community will have a bias toward the other color. Without loss of
generality, we consider the case in which s1 is positive and s2 is negative, i.e.,
the first community is unbalanced toward color red while the second community
is unbalanced toward color blue.

Roughly speaking, we show that when the initialization is “lucky”, i.e., the
biases in the two communities are toward different colors, there is a significant
probability that the process will rapidly make the distribution more and more
asymmetric until converging to an almost-clustered configuration (Definition 3),
i.e., a configuration in which, apart from a small number of outliers, the nodes in
the two communities support different colors. This behavior of the 2-Choices
dynamics is formalized in the following theorem.

Theorem 1 (Constant probability of clustering). Let G = (V,E) be a connected
(2n, d, b)-clustered regular graph such that b

d = O(n−1/2) and λ = O(n−1/4).
Let c ∈ N be any constant; let us define the two following events about the
2-Choices dynamics on G:

ξ: “Starting from a random initialization the process reaches an
almost-clustered configuration within O(log n) rounds.”
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ξc: “Starting from an almost-clustered configuration the process
stays in almost-clustered configurations for nc rounds.”

For two suitable positive constants γ1 and γ2 it holds that

P (ξ) ≥ γ1 and P (ξc) ≥ 1− n−γ2 .

Proof. The proof is divided in the following steps:

1. The bias in each community is initially |si| = Θ(
√
n), for each i ∈ {1, 2},

and the sign of the biases is different, with constant probability (Lemma 1);

2. The bias in each community becomes |si| = Θ(
√
n log n), for each i ∈

{1, 2}, in O(log log n) rounds and the sign of the biases is preserved, with
constant probability (Lemma 4);

3. The bias in each community becomes |si| ≥ n − O(log n), for each i ∈
{1, 2}, in O(log n) rounds and the sign of the biases is preserved, with
high probability (Lemma 5);

4. The process enters an almost-clustered configuration in one single round
and lies in the set of almost-clustered configurations for the next nc rounds,
with high probability (Lemma 6).

For lack of space the proofs of the lemmas used in Theorem 1 are omitted,
but they can be found in the full version of the paper that is publicly available
online.

Before starting with the proof, let us introduce some extra notation. Let b
d ≤

c1 · n−1/2 for some positive constant c1, i.e., let every node in each community
have at most c1 neighbors in the opposite community for every

√
n neighbors

in their own. Let λ ≤ c2 · n−1/4, for some positive constant c2; note that the
hypothesis on λ implies that the subgraph induced by each community is a good
expander. Let us define the constant h := 4(2

√
2c1 + c22).

We start the analysis of the process by looking at the initialization phase.
In particular, in Lemma 1 we show that there is a probability at least constant
that the initialization is “lucky”, i.e., that the biases in the two communities are
Θ(
√
n) toward different colors. This is true because the Binomial distribution,

i.e., the initial distribution of the colors in the graph, is well approximated by a
Gaussian distribution, and the latter has a constant probability to deviate from
the mean by the standard deviation. The Central Limit Theorem establishes
the approximation of the distribution and we are able to quantify it using the
Berry-Esseen Theorem.

Lemma 1 (Lucky initialization). Let G = (V,E) be a (2n, d, b)-clustered regular

graph and let each node u ∈ V choose a color c
(0)
u ∈ {red, blue} uniformly

at random and independently from the others. Let c1 and c2 be two positive
constants. Then, there exists a constant γ1 such that

P
(
s

(0)
1 ≥ h

√
n ∧ −s(0)

2 ≥ h
√
n
)
≥ γ1.
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Then, considering a configuration c(t) at a generic time t, we look at the ex-
pected evolution of the process observing the behavior of one single community,
but also taking into account the influence of the other. Informally, Lemma 2
gives a bound to the number of nodes that will support the minority color in
each community at the next round as a function of all the parameters involved
in the process: the number of nodes supporting the minority color in each com-
munity at the current round; the number of nodes supporting the same color in
the other community at the current round; the expansion of the communities
λ ≤ c2 · n−1/4; the cut density b

d ≤ c1 · n
−1/2.

The proof of Lemma 2 leverages the fact that the expected number of nodes
supporting a given color can be expressed as a quadratic form of the transition
matrix of a simple random walk on the graph, allowing to relate the behavior
of the process to the expansion of the communities, as exploited in [CER+15,
CRRS17].

Lemma 2 (Expected decrease of the minority color). Let G be a (2n, d, b)-
clustered regular graph. For any configuration c(t) we have that

E
[
|B(t+1)

1 |
∣∣∣ c(t)

]
< |B(t)

1 |

[
1− s1

2n +
c22√
n

+ 2c1√
n

√
|B(t)

2 |
|B(t)

1 |

(
1
2 −

s1
2n +

c22√
n

+
c21|B

(t)
2 |

n|B(t)
1 |

)]

and

E
[
|R(t+1)

2 |
∣∣∣ c(t)

]
< |R(t)

2 |

[
1 + s2

2n +
c22√
n

+ 2c1√
n

√
|R(t)

1 |
|R(t)

2 |

(
1
2 + s2

2n +
c22√
n

+
c21|R

(t)
1 |

n|R(t)
2 |

)]
.

It follows from Lemma 2 that the asymmetry in the coloring of the nodes in
the two communities continues to grow in expectation. In fact, when in a certain
range of values, the bias in the first community increases in expectation at each
round while the bias in the second community decreases in expectation at each
round, since the minority color in each community decreases. With Lemma 3
we prove that the increase of the bias in the first community and the decrease
of the bias in the second community we have shown in expectation in Lemma 2
is multiplicative w.h.p. whenever s1 satisfies s1 ∈ [h

√
n, n2 ] and s2 satisfies s2 ∈

[−n2 ,−h
√
n]. With the use of concentration of probability arguments, namely

a multiplicative form of the Chernoff bounds [DP09, Lemma 1.1], we show that
the number of nodes with the minority color in each community decreases and
we use this fact to prove Lemma 3.

Lemma 3 (Probability of multiplicative growth of the bias). Let c(t) be a
configuration such that h

√
n ≤ s1 ≤ n

2 and h
√
n ≤ −s2 ≤ n

2 . Then, it holds
that

P
(
s

(t+1)
1 ≥ (1 + 1/16) s1

∣∣∣ c(t)
)
≥ 1− e−2s21/322n

and
P
(
s

(t+1)
2 ≤ (1 + 1/16) s2

∣∣∣ c(t)
)
≥ 1− e−2s22/322n.
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Now we know that there is a constant probability that the initialization of
the process starts is “lucky” (Lemma 1); we also know that the bias in the first
community will increase in expectation and the bias in the second community
will decrease in expectation (Lemma 2); moreover, when in a given range, we
know that the biases will follow their expected behavior with high probability
(Lemma 3).

Then we need to show that the asymmetry in the coloring of the two commu-
nities will rapidly increase up to a configuration such that |si| = Θ(

√
n log n),

for each i ∈ {1, 2}, while the sign of the biases is preserved. More formally, with
Lemma 4 we prove the internal symmetry breaking of each community. This
is possible by applying Lemma 1, and by iterating the application of Lemma 3
for O(log log n) rounds, i.e., until the bias is large enough; finally we handle the
stochastic dependency between the two biases during their respective increases
in opposite directions.

Lemma 4 (Clustering – Symmetry Breaking). Starting from an initial config-

uration where each node u ∈ V chooses a color c
(0)
u ∈ {red, blue} uniformly at

random and independently from the others, it holds that, with constant proba-
bility, within O(log log n) rounds the process reaches a configuration c(t) such
that

s
(t)
1 ≥

√
n log n and − s(t)

2 ≥
√
n log n.

Once the internal symmetry of each community is broken, we show that,
with high probability, both biases keep increasing while preserving their sign
until they rapidly reach a configuration in which the minority color in each
community has at most logarithmic size. This behavior is formally proved in
Lemma 5, again through the application of Lemma 2 and Lemma 3.

Lemma 5 (Convergence). Starting from a configuration c(t) such that |si| ≥√
n log n, for each i ∈ {1, 2}, there exist two rounds τ1, τ2 = O(log n) such that

|s(τ1)
1 | ≥ n− log n and |s(τ2)

2 | ≥ n− log n

and the sign of the biases is preserved, with high probability.

Finally, with Lemma 6 we show that the number of wrongly colored nodes
in each community drops to O(log n/ log log n) in one single round (by approx-
imating it with a Poisson random variable through an application of Le Cam’s
Theorem) and then, with high probability, the process enters a metastable phase
in which the only possible configurations are almost-clustered ; this will last for
any polynomial number of rounds. In other words, even if a few nodes in each
community will continue to change color, almost all the nodes in one community
will support one color while almost all the nodes in the other community will
support the other color. Note that this quantity is tight : It is possible to prove
that, within any polynomial number of rounds, there will be a round in which
at least Ω(log n/ log log n) nodes in each community will have the wrong color.
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Lemma 6 (Metastability). Let c ∈ N be any constant. Starting from a config-
uration c(t) such that |si| ≥ n− log n for each i ∈ {1, 2}, for the next nc rounds
the process lies in the set of configurations such that

|si| ≥ n−O
(

logn
log logn

)
and the sign of the bias is preserved, with high probability.

More formally, through Lemma 5 and Lemma 6 we can finally prove that
P (ξ) ≥ γ1 and P (ξc) ≥ 1 − n−γ2 for any constant c, concluding the proof of
Theorem 1.

4 Distributed Label Propagation Algorithm via
Community-Sensitive Labeling

We showed that, starting from a random initialization, the 2-Choices dynamics
reaches an almost-clustered configuration within O(log n) rounds with constant
probability. This result is tight, given that there is constant probability that the
two communities converge to the same color. Similarly to Lemma 1, it holds that
with constant probability both the biases are unbalanced toward the same color,

i.e., s
(0)
1 ≥ h

√
n and s

(0)
2 ≥ h

√
n. It means that a suitable variant of Lemma 4

shows that there is constant probability that within O(log log n) rounds the

process reaches a configuration such that s
(t)
1 ≥

√
n log n and s

(t)
2 ≥

√
n log n.

Then, Lemma 5 and Lemma 6 show that the system gets quickly stuck in a
configuration where almost all nodes have the same color. This is a proof that,
given the symmetric nature of the process, we need some luck in the initialization
to reach an almost-clustered configuration.

In order to get an algorithm that works w.h.p. we sketch how to use the re-
sults of the previous sections to build a Community-Sensitive Labeling [BCM+18]
within Θ(log n) rounds. A Community-Sensitive Labeling (CSL) is made up by
a labeling of the nodes and a predicate that can be applied to pairs of labels; it
holds that, for all but a small number of outliers, the predicate is satisfied if the
nodes belong to the same community, and it is not satisfied if the nodes belong
to different communities.

Theorem 2 (LPA via CSL). Let G = (V,E) be a connected and nonbipartite
(2n, d, b)-clustered regular graph such that b

d = O(n−1/2) and λ = O(n−1/4).

Let c(0) be the initial configuration, where each node u ∈ V picks a vector of

colors c
(0)
u ∈ {red, blue}` sampled uniformly at random and independently from

the other nodes, such that ` = c log n for some positive constant c. Consider
the resulting vector after Θ(log n) rounds of independent parallel runs of the
2-Choices dynamics, each one working on a different component of the vector:
For all the pairs of nodes but a polylogarithmic number, it holds that the vectors
of nodes in the same community are equal while the vectors of nodes in different
communities are different.
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Sketch of proof. As for the first part of the predicate, it is a simple application of
Theorem 1. Indeed, at least one of the Θ(log n) runs of the 2-Choices dynamics
ends in an almost-clustered configuration with probability 1− γ−Θ(logn) = 1−
n−Θ(1). As for the second part we show that no matter if the process reaches an
almost-clustering, nodes in the same community will have the same color with
high probability. This is consequence of Lemma 5 and of the following one,
which we can prove by applying a general tool for Markov Chains [CGG+18,
Lemma 4.5].

Lemma 7 (Consensus – Symmetry Breaking). Starting from any initial con-
figuration c(0), within O(log n) rounds the system reaches a configuration c(t)

such that
|s(t)

1 | ≥
√
n log n and |s(t)

2 | ≥
√
n log n,

with high probability.

Thus, most pairs of nodes can locally distinguish if they are in the same
community with high probability by checking whether their vectors differ on
any component.

5 Conclusions and future work

We focused on providing a proof of concept of how spectral techniques and
concentration of probability results can be combined to provide a rigorous anal-
ysis of the behavior of dynamics converging to metastable configurations that
reflect structural properties of the network. In turns, we identified two impor-
tant implications of our result, which we discussed in the Introduction and we
briefly recall here. In the context of graph clustering, it constitute the first
analytical result on a distributed label propagation algorithm with quasi-linear
message complexity, contributing to a deeper understanding of such class of
widely applied heuristics to detect communities in networks. In the framework
of evolutionary biology, it provides a simplistic model of how species differen-
tiation may occur as the result of the interplay between the local interaction
rule at the population level and the underlying topology that describes such
interaction.

A limitation of our approach is the restriction to regular topologies. The
regularity assumption greatly simplifies the calculations, which are still quite
involved. However, it has been shown in [CER+15] that a similar analysis can
be performed for general topologies. Thus, it should be possible to extend
our analysis to the irregular case, at the price of a much greater amount of
technicalities. For example, it should be possible to prove a generalization of
our result to the class of (2n, d, b, γ)-clustered graphs investigated in [BCN+17b],
which relaxes the class of (2n, d, b)-clustered graphs by assuming that each node
has d ± γd neighbors of which b ± γd belongs to the other community. In
fact it is possible to bound the second eigenvalue of the graph in a way which
approximates (depending on γ) the (2n, d, b)-clustered graphs case considered
here using [BCN+17b, Lemma C.2]. Another important issue is to get a denser
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cut, at least parametrized w.r.t. the number of edges inside each community.
This cannot be achieved by slightly changing the analysis of this paper, but
requires a different approach, since it is possible to show that the technique
used in Lemma 2 brings to a sparse cut. Finally, an interesting direction is
the use of domination arguments, perhaps based on coupling techniques, to
generalize our result to more general dynamics which interpolates between the
quadratic 2-Choices dynamics and the linear Voter dynamics [BCE+17]. In
particular, this latter direction would have more general implications in the
practical contexts discussed in this work, namely label propagation algorithms
and evolutionary dynamics.
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