# Large-scale species delimitation method for hyperdiverse groups 

N. Puillandre, M. V Modica, Y. Zhang, L. Sirovich, M.-C Boisselier, C.<br>Cruaud, M. Holford, S. Samadi

## - To cite this version:

N. Puillandre, M. V Modica, Y. Zhang, L. Sirovich, M.-C Boisselier, et al.. Large-scale species delimitation method for hyperdiverse groups. Molecular Ecology, 2012, 21 (11), pp.2671-2691. hal02002432

## HAL Id: hal-02002432

## https://hal.science/hal-02002432

Submitted on 31 Jan 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

## Large Scale Species Delimitation Method for Hyperdiverse Groups

N. Puillandre ${ }^{1}$, M. V. Modica ${ }^{2}$, Y. Zhang ${ }^{3}$, L. Sirovich ${ }^{3}$, M.-C. Boisselier ${ }^{1,4}$, C. Cruaud ${ }^{5}$, M. Holford ${ }^{6}$, S. Samadi ${ }^{1,4}$<br>1 "Systématique, Adaptation et Evolution", UMR 7138 UPMC-IRD-MNHN-CNRS (UR IRD 148), Muséum National d'Histoire Naturelle, Département Systématique et Evolution, CP 26, 57 Rue Cuvier, F-75231 Paris Cedex 05, France.<br>${ }^{2}$ Dipartimento di Biologia Animale e dell’Uomo, "La Sapienza", University of Rome, Viale dell’Universita` 32, 00185 Rome, Italy<br>${ }^{3}$ Laboratory of Applied Mathematics, Mount Sinai School of Medicine, NY, NY USA, ${ }^{4}$ Service de systématique moléculaire, UMS2700 CNRS-MNHN, Muséum National d'Histoire Naturelle, Département Systématique et Evolution, CP 26, 57 Rue Cuvier, F75231 Paris Cedex 05, France.<br>${ }^{5}$ GENOSCOPE, Centre National de Séquençage, 2 rue Gaston Crémieux, CP 5706, 91057 Evry Cedex France.<br>${ }^{6}$ The City University of New York-York College \& The Graduate Center, and The American Museum of Natural History. NY, NY USA

Keywords: Barcoding, Conoidea, GMYC method, Integrative taxonomy, ABGD method, Turridae.

Corresponding author: Puillandre, Nicolas, "Systématique, Adaptation et Evolution", UMR 7138 UPMC-IRD-MNHN-CNRS (UR IRD 148), Muséum National d'Histoire Naturelle,

Département Systématique et Evolution, CP 26, 57 Rue Cuvier, F-75231 Paris Cedex 05, France. Fax: +33140793844. puillandre@mnhn.fr

Running title: Large Scale Species Delimitation


#### Abstract

Accelerating the description of biodiversity is a major challenge as extinction rates increase. Integrative taxonomy combining molecular, morphological, ecological and geographical data is seen as the best route to reliably identify species. Classic molluscan taxonomic methodology proposes primary species hypotheses (PSHs) based on shell morphology. However, in hyperdiverse groups, such as the molluscan family Turridae, where most of the species remain unknown and for which homoplasy and plasticity of morphological characters is common, shell based PSHs can be arduous. A four-pronged approach was employed to generate robust species hypotheses of a 1000 specimen SouthWest Pacific Turridae dataset in which: (i) analysis of COI DNA Barcode gene is coupled with (ii) species delimitation tools GMYC (General Mixed Yule Coalescence Method) and ABGD (Automatic Barcode Gap Discovery) to propose primary species hypotheses that are then (iii) visualized using Klee diagrams, and (iv) evaluated with additional evidence, such as nuclear gene rRNA 28S, morphological characters, geographical and bathymetrical distribution to determine conclusive secondary species hypotheses (SSHs). The integrative taxonomy approach applied identified 87 Turridae species, more than doubling the amount previously known in the Gemmula genus. In contrast to a predominantly shell-based morphological approach, which over the last 30 years proposed only 13 new species names for the Turridae genus Gemmula, the integrative approach described here identified 27 novel species hypotheses not linked to available species names in the literature. The formalized strategy applied here outlines an effective and reproducible protocol for large scale species delimitation of hyperdiverse groups.


## Introduction

The rapidly increasing rate of biodiversity extinction coupled with the magnitude of unknown biodiversity requires accurate and effective methods of species delimitation (Wiens 2007). The onset of the $21^{\text {st }}$ century has seen the development of technological advances that can accelerate the description of biodiversity (Wheeler 2009). One example of which are the DNA barcoding initiatives, which are an attempt to identify specimens at the species-level using a single-gene library (Hebert et al. 2003; Vernooy et al. 2010). DNA barcoding has proved effective in identifying larvae (Ahrens et al. 2007), processed biological products (Smith et al. 2008) or gut contents (Garros et al. 2008), as well as a taxonomic tool to aid in defining species, particularly when morphological characters are shown to be poor proxy of species boundaries (Taylor et al. 2006). For the bulk of undescribed biodiversity, the singlegene approach of DNA-barcoding project may be used, not to identify specimens, but as a primary glance, i.e. primary species hypotheses for approximating species descriptions (Goldstein\& DeSalle 2011).

Problems linked to a single gene approach, such as the presence of pseudogenes (Lorenz et al. 2005), incomplete lineage sorting (Funk\& Omland 2003) or introgression (Chase et al. 2005), accentuate the need for an integrated analyses for species identification. One strategy used to avoid single-gene pitfalls is to increase the gene sampling to two or more, if possible, unlinked, genes (see e.g. Boissin et al. 2008; Knowles\& Carstens 2007; O'Meara 2010; Ross et al. 2010; Weisrock et al. 2006). Another approach is to challenge the patterns of diversity drawn using molecular data with other sources of evidence, such as morphological characters, ecological factors, geographic distributions, and other criteria (e.g. monophyly, reproductive isolation). This process of modification and validation of the species hypotheses that compiles various data and criteria, is referred to as integrative taxonomy (Barberousse\& Samadi 2010; Dayrat 2005; De Queiroz 2007; Reeves\& Richards 2011;

Samadi\& Barberousse 2009; Schlick-Steiner et al. 2009; Wiens 2007; Will et al. 2005; Yeates et al. 2010). An integrative approach, starting with molecular characters, is particularly applicable for hyperdiverse groups, where most species are unknown and for which the quality of morphological characters as proxies for determining species boundaries is circumspect.

A group for which integrative taxonomy is particularly promising is the family Turridae s.s. (Bouchet et al. 2011), which are predatory marine snails including a large number of species, many of them being rare (Bouchet et al. 2009). Homoplasy and phenotypic plasticity of shell characters (Puillandre et al. 2010) renders traditional shell morphology based taxonomic approaches problematic for molluscs in general, and particularly for hyperdiverse and poorly known groups such as the Turridae. The Turridae are also a promising group to investigate because they are part of the Conoidea superfamily (Bouchet et al. 2011), which includes the genus Conus and the family Terebridae. Species diversity in the Conoidea is believed to be linked to the diversity of their venom (Duda 2008). Peptide toxins found in the venom of Conus snails, conotoxins, have been used extensively since the 1970's to characterize the structure and function of ion channels and receptors in the nervous system (Terlau\& Olivera 2004). In 2004, the first conotoxin drug, ziconotide (Prialt) from Conus magus, became commercially available as an analgesic for chronic pain in HIV and cancer patients (Miljanich 2004; Olivera et al. 1987). In comparison to conotoxins, toxins from the Turridae, turritoxins, are not as well characterized and are an active area of study in the search for novel ligands that modulate the neuronal circuit and are promising therapeutic compounds (Lopez-Vera et al. 2004). Getting a grasp on the diversity of the Turridae would enhance the investigation of their peptide toxins similar to what is being done for the Terebridae (Holford et al. 2009).

This paper outlines a four-step methodology of integrative taxonomy to propose species hypotheses within hyperdiverse taxa (Fig. 1).

Step 1: Optimize taxon-coverage (Fig. 1, step 1). The sampling strategy for the Turridae included a large number of sampling events, covering a wide range of habitats and localities in order to increase the probability of sampling closely-related species and not overestimate the inter-specific differences (Hebert et al. 2004). In addition, multiplying the sampling events increases the probability of sampling several specimens for each species, even rare ones, providing a more accurate estimation of intra-specific variability (Eckert et al. 2008; Lim et al. 2011).

Step 2: Construct Primary Species Hypotheses (PSHs). Sampled specimens are divided into PSHs based on the pattern of diversity of a single-gene, in this case the COI gene (Fig 1, Step 2). Several methods have been proposed for determining PSHs (Marshall 2006; Sites\& Marshall 2003), but they make assumptions on the structure of the diversity within the sampling group. For example, the Population Aggregation Analysis (PAA) postulates that each population, defined a priori, includes only one species, which is not accurate when several morphologically similar species co-occur in sympatry (Kantor et al. 2008). In such cases, a phylogenetic approach, where species are more or less defined as terminal clades, is the solution commonly chosen (Fu\& Zeng 2008; Puillandre et al. 2009). However, when the dataset is relatively large, exceeding several hundreds of specimens, it is difficult to objectively determine when a clade should be considered as a terminal leaf of a phylogenetic tree. Alternatively, two recently described bioinformatics tools, General Mixed Yule Coalescent (GMYC) (Monaghan et al. 2009; Pons et al. 2006) and Automatic Barcode Gap Discovery (ABGD) (Puillandre et al. 2011), define partitions of specimens using a welldefined criterion. GMYC uses a pre-existing phylogenetic tree to determine the transition signal from coalescent to speciation branching patterns. GMYC is generally considered an
effective method to detect species boundaries (Leliaert et al. 2009) even if it was argued that in some cases it could lead to an overestimation of the number of species (Lohse 2009). ABGD detects the breaks in the distribution of genetic pairwise distances, referred to as the "barcode gap"(Hebert et al. 2003), relying exclusively on genetic distance between DNA sequences. To construct reliable PSHs for the Turridae, a dataset of 1,000 COI sequences of Turridae were collected in the South-West Pacific and analyzed using both the GMYC and ABGD models.

Step 3: Visualization of PSHs using Klee diagrams. A recently developed method for processing genomic datasets, referred to as an "indicator vector" (Sirovich et al. 2009; 2010), produces an optimal classifier of a taxonomic group for biodiversity studies. This approach enables accurate quantitative display of affinities amongst taxa at various scales and extends to large genomic datasets. Indicator vectors are determined from each predefined set of nucleotide sequences (here the PSHs). The indicator vector for each PSH is used to build a structure matrix that accurately depicts affinities as correlations within and among-groups, or alternately as directly derivable distances. The structure matrix is presented as a color map, termed Klee diagram based on its resemblance to the works by the artist Paul Klee. Klee diagrams visualize the correlation patterns recovered for the PSHs, which are identified respectively from GMYC and ABGD (Fig. 1, Step 3).

Step 4: Consolidation of PSHs into secondary species hypotheses (SSHs). As stated before, delimiting species based on one gene is risky, and each PSH should be individually challenged using additional evidence. Additional criteria are used either to consolidate the PSHs when GMYC and ABGD are in agreement, or to choose the most likely option among alternate PSHs proposed by GMYC and ABGD (Fig. 1, Step 4). For the Turridae, SSHs were determined by analysis of additional gene sequences (rRNA 28S gene), geographic and bathymetric data, morphological characters, and using monophyly and gene flow criteria. In
the proposed hierarchy, the agreement of several independent genes is generally valuable evidence to support the existence of two (or more) independent evolutionary lineages recognized as species (Knowlton 2000). The definitive split of two lineages may be also supported by other sources of evidence, which includes intrinsic factors, such as the dispersal ability of individuals or their bathymetric preferences, and extrinsic factors, such as the geographic distribution of the habitats or the presence of geographic barriers. Figure 1 lists the different lines of evidence that can be used to delimit species.. Based on the morphological characters, proposed SSHs are then tentatively linked to the taxonomic names available in the literature. Using a sampling set of 1000 specimens, 87 Turridae SSHs are proposed based on a comparative analysis of bioinformatics species prediction tools GMYC and ABGD integrated with other available data. The strategy outlined in Figure 1 is specific for marine gastropods with internal fecundation, but could easily be adapted to other organisms with different lifehistory traits.

## Material and Methods

## Sampling

Specimens of Turridae were collected in different geographic regions: Taiwan (Taïwan 2004 expedition), Philippines (Panglao 2004 and 2005, Aurora 2007), Solomon Islands (Salomon 2, SalomonBOA 3), Vanuatu (BOA 1, Santo 2006), Chesterfield Islands (EBISCO) and New Caledonia (Norfolk 2 - Norfolk ridge) (Table S2). A fragment of the foot was clipped from anesthetised specimens and preserved in $95 \%$ ethanol, while shells were kept intact for morphological analyses. The sampling strategy was designed to maximize the specific diversity within the set of collected specimens: (i) the prospected area is not comprehensive of the Turridae (they are present in other regions e.g. Africa, Central America) but corresponds to the centre of diversity of the Turridae (South-West Pacific, from

Philippines to Vanuatu), (ii) deep to shallow waters were explored (depth range 0-1762 meters). All the specimens belonging to the family Turridae were analysed, without taking into account any kind of a priori species or population delimitation. This strategy would lead to potentially include several specimens for each species, but also to include potential cryptic species. One thousand specimens were analysed, and for each of them data corresponding to their sampling site (geographic coordinates, depth of collection) were databased (Barcode Of Life Database project "Conoidea barcodes and taxonomy"). All specimens and DNA extracts are stored in the Museum National d'Histoire Naturelle collection.

## Sequencing

DNA was extracted from a piece of foot, using a 6100 Nucleic Acid Prepstation system (Applied Biosystem). Two gene fragments were amplified: (i) a fragment of 658 bp of Cytochrome Oxidase I (COI) mitochondrial gene using universal primers LCO1490 and HCO2198 (Folmer et al. 1994) and (ii) a fragment of 900 bp of the rRNA 28 S gene, involving D1, D2 and D3 domains, using the primers C1 and D3 (Jovelin\& Justine 2001). For the COI gene, the primer LCO1490 was also used in combination with newly designed primers (COIH615: CGAAATYTNAATACNGCYTTTTTTGA and COIHNP: GGTGACCAAAAAATCAAAAYARATG) when PCR were negative with HCO2198. All PCR reactions were performed in $25 \mu \mathrm{l}$, containing 3 ng of DNA, 1X reaction buffer, 2.5 mM $\mathrm{MgCl}_{2}, 0.26 \mathrm{mM} \mathrm{dNTP}, 0.3 \mu \mathrm{M}$ of each primer, $5 \%$ DMSO and 1.5 units of Q-Bio Taq (MPBiomedicals) for all genes. COI gene amplifications are performed according to Hebert et al. (2003); for 28 S gene, the protocol consists of an initial denaturation step at $94^{\circ} \mathrm{C}$ for $4^{\prime}$, followed by 30 cycles of denaturation at $94^{\circ} \mathrm{C}$ for $30^{\prime}$ ', annealing at $52^{\circ} \mathrm{C}$ and extension at $72^{\circ} \mathrm{C}$ for $1^{\prime}$. The final extension was at $72^{\circ} \mathrm{C}$ for $10^{\prime}$. PCR products were purified and sequenced at Genoscope facilities. In all cases, both directions were sequenced using the

Sanger method to confirm accuracy of each haplotype sequence. All sequences were submitted to GenBank.

## Phylogenetic Analyses of DNA Sequences

The DNA sequences were manually (for the COI gene) or automatically (for the 28 S gene) aligned using Clustal W as implemented in BioEdit version 7.0.5.3 (Hall 1999). Genetic distances were calculated between each pair of COI sequences. In order to evaluate the effect of multiple nucleotide substitutions on the distance between DNA sequences, three genetic distances are compared: (i) the uncorrected p-distance, (ii) the K2P distance, a model that corrects for multiple substitutions with different Ts (transitions) and Tv (transversions) rates, frequently used in DNA barcode analyses and (iii) the Tamura-Nei model (TN+I+G, with I = 0.541 and $\mathrm{G}=1.014$ ), identified as the best-fitting distance (i.e. that corrects optimally for multiple substitutions) by Modelgenerator (Keane et al. 2006), following the hLRT criterion. The $\mathrm{GTR}+\mathrm{I}+\mathrm{G}(\mathrm{I}=0.817, \mathrm{G}=0.651)$ model was identified as the best-fitting model for the 28S gene dataset. The Maximum Likelihood approach was conducted by determining the best tree over 20 independent runs using RAxML 7.2.3 (Stamatakis 2006). The GTRGAMMAI model was used for both genes. Robustness of the nodes was assessed with 100 bootstrap replicates (with five searches for each of them). Bayesian analyses were performed with BEAST 1.4.8 (Drummond\& Rambaut 2007), using the best-fitting models identified with Modelgenerator. A relaxed lognormal clock with a coalescent prior, determined as the best fitting parameters to be used with the GMYC model (Monaghan et al. 2009), was used to generate the COI Bayesian gene trees that were used in conjunction with the GMYC model to delimit species. MCMC chains were run for 100M generations after which all ESS values calculated with Tracer 1.4.1 (Rambaut\& Drummond 2007) were >200 (default burnin). Tree annotator 1.4.7 (http://beast.bio.ed.ac.uk) was used to analyse the MCMC outputs, using the
default parameters. COI Bayesian analyses were performed on all the obtained sequences; the other analyses were performed on haplotypes only to reduce computation time.

## Automatic Barcode Gap Discovery (ABGD)

Following the similarity criterion, genetic distances between specimens from the same species are supposed to be lower than genetic distances between specimens from different species, revealing a non-continuous distribution (Hebert et al. 2003). This barcode gap, i.e. the range of genetic distances not represented in the matrix of pairwise comparisons, can be used as a threshold offering primary species delimitation under the assumption that individuals within species are more similar than between species (genotyping clustering criterion - Mallet 1995). However, in some cases, this barcode gap does not correspond to a real discontinuity in the distribution, but only to a decrease of the distance frequency between the two modes of the distribution, i.e. the intra and interspecific distances overlap (Meier et al. 2008). This can be due to incomplete lineage sorting, where the COI sequence of a specimen is more similar to a sequence of another species than to a sequence of the same species (Rosenberg\& Tao 2008) or to an underestimation of genetic distances because of homoplasy. The Automatic Barcode Gap Discovery (ABGD) method aims at identifying a limit between the two distributions, even when they are overlapping. Starting from several a priori thresholds of genetic distances chosen by the user, ABGD will first compute the theoretical maximal limit of the intraspecific diversity (using a coalescent model) and then identify in the whole distribution of pairwise distances which gap, by definition superior to the maximal limit of the intraspecific diversity, potentially corresponds to the so-called "Barcoding gap", i.e. a potential limit between intra and interspecific diversity. Inference of the limit and gap detection are then recursively applied to previously obtained groups to get finer partitions until there is no further partitioning. This method is described in detail in Puillandre et al.
(2011); we used the online version to analyse the dataset
(http://wwwabi.snv.jussieu.fr/public/abgd/). MEGA was used to build the distance matrix using a TN model ( with alpha $=1.014$ ). ABGD default parameters were used, except the relative gap width ( X ) was set to 10 to avoid the capture of smaller local gaps.

## General Mixed Yule Coalescent Model (GMYC)

The GMYC method, described in Pons et al. (2006) and Monaghan et al. (2009), is based on the difference in branching rates between speciation branching events (interspecific relationships) and coalescence branching events (intraspecific relationships) in a phylogenetic tree. This difference can be visualized as a switch between slow and fast rates of branching events in a lineage-through-time plot. The first step of the method is to compare the likelihood of the phylogenetic tree obtained with BEAST assuming a single branching process versus the likelihood of the same tree assuming a switch of branching rates between the two types of events. If such a switch is detected, its position is determined and placed in the tree, allowing the delineation of PSHs. Two versions of the method are applied here: in the single-threshold method (Pons et al. 2006), the switch between speciation and coalescence events is supposed to be unique; in the multiple-threshold method (Monaghan et al. 2009), each PSH defined with the single-threshold method is re-analysed one by one and can be divided in two, or fused with its sister-PSH, the hypotheses with the best likelihood being chosen. GMYC (multiple-threshold) proposes alternate hypotheses of species delimitations, and in this way is also similar to the ABGD method. The GMYC method with both the single and multiplethreshold models (Monaghan et al. 2009), implemented in the SPLITS package for R, was applied to the COI tree obtained with BEAST.

Klee Diagrams

Sirovich et al. (2009; 2010) provides a framework for translating nucleotide symbol sequences into numerical vectors; in a manner that links Euclidean vector distances to the customary symbol substitution (Hamming) distance. This leads to calculation of the angle, $\theta$, between pairs of vectorized sequences and from this yields their correlation $\cos \theta$. Under proper normalization the corresponding Hamming distance is given by $1-\cos \theta$. For collections of genomically defined taxa this formalism leads to the determination of a classifier for each taxa, called its indicator vector. The indicator vector of a taxa is obtained under the condition that it is maximally correlated with the taxa, and simultaneously that it is minimally correlated with all other taxa. The matrix of inter-taxa correlations (the structure matrix in physics), in image form the Klee diagram, is intrinsic to the data and independent of evolutionary models. It distinguishes differences among species with high information density and faithfully displays quantitative taxa relations.

As mentioned above the usual taxonomic distance matrix is reciprocally related to the Klee diagram and so can generate a taxonomic tree. However unlike trees, which lose distance accuracy with size the Klee diagram faithfully retains its accuracy at all scales. A Klee diagram may show some variation in appearance if sequence variance plays a role. Experience dictates that this is not a factor, and on the contrary variance is usually slight enough so that taxa averages can reasonably replace taxa ensembles in the calculations.

In the present study, Klee diagrams are used to compare and evaluate the results obtained by the two different species delimitation approaches used (ABGD and GMYC). One COI sequence in each of the PSH defined in two alternate PSHs partitions (the most inclusive and the less inclusive ones) were analyzed using the indicator vector approach and used to build matrices. Prediction tests were then performed to assign the sequences not used to build the matrices to PSHs. Areas of congruence are shown as blue, areas in conflict are shown in gradations of red and yellow.

## Analyses of Other Characters and Criteria

## Phylogenetic analyses

As the efficacy of ABGD and GMYC may be limited by the variation of evolutionary rates in the different species, the statistical support (bootstraps and posterior probabilities) calculated using RAxML and BEAST for each PSH recognized with the COI gene were reported. Conflicts between the COI and 28S genes were also analysed by identifying which PSHs were sharing common 28 S haplotypes and which ones were not monophyletic.

## Genetic structure

When a PSH was present in at least two geographic populations, each of them including at least six specimens, the genetic structure was assessed among the different populations using Arlequin 3.1 (Excoffier et al. 2005). If a single PSH was present in several different geographic regions (among Taiwan, Philippines, Solomon Islands, Vanuatu, Chesterfield Islands and New-Caledonia - see Material and Methods, sampling) and in different localities within the geographic region, an AMOVA (with a 3,000 permutations tests) was performed. If only one hierarchical level was involved (different localities within a single geographic region), $\mathrm{F}_{\text {st }}$ between each pairs of populations was calculated. Network 4.5 (Median-Joining option) was used to construct haplotype networks.

## Bathymetric distribution

Stations are characterized by starting and ending points that may correspond to different depths. This variation is sometimes up to 500 m , and such stations may actually cover highly different environments. To minimize the effect of this imprecision, the depth data for stations with a significant discrepancy between the starting and ending points (>20m for shallow waters stations and $>50 \mathrm{~m}$ for deep water stations) were not considered. To reduce the bias in depth ranges, all the PSHs with only one specimen were also not considered in the estimation
of the bathymetrical distribution. It was then possible to conclude from the observation of the bathymetrical ranges of two PSHs if they were overlapping or not. To test the hypothesis that bathymetrical ranges could be underestimated by subsampling, a statistical test was designed to evaluate if the bathymetrical range of a given PSH could be obtained by subsampling. Details of the test and interpretations of the results are provided in the Figure S3.

## Morphological analyses

The features of the shells of all analysed specimens were examined by several specialists of the Turridae, Yuri Kantor, Baldomero Olivera and Alexander Sysoev. Examinations of the shell were not performed "blindly" but taking into account the molecular taxonomy analyses. The goal was thus to determine if it was possible or not to find morphological differences between the PSHs, using shell characters as traditionally used in malacology. Considering available description in the malacological literature, each PSH was tentatively attributed $a$ posteriori to available species name. When no name was available PSHs were numbered with the genus to which they were attributed.

## Dispersion abilities

For such benthic organisms, dispersal abilities occur mainly during the larval stage. Furthermore, the accretionary growth of the protoconch (i.e. the shell formed by the embryo and/or the veliger larvae before metamorphosis) can be used to infer the mode of development, which constitutes the best proxy for the dispersal ability of a gastropod species when no other data are available (Jablonski\& Lutz 1980). A multispiral protoconch suggests that the larva fed in the water column (i.e. planctotrophic species), and is thus able to disperse over large distances. Conversely, the dispersion abilities are supposedly reduced for a non planctotrophic species (i.e. with a paucispiral protoconch), even if some non planctotrophic species have been shown to disperse over wide distances, e.g. through passive larval transport (Parker\& Tunnicliffe 1994). Dispersion abilities inferred from the protoconch morphology
were used to discuss the validity of the PSHs. When not broken, the protoconch of the analysedspecimens was in most cases multispiral ( $\sim 3$ whorls or more), indicating important dispersal capacities. However, the PSHs identified as Lophiotoma indica (Table 1) were possessing reduced protoconchs with only 2 whorls.

## Turning PSHs into SSHs

PSHs were considered and eventually turned in SSH following the workflow described in the Figure 1 (step 4). Mainly three types of data were analysed: (i) the presence/absence of shared haplotypes between PSHs and their reciprocal monophyly, (ii) geographical and bathymetrical distribution, considered in association with the dispersal abilities, and (iii) morphological variability. In cases where the various lines of evidence used to turn PSHs in SSHs are not conclusive, a conservative approach was followed to avoid an over-estimation of the species diversity and the creation of new species names that would be later synonymised. Each PSH can be considered as a single SSH, but the possibility that each of these SSHs includes several species cannot be ruled out.

## Results

## Turridae COI Gene Variability

A set of 1000 specimens of Turridae was sequenced for a 658 bp fragment of the barcoding COI gene; 648 haplotypes were found, with 477 polymorphic sites and a high haplotypic diversity (0.995). Genetic pairwise distances for COI gene were computed using three different substitution models: (a) the p-distances, (b) the K2P distances, and (c) the Tamura-Nei (TN) distances. The distribution of genetic distances, whatever the substitution model used, displayed two modes separated by a rough gap ("barcode gap") between 0.02 and 0.04 (Fig. 2a-b). However, as shown in the Figure 2b, the number of pairwise comparisons for
genetic distances that corresponded to the barcode gap was lower for the TN distance than for the K2P distance and the p-distance. Consequently, the TN distances were used thereafter for Automatic Barcode Gap Discovery (ABGD) analyses.

## Turridae Primary Species Hypotheses (PSHs)

Species delimitation tools, Automatic Barcode Gap Discovery (ABGD) and General Mixed Yule Coalescence model (GMYC) were used to construct PSHs for the Turridae specimens sequenced with the COI gene. ABGD uses several a priori thresholds to propose partitions of specimens into PSHs based on the distribution of pairwise genetic distances. The numbers of PSHs defined with the ABGD method vary with the different a priori thresholds (Fig. 2c). Extreme threshold values lead to partitions where almost each haplotype is considered as a different PSH, or conversely where all haplotypes are placed in a single PSH. The other intermediate a priori thresholds lead to similar partitions with 87, 89 or 91 PSHs (the 87 and 91 PSH partitions are detailed in the Table 1).

Two versions of the GYMC method are applied: the single-threshold method (Pons et al. 2006) and the multiple-threshold method (Monaghan et al. 2009). For both versions of the method, the likelihood of the GMYC model $\left(L_{\text {GMYCsingle }}=10855.84\right.$ and $L_{\text {GMYCmultiple }}=$ 10860.46) was significantly superior to the likelihood of the null model ( $L_{0}=10770.74$, pvalue $=0$ ). However, the partitions obtained are not identical: 95 PSHs were obtained for the single-threshold method (confidence limits: 86-107), and 102 with the multiple-threshold (confidence limits: 101-115). The likelihood of the two methods are not significantly different $(p$-value $=0.95)$.

Overall, the partitions obtained with the ABGD and GMYC are congruent. Among the 103 PSHs listed in Table 1, 73 were obtained both with ABGD and the two GMYC methods
(Table 1, columns 2-5). In the phylogenetic tree of the Figure 3a each of the PSHs listed in Table 1 is represented by a single branch.

## Visualization of the PSHs Using Klee Diagrams

The indicator vector method (Sirovich et al. 2009; 2010) was used to generate Klee diagrams for the 87 PSHs of the more inclusive partition (i.e. the partition with the lowest number of PSHs defined using ABGD method), and for the 103 PSHs of the less inclusive partition (i.e. the partition with the highest number of PSHs defined using the multiplethreshold GMYC method) (Fig. 3b-c). In the latter Klee diagram (Fig. 3c), a higher correlation is evident between pairs of PSHs that were considered as a single PSH by ABGD: PSHs 21+22, 25+26, 28+29, 32+33+34+35, 51+52, 55+56, 60+61, 68+69, 72+73, 82+83, 84+85, 89+90, 91+92, 93+94 (Fig. 3b-c black arrows). Predictions tests performed using the vectors obtained for the 103 PSHs indicate that two PSH pairs (28+29 and 84+85) were recognized as belonging to the same species. In these two cases, the indicator vector analysis results provide support for the ABGD result rather than the multiple-threshold GMYC hypothesis. All other indicator vector analyses of ABGD and GMYC PSHs appear to be equally likely.

## Phylogenetic Analyses and $28 S$ Gene

Most of the PSHs defined with the COI gene (86 out of the 103 listed in Table 1, representing 708 specimens) were successfully sequenced for the 28 g gene (Table 1). A 28 S fragment of 908 bp after alignment displayed 228 haplotypes with 359 polymorphic sites and a haplotypic diversity of 0.979 . Bootstraps and posterior probabilities are given for each PSH and each gene (COI and 28S) in Table 1. All the PSHs that included more than one specimen corresponded to highly supported clades with the COI gene (Bootstraps > 75, PP > 0.95),
except in 10 cases (PSHs 28, 29, 32+33+34+35, 52, 61, 68, 84, 89+90, 91, 93+94). Each of these ten cases corresponded to a pair of PSHs that were alternatively recognized as a single PSH or two different PSHs with ABGD and GMYC. In the less inclusive hypothesis, when one of the two PSHs corresponded to a weakly supported clade (e.g. PSHs 28 and 29), the alternate most inclusive hypothesis systematically corresponded to a highly supported clade (PSHs 28+29) (Table 1).

Of the 86 PSHs sequenced for the 28 S gene, 61 were characterized by unique (i.e. diagnostic) 28 S haplotypes; among them, 26 corresponded to monophyletic groups (15 with high statistical support) and 11 were non-monophyletic. The 25 other PSHs sequenced for the 28 S gene shared one or several 28 S haplotypes with at least one other PSH. Among them, 12 corresponded to pairs of PSHs that were recognized as a single PSH by either ABGD or GMYC (Table 1 and Fig. 4b) and 12 others corresponded to closely related PSHs with the COI gene, even if they were never recognized as a single PSH. In one case, PSH $47+$ PSHs 60-61, 28 S haplotypes were shared between distant PSHs in the COI tree, and may correspond to different evolutionary histories for the two genes.

## Geographic Distribution and Genetic Structure

Among the 103 PSHs, 80 PSHs were restricted to a single geographic region (Taiwan, Philippines, Solomon Islands, Vanuatu, Chesterfield Islands or New Caledonia), 17 in 2 different regions, and 6 in 3 or more. Among the 14 pairs or quadruplets of PSHs either recognized as a single PSH or as 2 or 4 different PSHs depending on the method, 6 of them were collected in different geographic regions and were thus considered allopatric and 8 were collected in at least one common area (at the same station for 7 of them), and are reported as sympatric (Table 1, geographic distribution column). The genetic structure among different sampling sites in a single PSH was calculated for eight different PSHs with the COI gene, and
for five with the 28 S gene (Table 1, genetic structure column). All the $\mathrm{F}_{\text {st }}$ values are very low and only one is significant (Table S1).

## Bathymetric Distribution

Among the 14 pairs or quadruplets of alternative PSHs, 9 included at least one PSH with only one specimen and were not analysed further. Another pair included PSHs with strictly non-overlapping bathymetric ranges (PSH 60-61), two pairs corresponded to subsamples of the association of two PSHs (28-29 and 84-85) and pair one included one PSH with bathymetric preferences (25-26). Finally, the quadruplet included two PSHs with bathymetric preferences (33-35) and two considered as a subsample of the association of the four PSHs (32, 34).

## Shell Morphology and Attribution to Species Names

The shells of the specimens included in each PSH were examined. Based on the shell morphology, the PSHs were then tentatively assigned to a species-name available in the literature (Table 1, morphological ID). For 28 PSHs, shells of specimens corresponded to a unique morph and it was possible to link each of them to a unique species name; conversely, 11 species names corresponded to shell features shared by several PSHs (39 PSHs affected). Two PSHs represented by a single juvenile specimen might not be attributed to a morphospecies attached to a species name. For 11 PSHs , shells corresponded to distinct morphospecies for which no species names were available and they were thus associated to a genus name and to a morphospecies number within each genus (Gemmula 3, 4, 8, 9, 11-14, 16 and Ptychosyrinx 1-2). Finally, the 23 remaining PSHs corresponded to three different morphospecies, not attributed to a species-name: Gemmula 1 (PSHs 1, 16, 48, 60, 61, 80, 84,
85), 2 (PSHs 2, 3), 5 (PSHs 49, 87, 94, 95), 6 (PSHs 50-52), 7 (PSHs 62, 63), 10 (PSHs 82, 83), 15 (PSHs 90, 91).

## Consolidating Secondary Species Hypotheses (SSHs)

Primary species hypotheses (PSHs) drawn using ABGD and GMYC were converted to SSHs according to the workflow presented in step 4 of Figure 1 and the criteria listed in Table 1. Among the 103 PSHs listed in Table 1, 21, found monophyletic with the 28S gene, and 38, with unique 28 S haplotypes, were converted to 59 SSHs. Of the 38 PSHs with unique 28 S haplotypes, 24 were represented by specimens with identical sequences (i.e. a single haplotype was included in the phylogenetic analysis), preventing any test of the 28 S monophyly for the corresponding PSH. Twenty PSHs were not sequenced for the 28 S gene. Of this group 10 PSHs were converted to SSHs after analysis of other evidence (see table 1 for details). Following a conservative approach, the remaining 11PSHs without 28 S sequences were converted to 5 SSHs , as there was no comparative evidence to support additional SSH assignments. Finally, 24 PSHs sharing 28 S haplotypes were converted to 13 different SSHs following guidelines in step 4 of Figure 1. An example for which all the PSHs characters and criteria are congruent is shown in Figure 5.

There are only four cases where the PSHs were in agreement with ABGD and GMYC analyses, but were not directly converted to SSHs. For example, the PSHs 65 and 66 were considered to correspond to a single SSH, as they shared 28S haplotypes and they were not distinguished morphologically. Similarly, 28S variability, geographical and bathymetrical ranges, dispersal abilities and morphological analysis were decisive in discussing the 14 pairs, or quadruplets, of PSHs alternatively recognized either as a single PSH, or 2 to 4 different PSHs by the ABGD and GMYC analyses. They were turned into 21 SSHs (see details in Table 1). Three examples (one species, two species, or inconclusive species), corresponding
to three different conclusions that can be obtained following step 4 of Figure 1, are detailed here. (1) One species: PSHs 25 and 26 shared 28 S haplotypes, were both found in the same geographic area, and in the same station for some of them, one of them (PSH 25) displayed bathymetric preferences and their larvae were weakly dispersive. PSHs 25 and 26 were interpreted as a single SSH (moreover including also the PSH 24), and the differences found in the COI were thought to correspond to intraspecific structure linked to the depth. Four other PSHs pairs (28-29, 55-56, 72-73 and 84-85) were similarly turned each in a single SSH. (2) Two species: PSH 21 and 22 were interpreted as two different species as they did not share 28 S haplotypes, were found in two different geographic regions (Vanuatu and Solomons) without obvious barrier between them, and their larvae are highly dispersive. Additionally, bathymetric ranges for PSHs 21 and 22 did not overlap, which can be seen as ecological differences between the two species. Two other PSHs pairs (32-35 and 68-69) were similarly converted to two or four SSHs. (3) Inconclusive species: Following a conservative approach, PSHs 51-52 was considered as a single SSH as the supporting evidence was inconclusive. The 28S gene was not sequenced for these specimens, and they were found in the same geographic region, without bathymetric differences (see Material and Methods). Five other PSHs pairs (60-61, 82-83, 89-90, 91-92 and 93-94) were similarly converted to a single SSH following a conservative inclusive approach.

## DISCUSSION

Illustrated here is a semi-automated integrative taxonomy strategy that uses a singlegene approach derived from "DNA-barcoding" to determine species as hypotheses that are consolidated using several additional lines of evidences through a process of modification and validation. The single-gene dataset analysed with bioinformatics species delimitation tools, such as ABGD and GYMC, is combined with biological (life-history traits), morphological
(shell characters) and ecological (bathymetric distribution, geographic barriers) data. This approach constitutes an efficient way for proposing primary species hypotheses (PSHs) for hyperdiverse groups especially when morphological characters are known to be problematic.

Using a predominantly shell-based morphological approach, over the last 30 years, only 13 new species names were proposed for the Turridae genus Gemmula. The integrative taxonomy approach described here (Fig. 1) identified 27 secondary species hypotheses (SSHs) within Gemmula that are not linked to available names, suggesting that 27 novel species names are needed to encompass the species diversity within this genus. Overall, the non-monophyletic genera Lophiotoma and Gemmula (Heralde et al. 2010) include 137 species worldwide, around 100 of which are considered valid (Tucker 2004). In comparison, our analysis recognized 70 SSHs within these genera in the South-West Pacific alone, suggesting that the diversity of species in Lophiotoma and Gemmula has been underestimated. Moreover, in several cases morphologically very similar SSHs were found in a single population. These results confirm that taxonomic approaches based primarily on shell characters or even on a priori definitions of populations (Sites\& Marshall 2003) may underestimate species diversity. However, it should be noted that in several cases the proposed SSHs are morphologically non-cryptic, as clear diagnostic shell-characters were identified. Whether these non-cryptic SSHs would have been detected using a traditional morphology-based species-delimitation approach is difficult to test. In the integrated methodology applied, the morphological analyses were not performed a priori but were based on finding any morphological differences between the molecularly-defined PSHs. It is then reasonable to think that some of the non-cryptic SSHs would have been detected by morphologists had the samples been previously described.

Key components of the integrative strategy presented here are a sampling design that covers both taxon and intraspecific diversity and visualization of the primary species
hypotheses proposed with ABGD and GMYC using the recently developed method of Klee diagram. For large datasets such as the 1,000 specimens used for the Turridae, Klee diagrams facilitate the visualization of PSH correlation patterns and rapidly identify borderline cases. Overall, GMYC and ABGD recovered similar partitions within the Turridae dataset, as many PSHs are identical between the two methods (Table 1). Both ABGD and GYMC achieved their primary goal of proposing PSHs based on a criterion that is biologically justified, either empirically or theoretically. Most PSHs were similar among ABGD and GMYC methods, and other lines of evidences corroborated these primary hypotheses. Therefore, although ABGD and GMYC methods are not sufficient on their own to propose robust species hypotheses, they provided a primary partition that was close to the partition that was finally retained.

Conflicting cases were detected when one PSH defined by ABGD or GMYC is split in two by the alternate method (Fig. 3). Indicator vector analysis suggests in cases where conflict is detected that neither ABGD nor GMYC can be consistently preferred (Fig. 3b-c, black arrows). In conflicting cases ABGD and GYMC do not propose a unique threshold, but rather a range of possible partitions among which some PSHs are different. ABGD, by testing several a priori thresholds and by applying a recursive approach, and GMYC, with both the single and multiple threshold methods, are able to consider the heterogeneity among lineages of the rates of speciation and of coalescence that result in an overlapping distribution of the pairwise genetic distances (Fig. 2a and b). For eight out of nine pairs of conflicting hypotheses obtained with the single and multiple GMYC methods, the corroboration process turned into SSHs the PSHs proposed by the single-threshold method. For the 14 conflicting cases between ABGD and GMYC methods, the final SSH were defined as a PSH only by ABGD in 2 cases and only by GMYC in 1 case (Table 1). These findings suggest ABGD and GYMC are complementary and should be used together to increase the overall robustness of
the final partition to determine the set of PSHs fixed as SSHs. Compared to GMYC, ABGD may be considered as less refined in regards to underlying evolutionary processes, however, GMYC requires prior construction of a tree that must be ultrametric, which does not necessarily reflect the real divergence between species. Alternatively, ABGD is based solely on genetic distances calculated between each pair of COI sequences, allowing for the exploration of a range of thresholds and management of the heterogeneity of evolution rates. Furthermore, the short calculation time of the ABGD method, a few seconds vs several weeks to obtain a BEAST tree for the GMYC method (following the method described in Monaghan et al. 2009), allows a rapid comparison of different models of evolution for each dataset. Thus, ABGD would be easier to apply to very large datasets. Finally, both ABGD and GYMC are problematic when species are represented with only a few specimens (Lohse 2009; Puillandre et al. 2011), and as underlined in the results, PSHs with less than three specimens are generally difficult to discuss with other characters and criteria. A large proportion of rare species, represented by a low number of specimens, in a dataset is a common pattern, especially for marine gastropods (Castelin et al. 2011). SSH proposed for these samples are more susceptible to modification if new specimens are collected in the future.

In addition to analyses via ABGD and GMYC and to corroborate the hypotheses drawn from single gene with criteria, we examined patterns of diversity in the same sample set to give an evolutionary meaning to the proposed hypotheses. For example, testing the reciprocal monophyly of the PSHs on several genes indicate that the proposed species represent a unique evolutionary lineage. The SSHs proposed here all correspond to PSHs for which several characters and/or lines of evidence were congruent. However, not all SSHs are equally supported. For example, SSHs based on the lack of shared haplotypes on the 28 S gene should be considered more carefully than SSHs confirmed by reciprocal monophyly with the nuclear gene. Bathymetric and geographic distributions, in association with dispersal abilities,
are not species delimitation criteria in themselves, but act as additional evidence toward one or another hypothesis further providing clues about the speciation process (Hyde et al. 2008). In figure 1, several patterns are interpreted as evidence for one or two species. For example, highly dispersive larvae for two PSHs in absence of geographical barrier, or in presence of bathymetrical differences when geographical ranges are overlapping, can be interpreted as evidence for the presence of two species, as large dispersal abilities would result in shared haplotypes if only one species was involved. However, in several cases, results are inconclusive. For example, when the two PSHs have non-dispersive larvae and discontinuous geographic ranges without barrier, the differences observed with the COI could be only due to geographic structuring. Here, the decision depends on the taxonomist's choice and we followed a conservative approach by considering only one species, even if two deep conspecific lineages (Padial et al. 2010), potentially corresponding to incipient species, were revealed by the COI gene analysis. Finally, morphology, although a highly valuable character in numerous cases (Holynski 2010), is used here in the final step, where morphological differences are seen as additional evidence for the existence of different species, but knowing also that different species may share a highly similar morphology.

The borderline cases detected in the primary stage of the integrative protocol corresponded mostly to cases of recent divergence. These cases are of particular interest for understanding speciation processes. Using characters and criteria that are directly issued from evolutionary-based species criteria (phylogeny, reproductive isolation, phenetic divergence (Samadi \& Barberousse 2006)) is not only useful to propose more robust hypotheses, but also to understand what induced and drove the speciation process (Padial et al. 2010). For example, the distributions of most of the species illustrated in Figure 5 are restricted to one or two geographic regions, suggesting allopatric speciation. However, Ptychosyrinx sp. 2 and Gemmula sp. 4 are also distinguished by their bathymetric ranges, and could have diverged
under a parapatric model. Identifying the different factors promoting the speciation event, either linked to geographical isolation and genetic drift or linked to ecological differentiation and selective forces, requires model-based studies (Crow et al. 2010). However, in all cases, delimitating species with clear, robust and reproducible methods remains the first step.

PSHs proposed by ABGD and GMYC of species represented by large numbers of specimens or, conversely, by only a few specimens, i.e. uneven sampling, is an area of concern with the integrated method described. To test the effects of uneven sampling, the number of specimens in the two largest PSHs, PSH 36 with 94 specimens and PSH 74 with 101 specimens, were reduced to 10 . The PSHs defined with ABGD were unchanged as a result of the artificial minimization. Additionally, two datasets with three species each were simulated, where in the first dataset, each species was represented by 37 specimens and in the second, they were represented by 1, 10 and 100 specimens respectively. The Yule model was used to simulate the species tree, and a Kingman model in which genes from different species cannot coalesce was used for the gene tree (until they reach the common ancestral species).A theta of 10 was used for the mutations, with a sequence length of 1000 to obtain an average of $1 \%$ divergence between 2 sequences of the same species. Under these conditions, ABGD (with a prior of 0.01 ) detected a mean of 3.67 species when the sampling is even, and 3.46 species when the sampling is uneven among the 1,000 runs. The difference was subtle, but significant, with a p-value $<10-4$. Similar simulations performed with GMYC suggested that GMYC may overestimate the number of species in even and uneven sampling, and further detailed exploration of the effect of uneven sampling on species delimitation with both ABGD and GMYC are clearly needed. The simulation results suggest that the Turridae PSH delimitation could be slightly influenced by the evenness of the sampling and could explain why in several cases ABGD and GMYC underestimate or overestimate respectively the number of PSHs compared to the number of SSHs retained at the end of the analytical process
(Table 1). Increasing the sampling effort to reduce differences in specimen 649 numbers between PSH would reduce the potential biases witnessed in ABGD and GMYC. However, this recommendation is often hardly applicable as rare species are usually present in empirical studies.

As demonstrated for the Turridae, the integrative taxonomy strategy described here is compulsory for primary and secondary species delimitation hypotheses in hyperdiverse groups, and could be easily adjusted to any biodiverse group of organisms. In addition, the relative congruence between PSHs defined with ABGD and the final SSHs retained indicates that ABGD can be used as a proxy for species delimitation when only molecular data are available. ABGD can be applied in biodiversity analysis to quickly assess the biodiversity of an environmental sample and to facilitate comparative analysis in DNA metabarcoding.

## Acknowledgments

Key material for molecular studies originated from several expeditions to the Philippines and Vanuatu, funded via a consortium of agencies, including the Total Foundation, the French Ministry of Foreign Affairs, the Richard Lounsbery Foundation, the Philippines Bureau of Fisheries and Aquatic Research (BFAR) and the Niarchos Foundation; the Coral Sea and Solomon Islands took place on board R/V Alis from the Institut de Recherche pour le Développement (IRD). P. Bouchet and B Richer de Forges were P.I. for these cruises/expeditions. E. Strong and Y. Kantor are thanked for their role in molecular sampling during these expeditions. The phylogenetic analyses were performed on the vital-it clusters (www.vital-it.ch). The authors thank G. Achaz, A. Lambert and S. Brouillet for the development and the implementation of the ABGD method, A. Sysoev, B. M. Olivera and Y. Kantor for the taxonomic identifications, T. Barraclough for his assistance with the GMYC method, and P. Bouchet and G. Paulay for constructive comments on the manuscript. This work was supported by the "Consortium National de Recherche en Génomique" and the "Service de Systématique Moléculaire" (UMS 2700 CNRS-MNHN). It is part of the agreement nº2005/67 between the Genoscope and the Muséum National d'Histoire Naturelle on the project "Macrophylogeny of life" directed by Guillaume Lecointre. This project is partially funded by an Alfred P. Sloan foundation (B2010-37), NSF (0940108), and NIHNIGMS (GM088096) grants to M. Holford. Molecular data were obtained through the DNAbarcoding workflow established at the MNHN thanks to the MARBOL grant from the Alfred P. Sloan foundation, PI D. Steinke, Co-PI P. Bouchet and S. Samadi.

## References

Ahrens D, Monaghan MT, Vogler AP (2007) DNA-based taxonomy for associating adults and larvae in multi-species assemblages of chafers (Coleoptera: Scarabaeidae). Molecular Phylogenetics and Evolution 44, 436-449.

Barberousse A, Samadi S (2010) Species from Darwin onward. Integrative Zoology 5, 187197.

Boissin E, FÉRal JP, Chenuil A (2008) Defining reproductively isolated units in a cryptic and syntopic species complex using mitochondrial and nuclear markers: the brooding brittle star, Amphipholis squamata (Ophiuroidea). Molecular Ecology 17, 1732-1744.

Bouchet P, Kantor Y, Sysoev A, Puillandre N (2011) A new operational classification of the Conoidea (Gastropoda). Journal of Molluscan Studies 77, 273-308.

Bouchet P, Lozouet P, Sysoev AV (2009) An inordinate fondness for turrids. Deep-Sea Research II 56, 1724-1731.

Castelin, M., Puillandre, N., Lozouet, P., Sysoev, A., Richer de Forges, B., Samadi, S., 2011. Molluskan species richness and endemism on New Caledonian seamounts: Are they enhanced compared to adjacent slopes? Deep-Sea Research I 58, 637-646.

Chase MW, Salamin N, Wilkinson M, et al. (2005) Land plants and DNA barcodes: shortterm and long-term goals. Philosophical Transactions of the Royal Society B 360, 1889-1895.

Crow KD, Munehara H, Bernardi G (2010) Sympatric speciation in a genus of marine reef fishes. Molecular Ecology 19, 2089-2105.

Dayrat B (2005) Towards integrative taxonomy. Biological Journal of the Linnean Society 85, 407-415.

De Queiroz K (2007) Species concepts and species delimitation. Systematic Biology 56, 879886.

Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.

Duda TF (2008) Differentiation of venoms of predatory marine gastropods: divergence of orthologous toxin genes of closely related Conus species with different dietary specializations. Journal of Molecular Evolution 67, 315-321.

Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Molecular Ecology 17, 11701188.

Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 47-50.

Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294-299.

Fu J, Zeng X (2008) How many species are in the genus Batrachuperus? A phylogeographical analysis of the stream salamanders (family Hynobiidae) from southwestern China. Molecular Ecology 17, 1469-1488.

Funk DJ, Omland KE (2003) Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology Evolution and Systematics 34, 397-423.

Garros C, Ngugi N, Githeko AE, Tuno N, Yan G (2008) Gut content identification of larvae of the Anopheles gambiae complex in western Kenya using a barcoding approach. Molecular Ecology Resources 8, 512-518.

Goldstein PZ, DeSalle R (2011) Integrating DNA barcode data and taxonomic practice: Determination, discovery, and description. Bioessays 33, 135-147.

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95-98.

Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA Barcodes. Proceedings of the Royal Society B 270, 313-321.

Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. PLoS Biology 2, 1657-1663.

Heralde FM, Kantor Y, Astilla MAQ, et al. (2010) The Indo-Pacific Gemmula species in the subfamily Turrinae: aspects of field distribution, molecular phylogeny, radular anatomy and feeding ecology. Philippine Science Letters 3, 21-34.

Holford M, Puillandre N, Terryn Y, et al. (2009) Evolution of the Toxoglossa venom apparatus as inferred by molecular phylogeny of the Terebridae. Molecular Biology and Evolution 26, 15-25.

Holynski RB (2010) Taxonomy and the mediocrity of DNA barcoding - some remarks on PACKER et al. 2009: DNA barcoding and the mediocrity of morphology. Arthropod Systematics \& Phylogeny 143, 143-150.

Hyde JR, Kimbrell CA, Budrick JE, Lynn EA, Vetter D (2008) Cryptic speciation in the vermilion rockfish (Sebastes miniatus) and the role of bathymetry in the speciation process. Molecular Ecology 17, 1122-1136.

Jablonski D, Lutz RA (1980) Molluscan larval shell morphology - ecological and paleontological applications. In: Skeletal growth of aquatic organisms (eds. Rhoads DC, Lutz RA), pp. 323-377. Plenum Press, New York.

Jovelin R, Justine J-L (2001) Phylogenetic relationships within the Polyopisthocotylean monogeneans (Plathyhelminthes) inferred from partial 28S rDNA sequences. International Journal for Parasitology 31, 393-401.

Kantor YI, Puillandre N, Olivera BM, Bouchet P (2008) Morphological proxies for taxonomic decision in turrids (Mollusca, Neogastropoda): a test of the value of shell and radula characters using molecular data. Zoological Science 25, 1156-1170.

Keane TM, Creevey CJ, Pentony MM, Naughton TJ, McInerney JO (2006) Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evolutionary Biology 6, 1-17.

Knowles LL, Carstens BC (2007) Delimiting species without monophyletic gene trees. Systematic Biology 56, 887-895.

Knowlton N (2000) Molecular genetic analyses of species boundaries in the sea. Hydrobiologia 420, 73-90.

Leliaert F, Verbruggen H, Wysor B, Clerck OD (2009) DNA taxonomy in morphologically plastic taxa: Algorithmic species delimitation in the Boodlea complex (Chlorophyta: Cladophorales). Molecular Phylogenetics and Evolution 53, 122-133.

Lim GS, Balke M, Meier R (2011) Determining species boundaries in a world full of rarity: singletons, species delimitation methods. Systematic Biology 60, AA.

Lohse K (2009) Can mtDNA barcodes be used to delimit species? A response to Pons et al. (2006). Systematic Biology 58, 439-442.

Lopez-Vera E, Heimer de la Cotera EP, Maillo M, et al. (2004) A novel structure class of toxins: the methionine-rich peptides from the venoms of turrid marine snails (Mollusca, Conoidea). Toxicon 43, 365-374.

Lorenz JG, Jackson WE, Beck JC, Hanner R (2005) The problems and promise of DNA barcodes for species diagnosis of primate biomaterials. Philosophical Transactions of the Royal Society B 360, 1869-1877.

Mallet J (1995) A species definition for the modern synthesis. Trends in Ecology and Evolution 10, 294-299.

Marshall JC (2006) Delimiting species: comparing methods for mendelian characters using lizards of the Sceloporus grammicus (Squamata: Phrynosomatidae) complex. Evolution 60, 1050-1065.

Meier R, Zhang G, Ali F (2008) The use of mean instead of smallest interspecific distances exaggerates the size of the "Barcoding Gap" and leads to misidentification. Systematic Biology 57, 809-813.

Miljanich GP (2004) Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Current Medicinal Chemistry 11, 3029-3040.

Monaghan MT, Wild R, Elliot, et al. (2009) Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Systematic Biology 58, 298-311.

O'Meara BC (2010) New heuristic methods for joint species delimitation and species tree inference. Systematic Biology 59, 59-73.

Olivera BM, Cruz LJ, De Santos V, et al. (1987) Neuronal calcium channel antagonists. Discrimination between calcium channel subtypes using .omega-conotoxin from Conus magus venom. Biochemistry 26, 2086-2090.

Padial JM, Miralles A, De la Riva I, Vences M (2010) The integrative future of taxonomy. Frontiers in Zoology 7, 16.

Parker T, Tunnicliffe V (1994) Dispersal strategies of the biota on an oceanic seamount: Implications for ecology and biogeography. Biological Bulletin 187, 336-345.

Pons J, Barraclough TG, Gomez-Zurita J, et al. (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55, 595-609.

Puillandre N, Baylac M, Boisselier MC, Cruaud C, Samadi S (2009) An integrative approach of species delimitation in the genus Benthomangelia (Mollusca: Conoidea). Biological Journal of the Linnean Society 96, 696-708.

Puillandre N, Lambert A, Brouillet S, Achaz G (2011) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology.

Puillandre N, Sysoev A, Olivera BM, Couloux A, Bouchet P (2010) Loss of planktotrophy and speciation: geographical fragmentation in the deep-water gastropod genus Bathytoma (Gastropoda, Conoidea) in the western Pacific. Systematics and biodiversity 8, 371-394.

Rambaut A, Drummond AJ (2007) Tracer v1.4. Available from http://beast.bio.ed.ac.uk/Tracer

Reeves PA, Richards CM (2011) Species delimitation under the general lineage concept: an empirical example using wild North American Hops (Cannabaceae: Humulus lupulus). Systematic Biology 60, 45-59.

Rosenberg NA, Tao R (2008) Discordance of species trees with their most likely gene trees: the case of five taxa. Systematic Biology 57, 131-140.

Ross KG, Gotzek D, Ascunce MS, Shoemaker DD (2010) Species delimitation: a case study in a problematic ant taxon. Systematic Biology 59, 162-184.

Samadi S, Barberousse A (2006) The tree, the network, and the species. Biological Journal of the Linnean Society 89, 509-521.

Samadi S, Barberousse A (2009) Species: towards new, well-grounded practices. A response to Velasco. Biological Journal of the Linnean Society 96, 696-708.

Schlick-Steiner BC, Steiner FM, Seifert B, et al. (2009) Integrative taxonomy: a multisource approach to exploring biodiversity. Annual Review of Entomology 55, 421-438.

Sirovich L, Stoeckle M, Zhang Y (2009) A scalable method for analysis and display of DNA sequences. PLoS ONE 4, e7051.

Sirovich L, Stoeckle M, Zhang Y (2010) Structural Analysis of Biodiversity. PLoS ONE 5, e9266.

Sites JW, Marshall JC (2003) Delimiting species: a renaissance issue in systematic biology. Trends in Ecology and Evolution 19, 462-470.

Smith PJ, McVeagh SM, Steinke D (2008) DNA barcoding for the identification of smoked fish products. Journal of Fish Biology 72, 464-471.

Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688-2690.

Taylor JW, Turner E, Townsend JP, Dettman JR, Jacobson D (2006) Eukaryotic microbes, species recognition and the geographic limits of species: examples from the kingdom Fungi. Philosophical Transactions of the Royal Society B 361, 1947-1963.

Terlau H, Olivera BM (2004) Conus venoms: a rich source of novel ion channel-targeted peptides. Physiological Review 84, 41-68.

Tucker JK (2004) Catalogue of recent and fossil turrids (Mollusca: Gastropoda). Zootaxa 682, 1-1295.

Vernooy R, Haribabu E, Muller MR, et al. (2010) Barcoding life to conserve biological diversity: beyond the taxonomic imperative. PLoS Biology 8, e1000417.

Weisrock DW, Shaffer HB, Storz BL, Storz SR, Voss SR (2006) Multiple nuclear gene sequences identify phylogenetic species boundaries in the rapidly radiating clade of Mexican ambystomatid salamanders. Molecular Ecology 15, 2489-2503.

Wheeler QD (2009) The new taxonomy CRC Press, Boca Ratan.
Wiens JJ (2007) Species delimitation: new approaches for discovering diversity. Systematic Biology 56, 875-878.

Will KP, Mishler BD, Wheeler QD (2005) The perils of DNA Barcoding and the need for integrative taxonomy. Systematic Biology 54, 844-851.

Yeates D, Seago A, Nelson L, et al. (2010) Integrative taxonomy, or iterative taxonomy? Systematic Entomology.

## "Data Accessibility:

- DNA sequences: Genbank accessions EU015659, EU015661, EU015664, EU015677, EU015681, EU015682, EU015684, EU015724, EU127874-EU127882, EU820248EU821230 for COI gene and EU015543, EU015545, EU015548, EU015562, EU015566, EU015567, EU015569, EU015609, EU127883-EU127891, EU819556-EU820247 for 28S gene
- All samples are vouchered in the MNHN collection. They are all registered in the Barcode of Life Datasystem (BOLD), in the project "CONO - Conoidea barcodes and taxonomy".

Figure legends

Figure 1: Integrative taxonomy flowchart used to delimit species in the Turridae. Starting from COI sequences from numerous specimens (step 1), PSHs are proposed using both ABGD and GMYC (step 2), then visualized using Klee diagrams (step 3). Several other criteria and characters are analysed sequentially to turn PSHs into SSHs: first, a second independent marker (the 28S gene), then the geographic and bathymetric ranges, in association with the larval dispersion capacities, and finally the morphological differences are compared. In some cases, the evidence will not favor any of the two hypotheses, and the taxonomist will have to subjectively make a decision (using either a lumper or splitter approach) waiting for more conclusive data.

Figure 2: Pairwise distribution for the COI gene and ABGD results. a) Distributions of pdistance, K2P distances and TN distances between each pair of specimens for the COI gene. b) Same results, but focusing on the barcode gap zone. c) ABGD results, with the number of PSHs obtained for each prior intraspecific divergence.

Figure 3: COI gene results. a) Bayesian COI gene tree with Posterior Probabilities ( $>0.8$ ) and Bootstraps (>50) indicated next to each node. The 103 PSHs listed in Table 1 (first column) are represented each by a single branch (the intra- PSH trees are not shown). Black brackets indicate the PSHs that were subsequently grouped into one SSH. *: PSHs with a shell illustration. b) Klee diagrams for the COI gene showing the correlations among indicator vectors for the less inclusive dataset corresponding to the 103 PSHs provided by the multiplethreshold GMYC (the black arrows point to the groups of PSHs recognized as a single PSH with ABGD); gradations of red and yellow color in the Klee diagram indicate areas of
conflict. c) for the most inclusive dataset corresponding to the 87 PSHs provided by ABGD (the black arrows point to PSHs that are divided into several PSHs by the multiple-threshold GMYC method).

Figure 4: 28 S gene results. a) Klee diagrams for the 28 S gene showing the correlations among indicator vectors for the 86 PSHs sequenced for this gene. b) Phylogenetic tree obtained with the 20828 S haplotypes (Bayesian analysis). Posterior Probabilities ( $>.8$ ) and Bootstraps ( $>50$ ) are reported for each node. Numbers at the tip of the branches refer to the PSH numbers (Table 1). Red star: monophyletic PSHs. Black arrow: haplotype shared by several PSHs.

Figure 5: Example of congruent SSHs. a) COI tree for the SSH Ptychosyrinx sp. 1, X. gemmuloides, G. unilineata, Gemmula sp. 4 and Ptychosyrinx sp. 2., corresponding depth of collection for each specimen is given. b) 28 S tree for the corresponding SSHs. c) COI haplotype network for the same SSHs. Some specimens are illustrated for each SSH by their shells.

## Table

Table 1: List of PSHs, as defined with the ABGD ( $\mathrm{M}=$ More inclusive partition and $\mathrm{L}=$ Less inclusive partition) and GMYC ( $\mathrm{S}=$ Singlethreshold and $M=$ Multiple-threshold) analyses of the COI gene. Number of specimens ( N ) and phylogenetic support are provided for both COI and 28 genes. Geographical, bathymetrical and morphological data are also provided. NA: non applicable (one or no specimen or one or no haplotype). Pa: paraphyletic; Po: polyphyletic. Phil.: Philippines; Sol.: Solomon Islands; Ches.: Chesterfield Islands; Van.: Vanuatu; N.-C.: NewCaledonia; Tai.: Taiwan. *: indicates that at least one specimen from each of the corresponding PSHs was collected at the same station. The "Genetic structure" column lists the PSHs for which COI and 28S structure was tested (Table S1).The depth range index refers to the statistical tests explain in the Material and Methods section (a PSH number indicates that the test is significant for this PSH; n.s.: not significant).

Morphological identification: G.: Gemmula; P.: Ptychosyrinx; L.: Lophiotoma; T.: Turris; Td.: Turridrupa; I.: Iotyrris; X.: Xenuroturris.

| PSH | ABGD |  | GMYC |  | COI |  | 28 S |  |  | Geography |  |  | Depth |  | Morphological ID | SSH |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | M | L | S | M | N | $\begin{aligned} & \text { Support } \\ & \text { (ML/BA) } \end{aligned}$ | N | $\begin{aligned} & \text { Support } \\ & \text { (ML/BA) } \end{aligned}$ | Haplotypes shared with | Region | Distribution | Genetic structure | Range (m) | Indice |  |  |
| 1 | x | x | x | x | 1 | NA | 0 | NA |  | Sol |  |  | 282-327 |  | G. 1 | Gemmula sp. 1 |
| 2 | x | x | x | x | 1 | NA | 1 | NA |  | Phil |  |  | 85-88 |  |  | Gemmula sp. 2 |
| 3 | x | x | x | x | 5 | 100/1 | 4 | $\mathrm{Pa} / \mathrm{Pa}$ |  | Phil |  |  | 35-100 |  | G. 2 | Gemmula sp. 3 |
| 4 | x | x | x | x | 3 | NA/1 | 2 | 99/1 |  | Ches |  |  | 345-413 |  | Td. armillata | Turridrupa armillata |
| 5 | x | x | x | x | 2 | 100/1 | 2 | NA |  | Van |  |  | 0-49 |  | Td. neojubata | Turridrupa neojubata |
| 6 | x | x | x | x | 1 | NA | 1 | NA |  | Phil |  |  | 6-8 |  | Td. Bijubata | Turridrupa cf. bijubata 1 |
| 7 | x | x | x | x | 1 | NA | 1 | NA |  | Van |  |  | 0-49 |  | Td. albofasciata | Turridrupa albofasciata |
| 8 | x | x | x | x | 4 | 100/1 | 1 | NA |  | Phil, Van |  |  | 20-110 |  | Td. astricta | Turridrupa astricta |
| 9 | x | x | x | x | 1 | NA | 1 | NA |  | Van |  |  | 0-49 |  |  | Turridrupa cf. bijubata 2 |
| 10 | x | x | x | x | 4 | 96/1 | 4 | Po/Po |  | Phil, Van |  |  | 0-49 |  | Td. bijubata | Turridrupa cf. bijubata 3 |
| 11 | x | x | x | x | 1 | NA | 1 | NA |  | Phil |  |  | 593 |  | P. 1 | Ptychosyrinx sp. 1 |
| 12 | x | x | x | x | 2 | 100/1 | 1 | NA |  | Ches |  |  | 372-404 |  | X. gemmuloides | Xenuroturris gemmuloides |
| 13 | x | x | x | x | 15 | 89/1 | 11 | 75/1 |  | Ches, N-C, Phil, Sol |  |  | 410-741 |  | G. unilineata | Gemmula unilineata |
| 14 | x | x | x | x |  | 99/1 | 2 | 93/1 |  | Sol |  |  | 897-1057 |  | P. 2 | Ptychosyrinx sp. 2 |
| 15 | x | x | x | x | 24 | 100/1 | 5 | 76/1 |  | Ches, N-C |  |  | 440-1150 |  | G. 3 | Gemmula sp. 4 |
| 16 | x | x | x | x | 5 | 99/1 | 0 | NA |  | Van |  |  | 503-636 |  | G. 1 | Gemmula sp. 5 |


| 17 | x | x | x | x | 8 | 100/1 |  | 2 | - |  | 18 | Van |  |  | 131-308 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18 | x | x | x | x | 8 | 95/1 |  | 1 | NA |  | 17 | Van, Sol |  |  | 131-308 |  | L. indica | Lophiotoma cf. indica 1 |
| 19 | x | x | x | x | 2 | NA/1 |  | 1 | NA |  |  | Van |  |  | 83-339 |  |  | Lophiotoma cf. indica 2 |
| 20 | x | x | x | x | 1 | NA |  | 1 | NA |  |  | Phil |  |  | 155-160 |  | L. tayabaensis | Lophiotoma tayabaensis |
| 21 | x | x | x | x | 1 | 99/1 | NA | 1 | Po/Po | NA |  | Sol | allopatric |  | 150-160 | NA | L. friedrichbonhoefferi | Lophiotoma cf. friedrichbonhoefferi 1 |
| 2 | x | x | x | x | 3 | 99/1 | 100/1 | 3 | Po/Po | NA |  | Van | allopatric |  | 106-148 | NA | L. friedrichbonhoefferi | Lophiotoma cf. friedrichbonhoefferi 2 |
| 23 | x | x | x | x | 7 | 94/1 |  | 4 | $\mathrm{Pa} / \mathrm{Pa}$ |  |  | Phil |  |  | 72-139 |  | L. bisaya | Lophiotoma bisaya |
| 24 | x | x | x | x | 7 | 95/1 |  | 6 | - |  | 26 | Sol, Van |  |  | 83-160 |  |  |  |
| 25 |  | x | x | x | 2 | 76/1 | 99/1 | 1 |  | NA | 26 | Phil |  |  | 42-44 | 25 | L. indica | Lophiotoma cf. indica 3 |
| 26 | x | x | x | x | 6 | 76/1 | 99/.96 | 5 |  | - | 24, 25 | Phil | sympatric* |  | 42-79 | 25 |  |  |
| 27 | x | x | x | x | 6 | 100/1 |  | 6 | - |  | 28, 29, 30, 31 | Phil |  |  | 219-318 |  | L. sikatunai | Lophiotoma sikatunai |
| 28 |  |  |  | x | 2 |  | Pa/. 35 | 2 |  | - | 27, 29, 30 | Ches |  |  | 310-400 |  |  |  |
| 29 | x | x | x | x | 6 | 99/1 | 60/.82 | 4 |  | - | 27, 28, 30 | Ches | sympatric* |  | 267-400 | n.s. |  |  |
| 30 | x | x | x | x | 32 | 88/1 |  | 24 | - |  | 27, 28, 29, 31 | Sol, N-C, Phil, Van |  |  | 147-391 |  | L. unedo | Lophiotoma unedo |
| 31 | x | x | x | x | 68 | 93/1 |  | 14 | - |  | 27, 30 | Sol, Van |  | COI | 131-400 |  |  |  |
| 32 |  |  | x | x | 4 |  | 96/1 | 3 |  | - | 36 | Phil |  |  | 229-400 |  |  | Lophiotoma cf. panglaoensis 1 |
| 33 | x |  | x | x | 10 | 54/1 | 95/1 | 1 |  | NA |  | Phil |  |  | 182-346 |  |  | Lophiotoma cf. panglaoensis 2 |
| 34 | x | x | x | x | 6 | 54/1 | 82/1 | 0 |  | NA |  | Phil, Sol | sympatric* |  | 173-400 | 33, 35 | L. panglaoensis | Lophiotoma cf. panglaoensis 3 |
| 35 |  |  | x | x | 10 |  | 97/1 | 4 |  | 80/.97 |  | Sol, Van |  |  | 131-600 |  |  | Lophiotoma cf. panglaoensis 4 |
| 36 | x | x | x | x | 94 | 99/1 |  | 75 | Po/Po |  | 32 | Sol, Van |  | COI \& 28 S | 350-659 |  | L. indica | Lophiotoma cf. indica 4 |
| 37 | x | x | x | x | 1 | NA |  | 1 | NA |  |  | Phil |  |  | 8-22 |  | T. babylonia | Turris babylonia |
| 38 | x | x | x | x | 1 | NA |  | 1 | NA |  |  | Van |  |  | 112-148 |  | T. spectabilis | Turris spectabilis |
| 39 | x | x | x | x | 15 | 100/1 |  | 15 | 58/1 |  |  | Van |  |  | 0-55 |  | T. garnonsii | Turris garnonsii |
| 40 | x | x | x | x | 1 | NA |  | 1 | NA |  |  | Van |  |  | 0 |  | X. legitima | Xenuroturris legitima |
| 41 | x | x | x | x | 2 | NA/1 |  | 2 | NA |  |  | Van |  |  | 20 |  | I. musivum | Iotyrris musivum |
| 42 | x | x | x | x | 3 | 86/1 |  | 2 | 55/.90 |  |  | Van |  |  | 0-49 |  | I. cingulifera | Iotyrris cingulifera |
| 43 | x | x | x | x | 4 | 98/1 |  | 4 | $\mathrm{Pa} / \mathrm{Pa}$ |  |  | Van |  |  | 16-20 |  | I. devoizei | Iotyrris devoizei |
| 44 | x | x | x | x | 1 | NA |  | 1 | NA |  |  | Phil |  |  | 85-88 |  | (juvenile) | Gemmula sp. 6 |
| 45 | x | x | x | x | 1 | NA |  | 0 | NA |  |  | Phil |  |  | 120 |  | G. 4 | Gemmula sp. 7 |
| 46 | x | x | x | x | 2 | NA/ |  | 2 | 68/.99 |  |  | Van |  |  | 0-49 |  | G. lisajoni | Gemmula lisajoni |
| 47 | x | x | x | x | 4 | 100/1 |  | 3 | - |  | 60, 61 | Van |  |  | 0-49 |  | L. albina | Lophiotoma albina |
| 48 | x | x | x | x | 1 | NA |  | 1 | NA |  |  | Van |  |  | 266-281 |  | G. 1 | Gemmula sp. 8 |
| 49 | x | x | x | x | 1 | NA |  | 0 | NA |  |  | Sol |  |  | 173-379 |  | G. 5 | Gemmula sp. 9 |
| 50 | x | x | x | x | 1 | NA |  | 0 | NA |  |  | Sol |  |  | 286-423 |  |  | Gemmula sp. 10 |
| 51 | x | x | x | x | 1 | 98/1 | NA | 0 |  | NA |  | N-C |  |  | 386-391 |  | G. 6 |  |
| 52 | x | x | x | x | 2 | 98/1 | 60/.99 | 0 | NA | NA |  | N-C | sympatric* |  | 386-391 | NA |  | Gemmula sp. 11 |
| 53 | x | x | x | x | 8 | 93/1 |  | 6 | 90/1 |  |  | Phil, Sol, Van |  |  | 11-176 |  |  | Gemmula cf. monilifera 1 |
| 54 | x | x | x | x | 9 | 100/1 |  | 9 | 80/1 |  |  | Van |  |  | 0-118 |  |  | Gemmula cf. monilifera 2 |
| 55 |  |  |  | x | 8 | 100/1 | 98/1 | 7 | 92/1 | - | 56 | Van |  |  |  | NA | G. monilifera |  |
| 56 | x | x | x | x | 1 | 100/1 | NA | 1 | 92/1 | - | 55 | Van | sympatric* |  | 0-49 | NA |  | Gemmula cf. monilifera 3 |
| 57 | x | x | x | x | 1 | NA |  | 1 | NA |  |  | Phil |  |  | 2-3 |  |  | Gemmula cf. hombroni 1 |
| 58 | x | x | x | x | 1 | NA |  | 1 | NA |  |  | Phil |  |  | 85-88 |  | G. hombroni | Gemmula cf. hombroni 2 |
| 59 | x | x | x | x | 18 | 100/1 |  | 16 | 93/1 |  |  | Van |  |  | 0-99 |  |  | Gemmula cf. hombroni 3 |
| 60 |  | x | x | x | 5 |  | 82/1 | 2 |  | - | 47, 61 | Phil, Sol |  |  | 410-480 |  |  |  |
| 61 | x | x | x | x | 19 | 100/1 | -/1 | 17 |  | - | 47, 60 | Sol, Van | sympatric | COI \& 28 S | 503-773 | 60, 61 | G. 1 | Gemmula sp. 12 |
| 62 | x | x | x | x | 1 | NA |  | 0 | NA |  |  | Van |  |  | 184-271 |  |  | Gemmula sp. 13 |
| 63 | x | x | x | x | 8 | 99/1 |  | 2 | 90/1 |  |  | Sol |  |  | 150-176 |  |  | Gemmula sp. 14 |
| 64 | x | x | x | x | 20 | 100/1 |  | 18 | $\mathrm{Pa} / \mathrm{Pa}$ |  |  | Phil |  |  | 98-356 |  | G. 8 | Gemmula sp. 15 |
| 65 | x | x | x | x | 2 | 100/1 |  | 1 | NA |  | 66 | Phil |  |  | 11-20 |  | L jickelli | Lophiotoma jickelli |
| 66 | x | x | x | $x$ | 8 | 93/1 |  | 8 | - |  | 65 | Van |  |  | 0-58 |  | L. jickelli | Lophiotoma jickelli |


| 67 | $x$ | $x$ | $x$ | x | 6 | 100/1 |  | 6 | Pa/. 86 |  |  | Phil |  |  | 0-3 |  | L. polytropa | Lophiotoma polytropa |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 68 |  |  |  | x | 11 |  | 53/1 | 8 |  | 54/.97 |  | Van |  |  | 0-49 |  | L. abbreviata | Lophiotoma abbreviata |
| 69 | x | x | x | x | 23 | 100/1 | 96/1 | 19 | 61/.99 | $\mathrm{Pa} / \mathrm{Pa}$ |  | Van, Phil | sympatric* |  | 0-49 | NA | L. brevicaudata | Lophiotoma brevicaudata |
| 70 | x | x | x | x | 3 | 100/1 |  | 2 | 91/1 |  |  | Van |  |  | 0-49 |  | L. ruthveniana | Lophiotoma ruthveniana |
| 71 | x | x | x | x | 14 | 100/1 |  | 13 | 79/1 |  |  | Van |  |  | 0-49 |  | L. picturata | Lophiotoma picturata |
| 72 | x | x | x | x | 1 | 97/1 | NA | 1 | 73/1 | NA | 73 | Phil | allopatric |  | 2-15 | NA |  | Lophiotoma cf. acuta 1 |
| 73 | $x$ | x | $x$ | x | 2 | 97 | 100/.99 | 2 |  | NA | 72 | Van | alopatic |  | 0-99 | NA | L. acuta | Lophiotoma c. acuta 1 |
| 74 | x | x | x | x | 101 | 100/1 |  | 91 | 81/1 |  |  | Van, Phil |  | COI \& 28S | 0-99 |  |  | Lophiotoma cf. acuta 2 |
| 75 | x | x | x | x | 1 | NA |  | 0 | NA |  |  | N-C |  |  | 418-421 |  | G. rarimaculata | Gemmula cf. rarimaculata 1 |
| 76 | x | x | x | x | 1 | NA |  | 0 | NA |  |  | Phil |  |  | 97-120 |  | G. monilifera | Gemmula cf. monilifera 4 |
| 77 | x | x | x | x | 3 | 100/1 |  | 1 | NA |  |  | N-C, Ches |  |  | 175-370 |  | G. rarimaculata | Gemmula cf. rarimaculata 2 |
| 78 | x | x | x | x | 4 | 100/1 |  | 4 | 91/1 |  |  | Van, Phil |  |  | 62-118 |  | G. hastula | Gemmula hastula |
| 79 | x | x | x | x | 77 | 100/1 |  | 64 | 53/1 |  |  | Phil, Van |  | COI \& 28 S | 35-196 |  | G. sogodensis | Gemmula cf. sogodensis 1 |
| 80 | x | x | x | x | 1 | NA |  | 1 | NA |  |  | Ches |  |  | 330-331 |  | G. 1 | Gemmula sp. 16 |
| 81 | x | x | x | x | 1 | NA |  | 1 | NA |  |  | Ches |  |  | 627-741 |  | G. 9 | Gemmula sp. 17 |
| 82 |  |  |  | x | 23 |  | - 1.93 | 16 |  | 74/1 |  | Van |  | COI | 323-659 |  |  |  |
| 83 | x | x | x | x | 1 | $97 / 1$ | NA | 0 | NA | NA |  | Sol | allopatric |  | 381-422 | NA | G. 10 | Gemmula sp. 18 |
| 84 | x | x | x | x | 12 | 100/1 | - /. 87 | 11 | 56/1 | - | 85 | Phil, Sol, Van | sympatric* |  | 318-659 | n.s. | G. 1 | Gemmula sp. 19 |
| 85 | x | $x$ | x | x | 30 | 1001 | 84/.97 | 24 | 56/1 | - | 84 | Ches, Sol, Van | sympatric | COI | 345-636 | n.s. | G. 1 | Gemmula sp. 19 |
| 86 | x | x | x | x | 2 | NA/1 |  | 2 | - |  | 95 | Van |  |  | 350-400 |  | G. 11 | Gemmula sp. 20 |
| 87 | x | x | x | x | 1 | NA |  | 1 | NA |  |  | Phil |  |  | 342-358 |  | G. 5 | Gemmula sp. 21 |
| 88 | x | x | x | x | 1 | NA |  | 0 | NA |  |  | Sol |  |  | 630-836 |  | G. 12 | Gemmula sp. 22 |
| 89 |  |  | x | x | 1 | Po/Po | NA | 1 | NA | NA |  | Ches |  |  | 568-570 | NA | G. 13 |  |
| 90 | x | x | x | x | 6 | Po/Po | 92/1 | 4 | NA | 70/1 |  | Phil, Sol, Van | allopatric |  | 416-786 | NA | G. 14 | Gemmula sp. 23 |
| 91 | x | x | x | x | 2 | 92/1 | 59/.98 | 0 | NA | NA |  | Sol | allopatric |  | 484-836 | NA | G. 15 | Gemmula sp. 24 |
| 92 | x | x | x | x | 1 |  | NA | 0 |  | NA |  | Ches | alopatric |  | 485-500 | NA | G. 15 | Gemmula sp. 24 |
| 93 | x | x | x | x | 1 | 69/.96 | NA | 0 | NA | NA |  | Ches | allopatric |  | 490-500 | NA | G. 16 | Gemmula sp. 25 |
| 94 |  |  | x |  | 3 |  | 100/1 | 1 |  | NA |  | Phil | alopatic |  | 269-378 |  | G. 5 | Gemmula sp. 25 |
| 95 | x | x | x | x | 7 | 94/1 |  | 5 | - |  | 86 | Van |  |  | 350-600 |  |  | Gemmula sp. 26 |
| 96 | x | x | x | x | 1 | NA |  | 1 | NA |  |  | Phil |  |  | 422-431 |  | (juvenile) | Gemmula sp. 27 |
| 97 | x | x | x | x | 30 | 98/1 |  | 17 | $\mathrm{Pa} / \mathrm{Pa}$ |  |  | Phil |  | COI \& 28S | 219-1762 |  | G. diomedea | Gemmula diomedea |
| 98 | x | x | x | x | 9 | 100/1 |  | 6 | NA |  |  | Phil, Sol |  |  | 65-160 |  | G. speciosa | Gemmula speciosa |
| 99 | x | x | x | x | 10 | 96/1 |  | 9 | NA |  |  | Phil |  |  | 85-137 |  | G. kieneri | Gemmula kieneri |
| 100 | x | x | x | x | 1 | NA |  | 0 | NA |  |  | Taiwan |  |  | 157-275 |  | G. cosmoi | Gemmula cf. cosmoi 1 |
| 101 | x | x | x | x | 7 | 96/1 |  | 2 | Po/Po |  |  | Sol |  |  | 300-430 |  | G. martini | Gemmula martini |
| 102 | x | x | x | x | 24 | 98/1 |  | 16 | 91/1 |  |  | Van |  |  | 131-444 |  | G. cosmoi | Gemmula cf. cosmoi 2 |
| 103 | x | x | x | x | 71 | 95/1 |  | 62 | 82/1 |  |  | Phil |  |  | 72-361 |  | G. sogodensis | Gemmula cf. sogodensis 2 |



A

B


Genetic distance
C


Prior intraspecific divergence




