Luca Becchetti
email: becchetti@dis.uniroma1.it

Andrea Clementi
email: clementi@mat.uniroma2.it

Emanuele Natale
email: natale@unice.fr

Francesco Pasquale
email: pasquale@mat.uniroma2.it

Luca Trevisan
email: l.trevisan@unibocconi.it

Finding a Bounded-Degree Expander Inside a Dense One

It follows from the Marcus-Spielman-Srivastava proof of the Kadison-Singer conjecture that if G = (V, E) is a ∆-regular dense expander then there is an edge-induced subgraph H = (V, EH) of G of constant maximum degree which is also an expander. As with other consequences of the MSS theorem, it is not clear how one would explicitly construct such a subgraph.

We show that such a subgraph (although with quantitatively weaker expansion and near-regularity properties than those predicted by MSS) can be constructed with high probability in linear time, via a simple algorithm. Our algorithm allows a distributed implementation that runs in O(log n) rounds and does O(n) total work with high probability.

The analysis of the algorithm is complicated by the complex dependencies that arise between edges and between choices made in different

can collectively identify a subgraph H with the properties mentioned above in O(log n) rounds and with O(n) total work and communication cost, in the sense that at the end of the protocol, each node knows its neighbors in H.

The distributed version of our algorithm, that we call raes (for Request a link, then Accept if Enough Space), works in rounds, each consisting of two phases. Initially, each node has 0 outgoing links and 0 incoming links. In the first phase of each round, each node v selects enough random neighbors (according to the topology of G) so that linking to all of them would secure v a total of d outgoing links. It then submits a request to each selected neighbor to establish a link. In the second phase of the round, each node accepts all requests received in the first phase of the current round, unless doing so would cause it to exceed the limit of cd incoming links; if this is the case, the node rejects all requests it received in the first phase of the current round. The algorithm completes when each node has established exactly d outgoing links, so that no further requests are submitted. A formal description of the algorithm is given in Section 2.

To show that our algorithm completes in O(log n) rounds with high probability when G is ∆-regular and c > 2n/∆, we show that, for any request submitted by some node v in any round t, regardless of the remaining randomness of the algorithm, the request is accepted with probability at least 1/2. This happens since, in each round, the number of nodes that reject any request is at most n/2. This is enough to show that convergence takes O(log n) rounds with high probability and total work O(dn) on average. To prove that the total work is O(dn) with high probability we show that, in each round t, if d out v denotes the current number of v's outgoing links, d • n -E [v d out v], i.e., the expected number of "missing links", shrinks, on average, by a constant factor. Moreover, the amount by which the above quantity changes at each step is a Lipschitz function of independent random variables, which means that we can argue with high probability about the amount by which this quantity decreases.

The main result of this work is the proof that, if G is a sufficiently good expander, then the graph produced by the algorithm has constant expansion. In the spirit of how one analyzes the expansion of random regular graphs, we would like to argue that, for every set S ⊆ V of s n/2 vertices, there is at least a probability, say, 1 -n -2 • n s -1 , that, of the ds outgoing links from the vertices of S, at least Ω(ds) are links from S to V -S. Then we could use a union bound over all possible sets S to say that with probability at least 1 -1/n every set S has at least Ω(ds) links crossing the cut and going into V -S. The probability distribution of the links created by the algorithm, and the ways in which they are correlated, are however very difficult to analyze.

Our approach is to use a compression argument: we show that the random choices of the algorithm that lead to a non-expanding graph can be non-trivially compressed, and hence have low probability. The approach of proving that an event is unlikely by showing that the random choices leading to it are compressible is often a convenient way to analyze the outcome of an algorithm. Such arguments are sometimes expressed in the language of Kolmogorov complexity [START_REF] Li | An introduction to Kolmogorov complexity and its applications[END_REF] and they are often used in cryptography to analyze the security of protocols that involve a random oracle, following [8]. In [19], the authors review various probabilistic analyses that can be performed using compression argument (which they call encoding arguments).

Our argument is roughly as follows: suppose that, in the graph constructed by the algorithm, S is a non-expanding set of vertices. If G is a sufficiently good ∆-regular expander, then, from the expander mixing lemma, we get that the typical vertex of S has only about ∆ • |S|/n neighbors in S, but, if S is non-expanding in H, then the typical node in S has, say, at least .9 • d of its d outgoing links in S. This means that, for the typical node in S, we can represent .9d of its d outgoing links using log ∆•|S| n bits instead of log ∆, with a saving of order of d|S| log n |S| bits. For sufficiently large constant d, this is more than the log n

|S| bits that it takes to represent the set S. Unfortunately, things are not so easy because we need the representations of choices made by the nodes in the algorithm to be prefix-free, in order for their concatenation to be decodable. Therefore, we have to spend some additional bits in the representation of various terms, in particular for the choices that lead to links from S to V -S (which are not so many since S is a non-expanding set) and for requests that are rejected. To complete the argument, we have to argue that the overall number of requests from nodes in S that are rejected cannot be too large, for we would otherwise have a non-trivial way of compressing their description. This is true because, as argued above, each request has a small probability of being rejected, so that realizations of the random algorithm that lead to many rejected requests are unlikely, hence compressible (for further details see Section 4.1).

Algorithm raes is inspired by the way nodes create bounded-degree overlay networks in real-life distributed systems, such as peer-to-peer protocols [9,[START_REF] Moscibroda | On the topologies formed by selfish peers[END_REF] like BitTorrent, or in distributed ledger protocols such as Bitcoin [START_REF] Nakamoto | Bitcoin: A peer-to-peer electronic cash system[END_REF]. In this protocol for example, each node in a communication network is aware of the existence of a certain subset of the other nodes (in our algorithm, for the generic node v this subset corresponds to the set of v's neighbors in G). Each node tries to establish a minimum number of connections to other nodes (or to special "server" nodes2) and does so by selecting them at random from its list of known nodes (or known servers). Nodes also have a maximum number of connections they are going to accept, rejecting further connections once this limit is reached.

On the other hand, our algorithm does not capture important traits of peerto-peer and blockchain models, such as the fact that nodes can join or leave the network, and that nodes can exchange their lists of known nodes, so that the graph "G" in fact is dynamic. We believe, however, that our analysis addresses important aspects, such as the complicated dependencies that arise between different links in the virtual network, and the expansion properties of the resulting virtual network. Expansion in particular is closely related to resilience to nodes leaving the network, a very important property in practice.

Related work

Distributed constructions of expanders.

Our main result is an efficient, distributed algorithm to construct a boundeddegree expander. This question has been addressed for a number of models and initial conditions. In [START_REF] Law | Distributed construction of random expander networks[END_REF], Law and Siu provide a distributed protocol running on the local asynchronous model that form expander graphs of arbitrary fixed degree d. Their goal is to maintain the expansion property under insertions, starting from a constant-size graphs, and they show how to do so in constant time and constant message complexity per node insertion. See also [9] and [START_REF] Naor | Novel architectures for p2p applications: The continuous-discrete approach[END_REF] for such sequential constructions of expanders.

In [START_REF] Allen-Zhu | Expanders via local edge flips[END_REF], Allen-Zhu et al. show a simple and local protocol that, starting from any connected d-regular connected graph with d = Ω(log n), returns a d-regular expander. At every every round, an edge e is selected u.i.r. together with one length-3 path including e and, then, a suitable flipping of the edges of this path is performed (so, the obtained graph is not guaranteed to be a subgraph of the original graph). Their spectral analysis of the evolving graph shows that, after O(n 2 d 2 polylog (n))) rounds, the obtained random graphs is an expander, with high probability. Their algorithm models the way in which nodes exchange neighborhood information in real-life protocols, and it works starting from much more limited information than ours (their initial information is an arbitrary graph of logarithmic degree, while we start from a graph of linear degree which is already an expander), and the price they pay is a polynomial, rather than logarithmic, convergence time.

Sparsification.

We motivated our main result as a constructive proof of a special case of the sparsification results implied by the MSS theorem, for which no constructive proofs are known. Here it matters that we are interested in sparsifying a regular graph by using an unweighted subgraph of bounded maximum degree. If we allowed weighted graphs, and we were only concerned about the average degree of the sparsifier, then an explicit construction of constant average-degree sparsifiers for all graphs is given by the BSS sparsifiers of [START_REF] Batson | Twice-Ramanujan sparsifiers[END_REF]. A parallel construction of the BSS sparsifier, however, is not known. Parallel construction of (weighted, unbounded max degree) sparsifiers have been studied [START_REF] Koutis | Simple parallel and distributed algorithms for spectral graph sparsification[END_REF], but such constructions involve graphs of logarithmic average degree, a setting in which our problem is trivial: given a ∆-regular graph G = (V, E), if we choose each edge independently with probability order of (log n)/∆, we get a graph that with high probability has maximum degree O(log n) and, using matrix Chernoff bound, we can show that it is a spectral sparsifier of G if G is such that every edge has effective resistance O(n/|E|), including the case of expanders and of edge-transitive graphs.

Finally, in [START_REF] Frieze | Splitting an expander graph[END_REF], Frieze and Molloy consider the task of partitioning expander graphs. In more detail, they provide a partitioning algorithm that, given as input a ∆-regular graph with edge-expansion Φ and a parameter k, returns a partition (E 1 , . . . , E k) of the edges, such that each induced graph G i = (V, E i) is almost-regular with node degree Θ(∆ k) and it has edge expansion Ω(Φ/k). Their algorithm runs in O(n log ∆) time and the required assumptions on ∆, k and φ do not allow to produce constant-degree subgraphs (their construction in fact requires k = O(∆/log ∆)).

Parallel Balls-Into-Bins Processes.

If the underlying network is the complete graph K n , then raes can be seen as a parallel balls-into-bins algorithm [START_REF] Adler Micah | Parallel randomized load balancing[END_REF][START_REF] Lenzen | Tight bounds for parallel randomized load balancing: Extended abstract[END_REF] with m = dn balls, each one representing an outgoing-link request which must be assigned to one of n bins, corresponding to the nodes of the network. In this perspective, our algorithm assigns each ball to one bin, so that the maximum load of the bins is at most cd, for some constant c and the algorithm terminates in O(log n) rounds with high probability. Several algorithms have been introduced for this problem and the best algorithms achieve constant maximum load within a constant number of rounds by using k > 1 random choices at every round for each ball [START_REF] Lenzen | Tight bounds for parallel randomized load balancing: Extended abstract[END_REF]. The RAES strategy adopted by our algorithm is similar to the one used in the basic version of Algorithm parallelthreshold analysed in [START_REF] Berenbrink | Parallel randomized load balancing[END_REF] by Berenbrink et Al, which is in turn a parallelized version of the scheduling strategy studied in [START_REF] Berenbrink | Balls-into-bins with nearly optimal load distribution[END_REF]. They show that the convergence time is O(n log m) when cd = d + 1, while our analysis implies that it is O(log m) when c is an absolute constant larger than 1. The maximum number of balls accepted by each bin, called the threshold, is fixed to m/n + 1. They show this basic version, achieving an almost tight maximum load, converges within O(n log m) rounds, w.h.p. They also conjecture a tight lower bound on the convergence time.

Preliminaries and main result

For an undirected graph G = (V, E) of n nodes, we denote its adjacency matrix as A and the volume of a subset of nodes U ⊆ V as vol(U) = u∈U d u . Notice that when G is ∆-regular, we have vol(U) = ∆|U |. Consider two (not necessarily disjoint) subsets U, W ⊆ V , we define e(U, W) as the number of edges in G with one endpoint in U and the other in W .

Definition 1. A graph G = (V, E) is an ε-expander if, for every subset U ⊂ V with |U | n/2, the number e(U, V -U) of edges in the cut (U, V -U) is at least ε • vol(U).
The expansion properties we derive for the subgraph returned by Algorithm raes turn out to depend on the spectral gap of the input graph. In particular, our analysis uses the following "one-sided" version of the Expander Mixing Lemma [START_REF] Levin | Markov Chains and Mixing Times: Second Edition[END_REF], which establishes a connection between the second largest eigenvalue of the adjacency matrix A of G and its expansion properties and also holds for bipartite graphs.

Lemma 2. Assume G = (V, E) is a ∆-regular graph and let λ be the second largest eigenvalue of3 A. Let S be any subset of nodes. Then, the number e(S, S) of edges of G with both endpoints in S is at most

1 2 ∆|S| 2 n + λ|S| .
Proof. If 1 S is the indicator vector of S, then, it holds that

1 S A1 S = v∈V |N v (S)| = 2 • e(S, S) ,
where N v (S) is the set of v's neighbors in S and e(S, S) is the number of edges with both end-points in S. Observe that the matrix A -∆J/n (where J is the matrix having all entries set to 1) has largest eigenvalue λ, so we get

1 S (A -∆J/n)1 S λ 1 S 2 = λ • |S| .
We also notice that 1 S (∆J/n)1 S = ∆|S| 2 /n. It thus follows that e(S, S)

1 2 ∆|S| 2 n + λ|S| .
In the next sections, we analyze the behaviour of Algorithm raes on dense, regular expanders. The algorithm was informally described in the introduction, a more formal description is given below.

Algorithm 1 raes(G, d, c)

1: H := empty directed graph over the node set V 2: while H has nodes of outdegree < d do 3:

Phase 1:

d out v : current outdegree of v in H 4:
for each node v ∈ V do

5: v ∈ V picks d -d out v neighbors in G uniformly at random 6:
v submits a connection request to each of them

7:
end for 8:

Phase 2:

d in v : current indegree of v in H 9:
for each node v ∈ V do 10: Our main results can be formally stated as follows.

if v received cd -d in v connection
Theorem 4. For every d 1, every 0 < α 1, every c 2/α, and for every ∆-regular graph G = (V, E) with ∆ = αn, the time complexity of raes(G, d, c) is O(n) w.h.p. Moreover, the algorithm can be implemented in the uniform gossip distributed model4 so that its parallel completion time is O(log n) and its overall message complexity is O(n), w.h.p. Theorem 5. A sufficiently small constant ε > 0 exists such that, for any constants d 44 and 0 < α 1, for any sufficiently large c5 , and every ∆regular graph G = (V, E) with ∆ = αn and second largest eigenvalue of the adjacency matrix 6

λ εα 2 ∆, raes(G, d, c) returns a (d, cd)-almost regular ε- expander H = (V, A), w.h.p.
The proof of Theorem 4 is given in Section 3, while the proof of Theorem 5, which is our main technical contribution, is described in Section 4.

Proof of Theorem 4

Throughout this section, we consider a ∆-regular graph G = (V, E) with ∆ = αn for some arbitrary constant 0 < α < 1. We analyze the execution of Algorithm raes on input G for any constants d 1 and c > 1/α.

Recall that, according to the process defined by raes, each node v asks for d link requests to its neighbors and has cd slots to accomodate link requests from its neighbors.

We first provide a simple proof that raes on input G = (V, E) terminates within a logarithmic number of rounds7 , w.h.p. Lemma 6. For every d 1, every c > 1/α, and every β > 1, raes(G, d, c) completes the task within β log(n)/ log(αc) rounds, with probability at least 1d/n β-1 .

Proof. Let us fix an arbitrary ordering of the nd required links and, for i = 1, . . . , nd, let X (t) i be the binary random variable taking value 1 if link i is settled at the end of round t and 0 otherwise. First note that, since a link is settled at some round t if it was already settled at previous round t -1, it holds that

(1) P X (t) i = 0 = P X (t) i = 0|X (t-1) i = 0 P X (t-1) i = 0 .
Let us name Y (t)

-i = Y (t) 1 , . . . , Y (t)
i-1 , Y indicates the destination node of link j at round t. Observe that for every vector y -i = (y 1 , . . . , y i-1 , y i+1 , . . . , y nd) ∈

V nd-1 it holds that (2) P X (t) i = 0 | X (t-1) i = 0, Y (t)
-i = y -i 1 αc .
Indeed, given any y -i ∈ V nd-1 , there are always at most nd/(cd) = n/c nodes with cd or more incoming link requests. Hence, among the αn neighbors of the node asking link i, at least (α -1/c)n have less than cd incoming requests. Hence, the probability that link i settles is at least 1 -1/(αc). Since (2) holds for any choice of y -i ∈ V nd-1 , we get that P X

(t) i = 0 | X (t-1) i = 0 1/(αc)
and thus from (1) we have that P X (t) i = 0 1/(αc) t . The thesis then follows from a union bound over all the nd links and from the fact that t β log(n)/ log(αc).

Remark. The first proof we gave for the above lemma was based on a simple compression argument [19]. We describe it in Appendix B since it can be used by the reader as a "warm-up" for the more difficult analysis given in Section 4.

The time complexity of Algorithm raes is asymptotically bounded by the total number of link requests produced by its execution on graph G = (V, E). Lemma 6 easily implies that this number is O(dn log n), w.h.p. In the next lemma we prove a tight O(nd) bound.

Lemma 7. For every constants d 1 and c > 2/α, the total number of link requests made by raes(G, d, c) (and thus the time complexity) is Θ(n), w.h.p.

Proof. Let us fix an arbitrary ordering of the nd required links and, for i = 1, . . . , nd, let Z (t) i be the binary random variable taking value 1 if link i is not yet settled at the beginning of round t and 0 otherwise. The random variable indicating the total number of link requests produced by the algorithm can thus be written as

Z = ∞ t=0 nd i=1 Z (t) i .
Proceeding as in the proof of Lemma 6, it is easy to see that for every t ∈ N it holds that

E nd i=1 Z (t) i nd (αc) t .
Hence, the total expected number of link requests is E [Z] αc αc-1 nd. In order to prove that Z = O(nd) w.h.p., we first show that whenever the number of unsettled links is above nd/ log n, it decreses by a constant factor, w.h.p. Formally, for any k nd/ log n, we derive the following inequality

(3) P nd i=1 Z (t) i > k αc/2 nd i=1 Z (t-1) i = k e -k 2α 2 c 4 d 2 .
Notice that random variables Z (t) i conditional on the graph formed by the links settled at the end of round t -1 are not independent, so we cannot use a standard Chernoff bound. However, we can use the method of bounded differences [6, Corollary 5.2] (see Theorem 16 in Appendix A), since the sum of the Z (t) i conditional on the graph of the nd -k settled links at the end of the previous round can be written as a 2cd-Lipschitz function of the independent k random variables indicating the link requests at round t.

In more details, we name u (t-1) the set of k unsettled links at the end of round t -1 and consider random variables {Y i } i∈u (t-1) , each of them returning the node-destination index that the non-assigned link request i tries to connect to. Observe that Y i 's are mutually independent and, moreover, the sum in (3) can be written as a deterministic function of them:

nd i=1 Z (t) i = f (Y i1 , . . . , Y i k).
Moreover, this function is 2cd-Lipschitz w.r.t. its arguments: If we change one of the arguments Y i , we are moving a request i from a node v 1 to a node v 2 . The largest impact this can have on

nd i=1 Z (t) i
is that the response for each of all the link requests sent to v 2 changes. However, if this number was already larger than cd, then the moving of link request i would not have any impact. This means that, in the worst-case, at most cd link requests trying to connect to v 2 switch from assigned to non-assigned. At the same time, a symmetric argument holds for the link requests trying to connect to v 1 . In formulas, for all vectors of nodes v i1 , . . . , v ij , . . . , v i k and v i1 , . . . , v ij , . . . , v i k differing only on a single entry i j , it holds that

f vi 1 , . . . , vi j , . . . , vi k -f vi 1 , . . . , v i j , . . . , vi k 2cd .
Therefore, by applying Corollary 5.2 in [START_REF] Devdatt | Concentration of measure for the analysis of randomized algorithms[END_REF] (see also Theorem 16 in Appendix A), with µ M = k/(αc) and βj = 2cd for all j = 1, . . . , k we get (3).

From (3) and the chain rule, it follows that, for T = O log log n log(αc/2) rounds, the number of unassigned link requests decreases by a factor αc/2 > 1 at each round, w.h.p., until it becomes smaller than nd/ log n. These rounds thus account for nd T

Distributed implementation.

As one can easily verify from its pseudocode, Algorithm raes is designed to work over any synchronous parallel distributed model where the nodes of the input graph G = (V, E) are the local computing units which can communicate via the bidirectional links defined by the set of edges E. We remark that, at every round, each node contacts (i.e. sends link requests to) only a constant number of its neighbors. It thus follows that raes induces a decentralized protocol that can be implemented on the communication-constrained uniform gossip model [START_REF] Censor-Hillel | Global computation in a poorly connected world: fast rumor spreading with no dependence on conductance[END_REF][START_REF] Haeupler | Simple, fast and deterministic gossip and rumor spreading[END_REF]. Notice that the protocol does not require any global labeling of the nodes, rather, it requires that each node knows some local labeling of its bi-directional ports.

In this setting, Lemma 6 easily implies that every node completes all of its tasks within Θ(log n) rounds, w.h.p.

As for communication complexity, we observe that all the point-to-point communications made by the protocol can be encoded with 1-bit messages (accept/reject the link request). Moreover, Lemma 7 implies that the overall number of links requests (and thus of exchanged messages) is w.h.p. Θ(dn), which is clearly a tight bound for this task.

Finally, we notice that if nodes know an upper bound n on n, since G is regular, then they can locally derive a sufficiently good lower bound of α, i.e., α = α/poly(n). Then, by Lemma 6, after round T = 2 log(n)/ log(α c), every node can decide to stop any action (so it terminates) and it will be aware that the protocol has completed the global task, w.h.p.

Proof of Theorem 5

In the previous subsection, we showed that, after T = O(log n) rounds, Algorithm raes stabilizes to a subgraph H = (V, E H) of the input graph G = (V, E) that turns out to be a (d, cd)-almost regular graph. In this Section, we provide the proof of Theorem 5: we indeed show that if G is an expander then H = (V, E H) turns out to be also an expander, w.h.p. The proof proceeds by showing that the probability that raes completes in T rounds and H is not an ε-expander is O(n -γ) for a constant γ > 0. Combined with Theorem 4, this proves Theorem 5, with T = O(log n).

In the next subsection we sketch the main arguments we use in the proof. Then in the successive subsections we provide the detailed proof.

Overview of the proof.

The probability distribution of the links yielded by raes, and the ways in which the links are correlated, are very difficult to analyze. In order to cope with such technical issue, we prove Theorem 5 by using a compression argument: we show that the random choices of the algorithm that lead to a non-expading graph can be non-trivially compressed, and hence have low probability.

We think of each node as having access to a sequence of T d log ∆ random bits and the protocol as being deterministic as a function of these n local sequences of random bits (see Fig. 1). We will show that any sequence of nT d log ∆ bits leading the protocol to stabilize within T rounds to a non-expanding graph can be losslessly described using nT d log ∆ -Ω(log n) bits. This will prove that the protocol stabilizes to an expanding graph with high probability.

Let R ∈ {0, 1} nT d log ∆ be a bit string that leads to a non-expanding set, i.e., a set S, with size |S| = s n/2, having at most ε|S|d outgoing links in H. The compression of such a bit string R is based on two main ideas. Since the number of links in E H with both endpoints inside S is large, the first main idea is to use less than log ∆ bits to encode the destination of each accepted requests originated from nodes in S whenever this destination belongs to S. The second main idea is to encode the destinations of rejected requests with less than log ∆ bits. Indeed, roughly speaking, for each link request that gets rejected at some round, there are at least further cd link requests (in the current or previous rounds) towards the same "bad" destination. Since there are a total of dn requests that need to be accepted and a total of cdn available accepting slots, the number of such "bad" destinations needs to be small, thus the destinations of rejected requests may be compressed.

For clarity sake, we think of the original available randomness R ∈ {0, 1} nT d log ∆ organized as an n × T d matrix M, where each entry is a block of log ∆ bits (see Fig. 1). The compressed counterpart of M, denoted as C (see Fig. 2), consists of three tables (a detailed description of each table can be found in the next subsection).

In order to implement the first idea, for each node v ∈ S we need to identify, in its row of the uncompressed representation M, which slots of log ∆ bits refer to destinations in S of accepted link requests. Notice that this cannot be done naively, indeed even just identifying the set of slots of accepted requests would naively require log T d d bits. However, we can first encode the number v of used slots, with a prefix free encoding8 requiring at most log v bits and then the set of d slots referring to accepted requests by using log v d bits (see Fig. 2: Field 1 in Table 2). While for some "unlucky" nodes v can be large, the overall amortized number of bits v∈S O(log v) + log v d turns out smaller than

s log T d d .
Once we have identified the set of accepted requests, we can identify the set of those referring to destinations in S (see Fig. 2: Field 2 in Table 2) and, finally, we can encode each of those destinations by using log[(1 -δ v)∆] bits instead of log ∆ bits, where δ v is the fraction of neighbors of v outside S (see Fig. 2: Field 3 in Table 2). Notice that we can identify which requests of each node end up inside and outside S by encoding the set S itself, once and for all, using O(log s) + log n s bits (see Fig. 2: Table 1). In order to implement the second main idea, for each node v ∈ S we need to identify the destinations of its v -d rejected link requests. Notice that each rejected request ends up on a node, say w, receiving at least further cd requests. Those further requests include requests accepted by w in some previous round and requests rejected by w in the current round. We exploit that property to reduce the number of bits used to encode such destinations: roughly speaking, at each round t we distinguish between semi-saturated and critical nodes. We call semi-saturated at round t a node that already accepted at least cd/2 requests up to round t -1. Notice that (i) the number of semi-saturated nodes can never exceed 2n/c and (ii) we already know the set of semi-saturated nodes at round t, if we know the accepted requests of all nodes up to round t -1. Hence, we can encode each request to a semi-saturated node by using only log(2n/c) bit (notice that this is smaller than log ∆ whenever c > 2/α). In order to distinguish which ones of the v -d rejected destinations refer to semisaturated nodes and which ones refer to critical nodes we use further v -d bits. Finally, for critical nodes (i.e., destinations of rejected requests that are not semi-saturated) we first encode once and for all the set of such nodes at each round, using O(log c t) + log n ct for each round t, so that we can encode the destination of a rejected request toward a critical node at round t using only log c t bits.

Summing up all the contributions involved (see Section 4.4 for all the details) we end up encoding a string R ∈ {0, 1} nT d log ∆ leading to a non-expanding set with a bit string of length nT d log ∆ -Ω(log n). Thus the overall number of bit strings leading to non-expanding sets is at most an O(n -c) fraction of all the bit strings, for some c > 0.

The compressed representation: Full description.

We use the following notation throughout the remainder of the paper. For a node v ∈ S, we denote by δ v the fraction of v's edges in E that have an end-point

v 1 v 2 v 3 v n
dT slots of log ∆ random bits

Nodes in

Cost(A v) = 2 log v + log v d Subset Av of accepted requests in V \ S Cost(A out v) = 2 log(ε v d) + log d ε v d Destinations of accepted requests Cost(Dest(A v))= ε v d log ∆ + (1 -ε v)d log ((1 -δ)∆)
δ v • ∆ = e G (v, V -S) and δ = 1 s v∈S δ v .
We also denote by ε v the fraction of v's accepted link requests (so edges of subgraph H) with end-points in V -S, i.e.,

(5)

ε v • d = e H (v, V -S) and ε = 1 s v∈S ε v .
In the paragraphs that follow, we describe how the evolution of the protocol is encoded in the presence of a non-expanding subset S (with |S| = s n/2 without loss of generality).

In the remainder, we repeatedly use the following facts:

• Node numbering: when representing destinations of link requests submitted by nodes of the network, we can use the fact that the encoding and decoding algorithms have full knowledge of the underlying graph. In particular, we assume a total ordering of the nodes is defined, so that a node u is simply specified by an integer in {1, ..., n}, denoting u's position in this ordering. At the same time, we can use a local numbering to represent the neighbors of a given node v. For example, if v's neighbors are the nodes {2, 5, 8} with respect to the global ordering, node 5 can be represented as 2 with respect to v, i.e., the second neighbor of v with respect to the global ordering.

• Subset encoding: given the set [k] of the first k integers, we represent any subset S ⊂ [n] by its position i in the lexicographic order of all subsets of [n] of size |S|. In order to completely specify S, we separately encode its size in a prefix-free way using 2 log |S| bits, and its position i in the lexicographic order using log n |S| bits.

We next discuss the compressed encoding we use. We remark that, as argued in [19, Section 7], we can avoid taking ceilings in the expressions which measure the number of bits necessary for the encoding.

Unused randomness.

For every node v, we have enough randomness to describe exactly dT choices. If v completes its execution of the protocol after performing v requests, the remaining randomness (corresponding to dTv requests) is not used. This unused randomness is both present in the uncompressed representation M and in its compressed counterpart C and is represented as is, thus corresponding to v∈V (dTv) log ∆ bits in both M and C. We represent S in C by writing the number s := |S| in a prefix-free way using 2 log s bits, and then writing the number k such that S is the k-th set of size s in lexicographic order, which takes log n s bits. Using prefix δ-codes, in total, the cost to encode S is [START_REF] Devdatt | Concentration of measure for the analysis of randomized algorithms[END_REF] Cost(S) = 2 log s + log n s .

Table 2, upper part: Randomness of nodes in V -S.

We represent the randomness of nodes in V -S as it is, with no gain or loss. Notice that, thanks to Table 1, a decoder can infer that the first (n -s) rows of Table 2 (see Fig 2) describe the executions of every node in V -S. This is a fixed-length encoding formed by (n -s) rows, each consisting of dT blocks of log ∆ bits: hence a decoder knows where the lower portion of Table 2 encoding the executions of nodes in S begins.

For every node v ∈ S, the lower part of Table 2 contains a variable-length row, in turn consisting of a set of consecutive fields, which encode the following information.

Table 2, Field 1: Subset A v of requested links originating from v that are accepted. This field consists of two parts. In the first part we write, in a prefix free way, the number v , using 2 log v bits. As a second part of this field, we specify the subset of the d accepted link requests among the v submitted by v.9 To this purpose, we again encode the integer i, such that the d accepted requests correspond to the i-th subset of {1, . . . , v } of size d, in lexicographic order. The overall cost incurred for this field is thus [START_REF] Frieze | Splitting an expander graph[END_REF] Cost

(A S) = v∈S Cost(A v) = v∈S 2 log v + log v d .
Remark: Note that this field allows to iteratively infer the round in which each request was submitted by v. Also notice that the subset of rejected link requests originating from v can be derived as the complement of subset

A v . Table 2, Field 2: Subset A out v ⊆ A v of accepted links originating from v to V -S.
For a node v ∈ S, recall that ε v d is the number of outgoing accepted links from v into V -S. In this field, we encode the subset A out v of such accepted links, using the same encoding used for subset A v in the first field. We can thus Lemma 9. For every round t, it holds that:

• The number of semi-saturated nodes is at most 2n/c.

• The number of critical nodes is at most n/c.

Proof. Consider a node that is semi-saturated at round t. This node was the recipient of at least cd/2 link requests, that it either accepted before round t, or it received in round t. Since, from the definition of raes, for every node, the overall number of its link requests that are accepted within round t -1, plus the number of link requests it issues at round t cannot exceed d, we have a total of at most dn such requests over the entire network. This immediately implies that the number of semi-saturated nodes at round t cannot exceed 2n/c. The argument for the number of critical nodes at round t proceeds along the same lines and is omitted for the sake of brevity.

In what follows we represent the subsets of semi-saturated and critical nodes.

• The subset of semi-saturated nodes at each step. From its definition, the set of semi-saturated nodes needs not be represented explicitely.

In fact, for every round t, this set is uniquely determined by the evolution of the protocol (and thus by the corresponding portions of our Tables) up to round t -1 and by link requests issued by nodes in V -S at round t, whose randomness is represented as it is (see Table 2, upper portion).

• Table 3: The subset of critical nodes at each step. We represent the subsets of critical nodes in each round explicitely. Let C t be the set of critical nodes at round t and let c t := |C t |. We represent all such sets in a separate table (see Table 3 in Figure 2). This table consists of two fields. The first is the sequence of the critical set sizes, encoded in a prefixfree way. The second field is the sequence of the integers representing C t ⊂ V , for t = 1, . . . , T . Note that, the length of the field encoding C t is completely determined once we know c t . Overall, encoding information in Table 3 has cost (10)

Cost(C) = T t=1 2 log c t + log n c t .
Given this premise, this field consist of two parts. The first part is a sequence of exactly v -d bits. The i-th such bit specifies whether the destination of the i-th rejected request was a semi-saturated or critical node in the round in which the request was issued. The second part of the field is simply the sequence of destinations of rejected requests, encoded in compressed form thanks to Lemma 9. Specifically, for each round t, we represent each rejected connection toward to a critical node using log c t bits (recall that we explicitely represent C t), and each other rejected connection, which necessarily goes to a semi-saturated node, using log(2n/c) bits.

To compute the corresponding cost of representing destinations of rejected requests, let rc t (v) be the number of rejected requests from v to critical nodes in round t, and let rss(v) be the overall number of rejected connection requests from v to semi-saturated nodes, over the entire process. Then, the overall cost of encoding the destinations of rejected requests from v is

Cost(Dest(Rej)) = (v -d) + rss(v) • log 2n c + T t=1 rc t (v) • log c t . (11)
Observe that the additive term (v -d) in the equation above corresponds to the aforementioned first part of the field.

Decoding algorithm.

We show correctness of our encoding, discussing how the entire evolution of the protocol can be recovered from its compressed encoding without loss of information. Before describing this decoding algorithm, it is useful to define, for the remainder of this section, the notion of state of raes's execution at round t. Definition 10. The state X t of raes's execution at time t is a vector, whose component X t (v) is the ordered sequence of the destinations of all link requests issued by v in round t.

We note that knowledge of {X 1 , . . . , X t } allows to fully characterize the evolution of the process up to round t. In particular, for every round i = 1, . . . , t, we can tell exactly which requests were accepted and which were rejected in that round.

Further notation used in this subsection.

For a node v and a round t, we define by x t (v) and a t (v) respectively the overall number of link requests submitted by v in round t and the number of those that were accepted. We let

x t (v) = t i=1 x i (v) and a t (v) = t i=1 a i (v) for conciseness (note that a t (v)
x t (v) and a t (v)

x t (v) by definition). For every v ∈ V , we denote by Dest t (v) the set of destinations of requests issued by v in round t. We denote by SS t and C t respectively the subsets of semi-saturated and critical nodes in round t.

We next outline the main steps of a decoding algorithm Dec(G, C). The algorithm takes as input the underlying graph G and the compressed encoding C and it returns the evolution of raes over the at most T steps of its execution. More precisely, for every t, Dec(G, C) returns a special symbol ∅ if raes completed its execution before time t. Otherwise, Dec(G, C) returns X t , i.e., for every v, the sequence of requests issued by v in round t. Note that this is enough to recover M, since unused randomness is represented as is both in M and C. In particular we show how, given G, C and {X 1 , . . . , X t-1 }, it is possible to recover X t . 10 The main steps of the algorithm are summarized as Algorithm 2 below, while details on how each piece of information can be recovered from C have been discussed in Section 4.2. This is enough to prove that the compressed encoding is lossless.

Algorithm 2 Dec(G, C) 1: Identify S from Table 1 2: for t = 1, . . . , T do 3: Use {X 1 , . . . , X t-1 } to compute x t-1 (v) and a t-1 (v), for every v ∈ V 4: if a t-1 (v) = d for every v ∈ V then return ∅ 5: end if 6: for v ∈ V -S do 7:
Look up v's row in Table 2, using x t-1 (v) and a t-1 (v) to identify the set Dest t (v) of the destinations of the d -a t-1 (v) requests that were submitted by v in round t

8:

Use {X 1 , . . . , X t-1 } and Dest t (V -S) (the latter computed in the previous step) to identify the subset SS t of semi-saturated nodes in round t

9:

Use Table 3 to identify the subset C t of critical nodes in round t Use Field 1 of v's row in C to identify the subset of v's accepted requests that were submitted in round t and compute their number a t (v)

13:

Use information collected in the previous step, Field 2 and Field 3 to identify the destinations of accepted requests submitted by v in round t

14:

Use Field 4 and SS t and C t computed above to identify the destinations of rejected requests submitted in round t 15:

end for 16: end for 17: return X t

Rate of compression.

In this subsection, we show that, if R represents an execution terminating and returning a non expanding graph H, the corresponding encoding according to the scheme presented in the previous section uses ndT log ∆ -Ω(log n). In more detail, we apply our encoding scheme described in the previous subsection to any subset S ⊂ V that is not an "ε-expander" in the graph H returned by raes.

The analysis of the achieved compression rate proceeds by carefully bounding the costs of the compressed representation R and comparing them with their counterparts in the uncompressed representation R. We first show that the additive costs (with respect to R) of representing the non-expanding set S (see Table 1 of Fig. 2 and(6)) and the subsets A out S of accepted requests with 10 Note that X 0 simply contains an empty request sequence for every v.

destinations in V -S (see Field 2 in Table 2 and (8)) are more than compensated by the compression achieved in the representation of accepted requests with destinations in S (see Field 3 in Table 2 and(9)), with total savings Ω(ds log n s). This first step corresponds to bounding the partial cost Cost(S)+Cost(A out S)+ Cost(Dest(A S)) and it is provided in Lemma 12. If this is intuitively the key argument, it is neglecting the fact that we now need to identify the subset A S of requests originating from S that are accepted (see Field 1 of Table 2 and(7)). For each node, this cost depends on the number of failures and in general cannot be compensated by the aforementioned savings. To this purpose, we need to exploit the further property that, for each node, failures have destinations that, for each round t, correspond to an O(1/c) fraction of the vertices. Thanks to the use of semisatured and critical nodes (see Field 4 of Table 2), compressing the destinations of these requests allows to compensate the aforementioned cost almost entirely. This second step corresponds to bounding the partial cost Cost(A S) + Cost(C) + Cost(Dest(Rej)) and it is provided in Lemma 14.

We state and prove a useful bound, that easily follows from the expansion property of the underlying graph G and Lemma 2.

Lemma 11. Let G = (V, E) be a ∆-regular graph and let λ be the second largest eigenvalue of G's adjacency matrix. Then, for any subset S ⊆ V , it holds that

1 -δ s n + λ ∆ .
where s = |S| and δ is defined as in (4).

Proof. From the definition of δ v we have that the number of edges with both end-points in S is e(S, S)

= v∈S (1 -δ v)∆ = (1 -δ)s∆ .
From Lemma 2 it thus follows that (1 -δ) = e(S, S) s∆

1 2s∆ ∆s 2 n + λs = 1 2 s n + λ ∆ .
As a first, crucial step of our compression analysis, we evaluate the cost Cost(Dest(A S)) -see (9) -of representing the destinations corresponding to the subset A S of accepted link requests from nodes in S. We decided to isolate this step since it is the only one in which we make use of the expansion property of the underlying graph G, stated in the lemma above.

Lemma 12. Under the hypotheses of Theorem 5, the cost Cost(Dest(A S)) -see (9) -of representing the destinations corresponding to the subset A S of accepted link requests from nodes in S satisfies the following bound:

Cost(Dest(A S)) v∈S (1 -ε v)d log((1 -δ v)∆) + + v∈S ε v d log ∆ sd log ∆ - 1 -ε 2 sd log n s + 2εds . (12)
Proof. We directly give a lower bound to the savings achieved with respect to the cost of the uncompressed representation, the latter being sd log ∆. Namely, we prove that

sd log ∆ - v∈S (1 -ε v)d log((1 -δ v)∆) + v∈S ε v d log ∆ 1 -ε 2 ds log n s -2εds , (13)
whence [START_REF] Law | Distributed construction of random expander networks[END_REF] immediately follows. First of all, the LHS of (13) can be written as

v∈S d log ∆ - v∈S ε v d log ∆ + - v∈S (1 -ε v)d • log((1 -δ v)∆) = d v∈S (1 -ε v) log ∆ -d v∈S (1 -ε v) log((1 -δ v)∆) = d v∈S (1 -ε v) log 1 1 -δ v . (14
)
Next, we consider two cases. Case s < α∆. By definition of δ v , we easily get that

(1 -δ v)∆ = e G (v, S) s that immediately implies (15) 1 -δ v s ∆ .
From (14), we get

d v∈S (1 -ε v) log 1 1 -δ v d v∈S (1 -ε v) log ∆ s = (1 -ε)sd log ∆ s > 1 -ε 2 sd log n s ,
where we used [START_REF] Li | An introduction to Kolmogorov complexity and its applications[END_REF] to write the first inequality, while the last inequality follows from the definition ε = (1/s) v∈S ε v and since, in this case,

∆ s > 1 α = n ∆ , which in turn implies ∆ s • ∆ s = ∆ s 2 > n ∆ • ∆ s = n s .
Case α∆ s n/2. In this case, the proof is a bit more articulated. To begin, we can write

v∈S (1 -ε v) log 1 1 -δ v = - v∈S (1 -ε v) log(1 -δ v) = -(1 -ε)s v∈S 1 -ε v (1 -ε)s log(1 -δ v) -(1 -ε)s log v∈S (1 -ε v)(1 -δ v) (1 -ε)s -(1 -ε)s log v∈S (1 -δ v) (1 -ε)s = (1 -ε)s log 1 -ε 1 -δ . (16)
Here, to derive the third inequality we used Jensen's inequality on the function

v∈S 1 -ε v (1 -ε)s log(1 -δ v) ,
which is a convex combination of values of a concave function.

Next, going back to [START_REF] Levin | Markov Chains and Mixing Times: Second Edition[END_REF], from [START_REF] Marcus | Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem[END_REF] and Lemma 11 we easily get

d v∈S (1 -ε v) log 1 1 -δ v (1 -ε)ds log 1 -ε 1 -δ (1 -ε)ds log (1 -ε)n∆ λn + ∆s . (17
)
Since we are in case s α∆ and, by hypothesis of Theorem 5, λ εα 2 ∆ and ∆ = αn, it holds that λ εαs = εs∆/n. Hence s∆ + λn (1 + ε)s∆ and it follows that 1 s

(1 + ε) ∆ s∆ + λn .
This, in turn, implies that

(1 -ε)n∆ λn + ∆s n s • 1 -ε 1 + ε .
From the above inequality and (17), we easily get

d v∈S (1 -ε v) log 1 1 -δ v (1 -ε)ds log n s • 1 -ε 1 + ε (1 -ε)ds log n s -(1 -ε)ds log 1 + 2ε 1 + ε (1 -ε)ds log n s -(1 -ε)ds 2ε 1 + ε (1 -ε)ds log n s -ds2ε .
where the second inequality follows from the AM-GM inequality [23], while the last equality follows from the definition of ε (seei (5)). Moreover, the second term in (8) can be bounded as follows

v∈S log d ε v d d v∈S ε v log e ε v = εds log e + d v∈S ε v log 1 ε v εds log e + εds log 1 ε . (21)
Here, the second equality follows again from the definition of ε, while the third inequality follows since the optimum of the following problem where the last inequality holds, since each of the starred terms is at most 2ε log(1/ε)ds log n s , whenever s n/2, and ε 1/2. In the next lemma, we bound the remaining part of our compressed representation of R, i.e., the costs Cost(A S) + Cost(C) + Cost(Dest(Rej)). Lemma 14. Under the hypotheses of Theorem 5, the overall cost of representing sets A S , Cost(C), and Dest(Rej)) -see [START_REF] Frieze | Splitting an expander graph[END_REF], [START_REF] Haeupler | Simple, fast and deterministic gossip and rumor spreading[END_REF], and (11) -satisfies the following bound

max g(x 1 , ..., x k) = k i=1 x i log 1 x i k i=1 x i = B with x i 0 , i = 1, . . . , k is achieved when x 1 = . . . = x k = B/
Cost(A S) + Cost(C) + Cost(Dest(Rej)) log ∆ v∈S (v -d) + 1 4 ds .
Proof. As for Cost(A S), from [START_REF] Frieze | Splitting an expander graph[END_REF], we next show that As for Cost(C), the definition of critical node at round t implies that each critical node at round t is receiving more than cd/2 of its incoming requests from nodes in S. As a consequence, we get

Cost(A S) = v∈S 2 log v + log v d v∈S 5d(v -d) + d 4 . (23
v∈S rc t (v) > cd 2 c t ,
where we recall that rc t (v) is the number of rejected requests from node v to critical nodes and c t is the size of the subset of nodes which turn to be critical at round t. For the first term in [START_REF] Haeupler | Simple, fast and deterministic gossip and rumor spreading[END_REF] where to derive the last inequality we exchanged the order of summation and used the fact that The proof of the above inequality follows from simple calculus, recalling that the definition of critical node implies that there are at most n/c of them at any round t. By combining (23), (24), (25) and [START_REF] Koutis | Simple parallel and distributed algorithms for spectral graph sparsification[END_REF], we set γ = 1 + 5d + 4 cd and derive the following upper bound A first interesting open problem is extending the analysis of raes to non-dense expanders, i.e., to cases in which ∆ = o(n). In this setting, both the proofs of convergence and of expansion might need to be revisited in significant ways. For example, if ∆ < n/c, we can no longer guarantee that all nodes will eventually establish d connections: it might well be the case that all neighbours of some node become saturated at some point, before the node itself can see all its requests accommodated. In fact, ∆ = Ω(log n) is necessary to ensure that this does not occur with high probability. Another interesting generalization is extending the analysis to the case of non-regular graphs, possibly relying on the corresponding generalization of the Expander Mixing Lemma. Finally, it would be interesting to investigate the robustness of raes in dynamic settings, in which nodes and/or vertices of the underlying graph G may join or leave the network.

Lemma 17. Let G = (V, E) be any ∆-regular graph with ∆ = αn and 0 < α 1 and let d 1 be any absolute constant. Then, for any c > 1/α, any β > 2, and any large-enough n, raes(G, d, c) on graph G terminates within (β/ log(αc)) log n rounds with probability at least 1 -n -(β-2)/2 . Proof. We prove the lemma via an encoding argument [19] 12 . Notice that any execution of raes for t rounds is completely determined by a sequence of tnd log ∆ random bits: Indeed, log ∆ random bits can be used for each link request of any fixed node, each node makes at most d link requests at each round, and this procedure is repeated for every node and for t rounds.

Consider an execution where there is a node v with d < d outgoing edges at round t and note that this node must have had at least one rejected request in each of the t rounds. We can encode the sequence of tnd log ∆ bits that generates such an execution as follows: The first log n bits encode node v; The following t(n -1)d log ∆ bits encode all possible random choices of all nodes but v; As for the random bits of node v, let v be the number of random choices actually made by v during the t rounds; we can use • 2 log v bits to encode in a prefix-free way the number v ;

• 2 log d bits to encode in a prefix-free way the number d of accepted requests;

• log v d bits to encode the positions of the accepted requests in the sequence of v requests;

• log ∆ bits for each one of the d accepted request and log(n/c) bits for each one of the v -d rejected ones. Notice that we can use only log(n/c) bits instead of log ∆ to encode a rejected request since (i) each rejected request was directed to a node that was overloaded (i.e., a node that received at least further cd incoming requests) at the time of the request from v; (ii) since each node sends at most d requests at each round, it follows that the number of overloaded nodes is at most n/c at each round; (iii) the previous bits of our encoding uniquely identify the set of overloaded nodes at each round.

In contrast to the v log ∆ bits used by node v in the uncompresed encoding we thus use only

requests in the previous phase then 11 :

 11 v accepts all of them and the corresponding directed links are added to H 12: else 13: v rejects all connection requests received in Phase 1 end while 17: Replace each directed link by an undirected one 18: return H We next define the class of almost-regular graphs raes stabilizes on w.h.p. Definition 3. A graph G = (V, E) is a (d, cd)-almost regular graph if the degree d v of any node v ∈ V is such that d v ∈ {d, . . . , (c + 1)d}.

) connection requests, w.h.p. Then, from Lemma 6 it follows that the remaining nd log n link requests are assigned within O(log n) rounds, w.h.p., thus accounting for at most further O(nd) additional link requests, w.h.p.

Figure 1 :

 1 Figure 1: Uncompressed representation M of R

) When v = d, the last inequality follows from the hypothesis d 44, since 2 log v + log v d = 2 log d d 4 . When v > d, we note that 5d d(log e + 1) that () accounts for the first term of Cost(A S) 2d(v -d) 2 log v , and that () accounts for the second term of Cost(A S) log v d d log e v d = d log e + d(log v -log d) d log e + d(v -d) = d(log e + 1)(v -d).

T

 t=1 rc t (v) v -d.As for the second term in[START_REF] Haeupler | Simple, fast and deterministic gossip and rumor spreading[END_REF]derive the third inequality we used the following Claim 15. If c is large enough that d 2 c log ce 2

 Cost(A S) + Cost(C) + Cost(Dest(Rej)) v∈S γ(v -d)

2 log v + 2

 2 log d + log v d + d log n + (v -d) log(n/c) = = v log(n/c) + 2 log(v d) + d log c + log v d =

Table 1 :

 1 Set S

	2 log |S| + log	n |S|

Table 3 :

 3 Critical Nodes

		Nodes in
		V \ S
		S
	T t=1 2 log c t + log	n c t

Table 1 :

 1 The set S.

 The above lemma is then used below to bound the first partial cost of our compressed representation of R, i.e., Cost(S) + Cost(A out S) + Cost(Dest(A S)). Lemma 13. Under the hypotheses of Theorem 5, the overall cost of representing sets S, A out

	S	and Dest(A S) -see (6), (8), and (9) -satisfies the following bound
		Cost(S) + Cost(A out S) + Cost(Dest(A S))
	(18)	3s log	n s	+ ds log ∆ -	1 -13ε log(1/ε) 2	ds log	n s	+ 2εds
	Proof. As for Cost(S), from (6), notice that	
	(19)			2 log s + log	n s	3s log	n s	,
	since we are assuming s n/2 and it holds log n s As for Cost(A out S), the first term in (8) can be bounded as follows s log(ne/s).
			2	log(ε v d) = 2 log	(ε v d)
				v∈S			v∈S
				2 log	v∈S ε v d s	

s = 2s log(εd) ,

In this setting, we notice that if G is bipartite then H is bipartite as well.

Since G is ∆-regular, the bounds on λ we derive immediately translate into bounds on the second largest eigenvalue of G's normalized matrix.

In this very-restrictive communication model[START_REF] Censor-Hillel | Global computation in a poorly connected world: fast rumor spreading with no dependence on conductance[END_REF][START_REF] Haeupler | Simple, fast and deterministic gossip and rumor spreading[END_REF], at every synchronous step, each node can (only) contact a constant number of its neighbors, chosen u.i.r., and exchange two messages (one for each direction) with each of them.

We didn't try to optimize the constants in our analysis, which shows that c max{(2 α) 2 , 10e 10d } suffices.

I.e., G is a sufficiently good expander. Also note that, equivalently, we are imposing that the second largest eigenvalue of G's normalized adjacency matrix be at most εα 2 .

Notice that the meaning of round here is exactly that defined in the pseudocode of raes.

See, e.g., Elias δ-coding (https://en.wikipedia.org/wiki/Elias_delta_coding).

Recall that we are encoding executions of the algorithm that terminate within T rounds.

Via a simple coupling argument, in the bound in[START_REF] Devdatt | Concentration of measure for the analysis of randomized algorithms[END_REF] 17] we can substitute to the expected value an upper bound to it.

As remarked in Section 4.2, we can avoid taking ceilings of the quantities measuring the number of bits for the encoding.

* Partially supported by ERC Advanced Grant 788893 AMDROMA "Algorithmic and Mechanism Design Research in Online Markets" and MIUR PRIN project ALGADIMAR "Algorithms, Games, and Digital Markets".

† Partially supported by the University of "Tor Vergata" under research programme "Mission: Sustainability" project ISIDE (grant no. E81I18000110005).

‡ LT was supported by the NSF under grant CCF 1815434 and his work on this project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 834861).

1

recover the relative positions of such accepted requests in the overall sequence of the v requests made by v. In total, this cost is

Remark: observe that the encoding of A out v is relative to subset A v . For example, if d = 4 and A v = {1, 3, 5, 6}, we would know that the first, third, fifth and sixth requests placed by v were accepted. Moreover, if A out v = {2, 3}, we would know that out of these, the second and third (i.e., the third and fifth request out of the v submitted by v) had destination in V -S.

Note that the boundary between the first field and the second one above is uniquely determined by the value of v , which is encoded in a prefix-free way. The same holds for the second field. This field consists of two parts. In the first part, we represent accepted links with destinations in V -S as they are (i.e., using log ∆ bits), with no gain or loss. In the second part, we represent destinations of accepted links in S using log((1 -δ v)∆) bits instead of log ∆. Overall, the cost we incur is Remark. Note that here we are using a local numbering for neighbors of v that belong to S. Moreover, thanks to the information encoded in the previous fields (i.e. the size of A out v and that of A v) we can use a standard block code for both the above parts since we know exactly their respective lengths.

Table 2, Field 4: Destinations of rejected requests originating from v.

We finally compress the encoding of the destinations of rejected requests. In order to do so, we first introduce the following notions.

Definition 8 (Semi-saturated and Critical). We call a node w • semi-saturated at round t, if the number of accepted incoming links up to round t -1, plus the number of requested links at round t originating from nodes in V -S is at least cd/2.

• critical at round t, if it is not semi-saturated at round t but it has more than cd links (accepted or requested) at round t (note that this implies that w received more than cd/2 requests from S at round t).

We will make use of the following facts.

where we used that we can assume c large enough so that, in (a), c (2/α) 2 and ∆ = αn imply ∆ 2n/ √ c, while in (b) we used γ = 1 + 5d + 4 cd 1 2 log c.

Wrap up: Proof of Theorem 5.

From Lemmas 13 and 14 it follows that the total number of bits to encode the executions of nodes in S is as follows (recall that we use (n -s)dT log ∆ bits for vertices in V -S).

To this cost, we should also add the randomness that was not used, which is exactly (dTv) log ∆ for the generic node v. Our savings are then

Savings

dsT log ∆ +

Finally, the expression above is Ω(log n), as soon as ε is a sufficiently small (absolute) constant.

Appendix A Mathematical Tools

In Section 3, we used the method of bounded differences. In particular, we applied -a slight generalization of 11 -the concentration bound in [START_REF] Devdatt | Concentration of measure for the analysis of randomized algorithms[END_REF]17].

Theorem 16. Let Y = (Y 1 , . . . , Y m) be independent r.v.s, with Y j taking values in a set A j . Suppose the real-valued funcion f defined on A j satisfies |f (y) -f (y)| β j whenever vectors y and y differs only in the j-th coordinate. Let µ be an upper bound to the expected value of r.v. f (Y). Then, for any M > 0, it holds that

B Proving Lemma 6 via an encoding argument

We provide here an elegant, alternative proof for the fact raes on graph G completes its task within a logarithmic number of rounds, w.h.p. The proof relies on a simple encoding argument [19] and it can be seen as a "warm-up" for the much more complex analysis given in Section 4 which makes use of the same approach.

Hence, the total number of bits for node v saved in our encoding is

where in the first inequality we used that log v d d log(e v /d) and the last inequality holds for v large enough, since c, d , and α are O [START_REF] Allen-Zhu | Expanders via local edge flips[END_REF].

By using that v t (β/ log(αc)) log n and that in our encoding we use log n bits to identify node v, the fraction of strings determining an execution such that there is a node v with d < d outgoing edges at round t is thus at most 2 -(1/2) v log(αc)+log n 2 -(1/2)t log(αc)+log n 2 -(1/2)β log n+log n = n -(β-2)/2 .