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Abstract

It follows from the Marcus-Spielman-Srivastava proof of the Kadison-Singer conjecture that
if G = (V,E) is a ∆-regular dense expander then there is an edge-induced subgraph H = (V,EH)
of G of constant maximum degree which is also an expander. As with other consequences of the
MSS theorem, it is not clear how one would explicitly construct such a subgraph.

We show that such a subgraph (although with quantitatively weaker expansion and near-
regularity properties than those predicted by MSS) can be constructed with high probability
in linear time, via a simple algorithm. Our algorithm allows a distributed implementation that
runs in O(log n) rounds and does O(n) total work with high probability.

The analysis of the algorithm is complicated by the complex dependencies that arise between
edges and between choices made in different rounds. We sidestep these difficulties by following
the combinatorial approach of counting the number of possible random choices of the algorithm
which lead to failure. We do so by a compression argument showing that such random choices
can be encoded with a non-trivial compression.

Our algorithm bears some similarity to the way agents construct a communication graph in
a peer-to-peer network, and, in the bipartite case, to the way agents select servers in blockchain
protocols.



1 Introduction

The proof of the Kadison-Singer conjecture by Marcus, Spielman and Srivastava [16] (henceforth,
the MSS Theorem) has several important graph theoretic corollaries. In particular, if G = (V,E) is
an undirected graph with n nodes in which every edge has effective resistance O(n/|E|), then there
is an edge-induced subgraph H = (V,EH) of G that has O(n/ε2) edges and that is an unweighted
ε-spectral-sparsifier1 of G.

Interesting examples of graphs to which this statement applies are edge-transitive graphs, such
as the hypercube, and regular expanders of constant normalized edge expansion. As with other
consequences of the MSS Theorem, and other non-constructive results proved with similar tech-
niques, it is not known how to construct such subgraphs in polynomial (or even subexponential)
time.

In the case of regular expanders, the result, qualitatively, states that if G = (V,E) is a ∆-regular
graph of constant normalized edge expansion, there exists an edge-induced subgraph H of G that
has constant maximum degree and constant normalized edge expansion.

In this work, we show how to constructively find such an H, assuming that ∆ = Ω(n) and that
the second eigenvalue of the adjacency matrix of G (which measures the spectral expansion of the
graph) is at most a sufficiently small constant times the degree ∆. The randomized algorithm we
propose receives as input a ∆-regular graph G and two integer parameters d and c.

If we only assume ∆ = Θ(n), c > 2n/|E| and d is a sufficiently large absolute constant then,
with high probability, the algorithm completes in O(n) steps and returns a subgraph H of G, in
which each node has degree between d and (c+ 1) · d (see Theorem 4).

If we further assume that the second eigenvalue of the adjacency matrix of G is at most γ∆,
with γ a sufficiently small constant, we can prove that, with high probability, H has conductance
Ω(1) (see Theorem 5).

Our algorithm is extremely simple and naturally lends itself to a distributed implementation,
in a model in which the underlying communication network is G itself, with its nodes as computing
elements. In this model, the nodes of G can collectively identify a subgraph H with the properties
mentioned above in O(log n) rounds and with O(n) total work and communication cost, in the
sense that at the end of the protocol, each node knows its neighbors in H.

The distributed version of our algorithm, that we call raes (for Request a link, then Accept if
Enough Space), works in rounds, each consisting of two phases. Initially, each node has 0 outgoing
links and 0 incoming links. In the first phase of each round, each node v selects enough random
neighbors (according to the topology of G) so that linking to all of them would secure v a total of
d outgoing links. It then submits a request to each selected neighbor to establish a link. In the
second phase of the round, each node accepts all requests received in the first phase of the current
round, unless doing so would cause it to exceed the limit of cd incoming links; if this is the case,
the node rejects all requests it received in the first phase of the current round. The algorithm
completes when each node has established exactly d outgoing links, so that no further requests are
submitted. A formal description of the algorithm is given in Section 2.

To show that our algorithm completes in O(log n) rounds with high probability when G is ∆-
regular and c > 2n/∆, we show that, for any request submitted by some node v in any round t,

1A weighted graph H = (V,EH) is an ε-spectral-sparsifier [2] of a graph G = (V,EG) if, for every vector x ∈ RV ,
we have

(1− ε)
∑

(u,v)∈EG

(xu − xv)2 6
∑

(u,v)∈EH

wH(u, v) · (xu − xv)2 6 (1 + ε)
∑

(u,v)∈EG

(xu − xv)2

where wH(u, v) is the weight of the edge (u, v) in H. We say that H is unweighted if the weights of all the edges of
H are all equal to the same scaling factor |EG|/|EH |.
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regardless of the remaining randomness of the algorithm, the request is accepted with probability
at least 1/2. This happens since, in each round, the number of nodes that reject any request is at
most n/2. This is enough to show that convergence takes O(log n) rounds with high probability and
total work O(dn) on average. To prove that the total work is O(dn) with high probability we show
that, in each round t, if dout

v denotes the current number of v’s outgoing links, d · n−E
[∑

v dout
v

]
,

i.e., the expected number of “missing links”, shrinks, on average, by a constant factor. Moreover,
the amount by which the above quantity changes at each step is a Lipschitz function of independent
random variables, which means that we can argue with high probability about the amount by which
this quantity decreases.

The main result of this work is the proof that, if G is a sufficiently good expander, then the
graph produced by the algorithm has constant expansion. In the spirit of how one analyzes the
expansion of random regular graphs, we would like to argue that, for every set S ⊆ V of s 6 n/2

vertices, there is at least a probability, say, 1− n−2 ·
(
n
s

)−1
, that, of the ds outgoing links from the

vertices of S, at least Ω(ds) are links from S to V − S. Then we could use a union bound over all
possible sets S to say that with probability at least 1 − 1/n every set S has at least Ω(ds) links
crossing the cut and going into V − S. The probability distribution of the links created by the
algorithm, and the ways in which they are correlated, are however very difficult to analyze.

Our approach is to use a compression argument: we show that the random choices of the
algorithm that lead to a non-expanding graph can be non-trivially compressed, and hence have low
probability. The approach of proving that an event is unlikely by showing that the random choices
leading to it are compressible is often a convenient way to analyze the outcome of an algorithm.
Such arguments are sometimes expressed in the language of Kolmogorov complexity [15] and they
are often used in cryptography to analyze the security of protocols that involve a random oracle,
following [8]. In [19], the authors review various probabilistic analyses that can be performed using
compression argument (which they call encoding arguments).

Our argument is roughly as follows: suppose that, in the graph constructed by the algorithm,
S is a non-expanding set of vertices. If G is a sufficiently good ∆-regular expander, then, from the
expander mixing lemma, we get that the typical vertex of S has only about ∆ · |S|/n neighbors in S,
but, if S is non-expanding in H, then the typical node in S has, say, at least .9 · d of its d outgoing
links in S. This means that, for the typical node in S, we can represent .9d of its d outgoing links
using log ∆·|S|

n bits instead of log ∆, with a saving of order of d|S| log n
|S| bits. For sufficiently large

constant d, this is more than the log
(
n
|S|
)

bits that it takes to represent the set S. Unfortunately,
things are not so easy because we need the representations of choices made by the nodes in the
algorithm to be prefix-free, in order for their concatenation to be decodable. Therefore, we have
to spend some additional bits in the representation of various terms, in particular for the choices
that lead to links from S to V − S (which are not so many since S is a non-expanding set) and for
requests that are rejected. To complete the argument, we have to argue that the overall number
of requests from nodes in S that are rejected cannot be too large, for we would otherwise have
a non-trivial way of compressing their description. This is true because, as argued above, each
request has a small probability of being rejected, so that realizations of the random algorithm that
lead to many rejected requests are unlikely, hence compressible (for further details see Section 4.1).

Algorithm raes is inspired by the way nodes create bounded-degree overlay networks in real-life
distributed systems, such as peer-to-peer protocols [9, 20] like BitTorrent, or in distributed ledger
protocols such as Bitcoin [21]. In this protocol for example, each node in a communication network
is aware of the existence of a certain subset of the other nodes (in our algorithm, for the generic node
v this subset corresponds to the set of v’s neighbors in G). Each node tries to establish a minimum
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number of connections to other nodes (or to special “server” nodes2) and does so by selecting them
at random from its list of known nodes (or known servers). Nodes also have a maximum number
of connections they are going to accept, rejecting further connections once this limit is reached.

On the other hand, our algorithm does not capture important traits of peer-to-peer and blockchain
models, such as the fact that nodes can join or leave the network, and that nodes can exchange
their lists of known nodes, so that the graph “G” in fact is dynamic. We believe, however, that
our analysis addresses important aspects, such as the complicated dependencies that arise between
different links in the virtual network, and the expansion properties of the resulting virtual net-
work. Expansion in particular is closely related to resilience to nodes leaving the network, a very
important property in practice.

Related work

Distributed constructions of expanders. Our main result is an efficient, distributed algorithm
to construct a bounded-degree expander. This question has been addressed for a number of models
and initial conditions. In [12], Law and Siu provide a distributed protocol running on the local
asynchronous model that form expander graphs of arbitrary fixed degree d. Their goal is to maintain
the expansion property under insertions, starting from a constant-size graphs, and they show how
to do so in constant time and constant message complexity per node insertion. See also [9] and [22]
for such sequential constructions of expanders.

In [1], Allen-Zhu et al. show a simple and local protocol that, starting from any connected d-
regular connected graph with d = Ω(log n), returns a d-regular expander. At every every round, an
edge e is selected u.i.r. together with one length-3 path including e and, then, a suitable flipping of
the edges of this path is performed (so, the obtained graph is not guaranteed to be a subgraph of the
original graph). Their spectral analysis of the evolving graph shows that, after O(n2d2polylog (n)))
rounds, the obtained random graphs is an expander, with high probability. Their algorithm models
the way in which nodes exchange neighborhood information in real-life protocols, and it works
starting from much more limited information than ours (their initial information is an arbitrary
graph of logarithmic degree, while we start from a graph of linear degree which is already an
expander), and the price they pay is a polynomial, rather than logarithmic, convergence time.

Sparsification. We motivated our main result as a constructive proof of a special case of the
sparsification results implied by the MSS theorem, for which no constructive proofs are known. Here
it matters that we are interested in sparsifying a regular graph by using an unweighted subgraph of
bounded maximum degree. If we allowed weighted graphs, and we were only concerned about the
average degree of the sparsifier, then an explicit construction of constant average-degree sparsifiers
for all graphs is given by the BSS sparsifiers of [2]. A parallel construction of the BSS sparsifier,
however, is not known. Parallel construction of (weighted, unbounded max degree) sparsifiers have
been studied [11], but such constructions involve graphs of logarithmic average degree, a setting
in which our problem is trivial: given a ∆-regular graph G = (V,E), if we choose each edge
independently with probability order of (log n)/∆, we get a graph that with high probability has
maximum degree O(log n) and, using matrix Chernoff bound, we can show that it is a spectral
sparsifier of G if G is such that every edge has effective resistance O(n/|E|), including the case
of expanders and of edge-transitive graphs. Finally, in [7], Frieze and Molloy consider the task of
partitioning expander graphs. In more detail, they provide a partitioning algorithm that, given as
input a ∆-regular graph with edge-expansion Φ and a parameter k, returns a partition (E1, ..., Ek) of

2In this setting, we notice that if G is bipartite then H is bipartite as well.
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the edges, such that each induced graph Gi = (V,Ei) is almost-regular with node degree Θ(∆
k ) and

it has edge expansion Ω(Φ/k). Their algorithm runs in O(nlog ∆) time and the required assumptions
on ∆, k and φ do not allow to produce constant-degree subgraphs (their construction in fact requires
k = O(∆/log ∆)).

Parallel Balls-Into-Bins Processes. If the underlying network is the complete graph Kn, then
raes can be seen as a parallel balls-into-bins algorithm [18, 13] with m = dn balls, each one
representing an outgoing-link request which must be assigned to one of n bins, corresponding to
the nodes of the network. In this perspective, our algorithm assigns each ball to one bin, so that
the maximum load of the bins is at most cd, for some constant c and the algorithm terminates in
O(log n) rounds with high probability. Several algorithms have been introduced for this problem
and the best algorithms achieve constant maximum load within a constant number of rounds by
using k > 1 random choices at every round for each ball [13]. The RAES strategy adopted by our
algorithm is similar to the one used in the basic version of Algorithm parallelthreshold analysed
in [3] by Berenbrink et Al, which is in turn a parallelized version of the scheduling strategy studied
in [4]. They show that the convergence time is O(n logm) when cd = d + 1, while our analysis
implies that it is O(logm) when c is an absolute constant larger than 1. The maximum number of
balls accepted by each bin, called the threshold, is fixed to dm/ne+1. They show this basic version,
achieving an almost tight maximum load, converges within O(n logm) rounds, w.h.p. They also
conjecture a tight lower bound on the convergence time.

2 Preliminaries and main result

For an undirected graph G = (V,E), the volume of a subset of nodes U ⊆ V , is vol(U) =
∑

u∈U du.
Notice that when G is ∆-regular, we have vol(U) = ∆|U |. Consider two (not necessarily disjoint)
subsets U,W ⊆ V , we define e(U,W ) as the number of edges in G with one endpoint in U and the
other in W .

Definition 1. A graph G = (V,E) is an ε-expander if, for every subset U ⊂ V with |U | 6 n/2,
the number e(U, V − U) of edges in the cut (U, V − U) is at least ε · vol(U).

The expansion properties we derive for the subgraph returned by Algorithm raes turn out to
depend on the spectral gap of the input graph. In particular, our analysis uses the following “one-
sided” version of the Expander Mixing Lemma [14], which establishes a connection between the
second largest eigenvalue of the adjacency matrix of G and its expansion properties and also holds
for bipartite graphs.

Lemma 2. Assume G = (V,E) is a ∆-regular graph and let λ be the second largest eigenvalue of
G’s adjacency matrix3. Let S be any subset of nodes. Then, the number e(S, S) of edges of G with
both endpoints in S is at most

1

2

(
∆|S|2

n
+ λ|S|

)
.

Proof. If 1S is the indicator vector of S, then, it holds that

1ᵀSA1S =
∑
v∈V
|Nv(S)| = 2 · e(S, S) ,

3SinceG is ∆-regular, the bounds on λ we derive immediately translate into bounds on the second largest eigenvalue
of G’s normalized matrix.
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where Nv(S) is the set of v’s neighbors in S and e(S, S) is the number of edges with both end-points
in S. Observe that the matrix A − ∆J/n (where J is the matrix having all entries set to 1) has
largest eigenvalue λ, so we get

1ᵀS(A−∆J/n)1S 6 λ‖1S‖2 = λ · |S| .

We also notice that 1S(∆J/n)1ᵀS = ∆|S|2/n. It thus follows that

e(S, S) 6
1

2

(
∆|S|2

n
+ λ|S|

)
.

In the next sections, we analyze the behaviour of Algorithm raes on dense, regular expanders.
The algorithm was informally described in the introduction, a more formal description is given
below.

Algorithm 1 raes(G, d, c)

1: H := empty directed graph over the node set V
2: while H has nodes of outdegree < d do
3: Phase 1: . dout

v : current outdegree of v in H
4: for each node v ∈ V do
5: v ∈ V picks d− dout

v neighbors in G uniformly at random
6: v submits a connection request to each of them
7: end for
8: Phase 2: . din

v : current indegree of v in H
9: for each node v ∈ V do

10: if v received 6 cd− din
v connection requests in the previous phase then

11: v accepts all of them and the corresponding directed links are added to H
12: else
13: v rejects all connection requests received in Phase 1
14: end if
15: end for
16: end while
17: Replace each directed link by an undirected one
18: return H

We next define the class of almost-regular graphs raes stabilizes on w.h.p.

Definition 3. A graph G = (V,E) is a (d, cd)-almost regular graph if the degree dv of any node
v ∈ V is such that dv ∈ {d, . . . , (c+ 1)d}.

Our main results can be formally stated as follows.

Theorem 4. For every d > 1, every 0 < α 6 1, every c > 2/α, and for every ∆-regular graph G =
(V,E) with ∆ = αn, the time complexity of raes(G, d, c) is O(n) w.h.p. Moreover, the algorithm
can be implemented in the uniform gossip distributed model4 so that its parallel completion time
is O(log n) and its overall message complexity is O(n), w.h.p.

4In this very-restrictive communication model [5, 10], at every synchronous step, each node can (only) contact
a constant number of its neighbors, chosen u.i.r., and exchange two messages (one for each direction) with each of
them.
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Theorem 5. A sufficiently small constant ε > 0 exists such that, for any constants d > 44 and
0 < α 6 1, for any sufficiently large c5, and every ∆-regular graph G = (V,E) with ∆ = αn and
second largest eigenvalue of the adjacency matrix6 λ 6 εα2∆, raes(G, d, c) returns a (d, cd)-almost
regular ε-expander H = (V,A), w.h.p.

The proof of Theorem 4 is given in Section 3, while the proof of Theorem 5, which is our main
technical contribution, is described in Section 4.

3 Proof of Theorem 4

Throughout this section, we consider a ∆-regular graph G = (V,E) with ∆ = αn for some arbitrary
constant 0 < α < 1. We analyze the execution of Algorithm raes on input G for any constants
d > 1 and c > 1/α.

Recall that, according to the process defined by raes, each node v asks for d link requests to
its neighbors and has cd slots to accomodate link requests from its neighbors.

We first provide a simple proof that raes on input G = (V,E) terminates within a logarithmic
number of rounds7, w.h.p.

Lemma 6. For every d > 1, every c > 1/α, and every β > 1, raes(G, d, c) completes the task
within β log(n)/ log(αc) rounds, with probability at least 1− d/nβ−1.

Proof. Let us fix an arbitrary ordering of the nd required links and, for i = 1, . . . , nd, let X
(t)
i be

the binary random variable taking value 1 if link i is settled at the end of round t and 0 otherwise.
First note that, since a link is settled at some round t if it was already settled at previous round

t− 1, it holds that

P
(
X

(t)
i = 0

)
= P

(
X

(t)
i = 0 | X(t−1)

i = 0
)

P
(
X

(t−1)
i = 0

)
. (1)

Let us name Y
(t)
−i =

(
Y

(t)
1 , . . . , Y

(t)
i−1, Y

(t)
i+1, . . . , Y

(t)
nd

)
the random vector where, for each j 6= i,

random variable Y
(t)
j indicates the destination node of link j at round t. Observe that for every

vector y−i = (y1, . . . , yi−1, yi+1, . . . , ynd) ∈ V nd−1 it holds that

P
(
X

(t)
i = 0 | X(t−1)

i = 0, Y
(t)
−i = y−i

)
6

1

αc
. (2)

Indeed, given any y−i ∈ V nd−1, there are always at most nd/(cd) = n/c nodes with cd or more
incoming link requests. Hence, among the αn neighbors of the node asking link i, at least (α−1/c)n
have less than cd incoming requests. Hence, the probability that link i settles is at least 1−1/(αc).

Since (2) holds for any choice of y−i ∈ V nd−1, we get that P
(
X

(t)
i = 0 | X(t−1)

i = 0
)
6 1/(αc) and

thus from (1) we have that P
(
X

(t)
i = 0

)
6 1/(αc)t. The thesis then follows from a union bound

over all the nd links and from the fact that t > β log(n)/ log(αc).

Remark. The first proof we gave for the above lemma was based on a simple compression argu-
ment [19]. We describe it in Appendix B since it can be used by the reader as a “warm-up” for the
more difficult analysis given in Section 4.

5We didn’t try to optimize the constants in our analysis, which shows that c > max{( 2
α

)2, 10e10d} suffices.
6I.e., G is a sufficiently good expander. Also note that, equivalently, we are imposing that the second largest

eigenvalue of G’s normalized adjacency matrix be at most εα2.
7Notice that the meaning of round here is exactly that defined in the pseudocode of raes.
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The time complexity of Algorithm raes is asymptotically bounded by the total number of link
requests produced by its execution on graph G = (V,E). Lemma 6 easily implies that this number
is O(dn log n), w.h.p. In the next lemma we prove a tight O(nd) bound.

Lemma 7. For every constants d > 1 and c > 2/α, the total number of link requests made by
raes(G, d, c) (and thus the time complexity) is Θ(n), w.h.p.

Proof. Let us fix an arbitrary ordering of the nd required links and, for i = 1, . . . , nd, let Z
(t)
i be

the binary random variable taking value 1 if link i is not yet settled at the beginning of round t
and 0 otherwise. The random variable indicating the total number of link requests produced by
the algorithm can thus be written as

Z =
∞∑
t=0

nd∑
i=1

Z
(t)
i .

Proceeding as in the proof of Lemma 6, it is easy to see that for every t ∈ N it holds that

E

[
nd∑
i=1

Z
(t)
i

]
6

nd

(αc)t
.

Hence, the total expected number of link requests is E [Z] 6 αc
αc−1 nd.

In order to prove that Z = O(nd) w.h.p., we first show that whenever the number of unsettled
links is above nd/ log n, it decreses by a constant factor, w.h.p. Formally, for any k > nd/ log n, we
derive the following inequality

P

(
nd∑
i=1

Z
(t)
i >

k

αc/2

∣∣∣∣∣
nd∑
i=1

Z
(t−1)
i = k

)
6 e−

k
2α2c4d2 . (3)

Notice that random variables Z
(t)
i conditional on the graph formed by the links settled at the

end of round t− 1 are not independent, so we cannot use a standard Chernoff bound. However, we
can use the method of bounded differences [6, Corollary 5.2] (see Theorem 16 in Appendix A), since

the sum of the Z
(t)
i conditional on the graph of the nd− k settled links at the end of the previous

round can be written as a 2cd-Lipschitz function of the independent k random variables indicating
the link requests at round t.

In more details, we name u(t−1) the set of k unsettled links at the end of round t − 1 and
consider random variables {Yi}i∈u(t−1) , each of them returning the node-destination index that
the non-assigned link request i tries to connect to. Observe that Yi’s are mutually independent

and, moreover, the sum in (3) can be written as a deterministic function of them:
∑nd

i=1 Z
(t)
i =

f (Yi1 , . . . , Yik).
Moreover, this function is 2cd-Lipschitz w.r.t. its arguments: If we change one of the arguments

Yi, we are moving a request i from a node v1 to a node v2. The largest impact this can have

on
∑nd

i=1 Z
(t)
i is that the response for each of all the link requests sent to v2 changes. However,

if this number was already larger than cd, then the moving of link request i would not have any
impact. This means that, in the worst-case, at most cd link requests trying to connect to v2

switch from assigned to non-assigned. At the same time, a symmetric argument holds for the link
requests trying to connect to v1. In formulas, for all vectors of nodes

(
vi1 , . . . , vij , . . . , vik

)
and(

vi1 , . . . , v
?
ij
, . . . , vik

)
differing only on a single entry ij , it holds that∣∣∣f (vi1 , . . . , vij , . . . , vik)− f (vi1 , . . . , v?ij , . . . , vik)∣∣∣ 6 2cd .
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Therefore, by applying Corollary 5.2 in [6] (see also Theorem 16 in Appendix A), with µ 6 M =
k/(αc) and βj = 2cd for all j = 1, . . . , k we get (3).

From (3) and the chain rule, it follows that, for T = O
(

log logn
log(αc/2)

)
rounds, the number of

unassigned link requests decreases by a factor αc/2 > 1 at each round, w.h.p., until it becomes

smaller than nd/ log n. These rounds thus account for nd
∑T

t=0

(
2
αc

)t
= O(nd) connection requests,

w.h.p. Then, from Lemma 6 it follows that the remaining nd
logn link requests are assigned within

O(log n) rounds, w.h.p., thus accounting for at most further O(nd) additional link requests, w.h.p.

Distributed implementation

As one can easily verify from its pseudocode, Algorithm raes is designed to work over any syn-
chronous parallel distributed model where the nodes of the input graph G = (V,E) are the local
computing units which can communicate via the bidirectional links defined by the set of edges E.
We remark that, at every round, each node contacts (i.e. sends link requests to) only a constant
number of its neighbors. It thus follows that raes induces a decentralized protocol that can be
implemented on the communication-constrained uniform gossip model [5, 10]. Notice that the
protocol does not require any global labeling of the nodes, rather, it requires that each node knows
some local labeling of its bi-directional ports.

In this setting, Lemma 6 easily implies that every node completes all of its tasks within Θ(log n)
rounds, w.h.p.

As for communication complexity, we observe that all the point-to-point communications made
by the protocol can be encoded with 1-bit messages (accept/reject the link request). Moreover,
Lemma 7 implies that the overall number of links requests (and thus of exchanged messages) is
w.h.p. Θ(dn), which is clearly a tight bound for this task.

Finally, we notice that if nodes know an upper bound n′ on n, since G is regular, then they can
locally derive a sufficiently good lower bound of α, i.e., α′ = α/poly(n). Then, by Lemma 6, after
round T = 2 log(n′)/ log(α′c), every node can decide to stop any action (so it terminates) and it
will be aware that the protocol has completed the global task, w.h.p.

4 Proof of Theorem 5

In the previous subsection, we showed that, after T = O(log n) rounds, Algorithm raes stabilizes
to a subgraph H = (V,EH) of the input graph G = (V,E) that turns out to be a (d, cd)-almost
regular graph. In this Section, we provide the proof of Theorem 5: we indeed show that if G is
an expander then H = (V,EH) turns out to be also an expander, w.h.p. The proof proceeds by
showing that P ((raes completes in T rounds) ∧ (H is not an ε-expander)) = O( 1

nγ ) for a constant
γ. Combined with Theorem 4, this proves Theorem 5, with T = O(log n).

In the next subsection we sketch the main arguments we use in the proof. Then in the successive
subsections we provide the detailed proof.

4.1 Overview of the proof

The probability distribution of the links yielded by raes, and the ways in which the links are
correlated, are very difficult to analyze. In order to cope with such technical issue, we prove
Theorem 5 by using a compression argument: we show that the random choices of the algorithm
that lead to a non-expading graph can be non-trivially compressed, and hence have low probability.
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We think of each node as having access to a sequence of Td log ∆ random bits and the protocol
as being deterministic as a function of these n local sequences of random bits (see Fig. 1). We will
show that any sequence of nTd log ∆ bits leading the protocol to stabilize within T rounds to a
non-expanding graph can be losslessly described using nTd log ∆ − Ω(log n) bits. This will prove
that the protocol stabilizes to an expanding graph with high probability.

Let R ∈ {0, 1}nTd log ∆ be a bit string that leads to a non-expanding set, i.e., a set S, with size
|S| = s 6 n/2, having at most ε|S|d outgoing links in H. The compression of such a bit string R
is based on two main ideas. Since the number of links in EH with both endpoints inside S is large,
the first main idea is to use less than log ∆ bits to encode the destination of each accepted requests
originated from nodes in S whenever this destination belongs to S. The second main idea is to
encode the destinations of rejected requests with less than log ∆ bits. Indeed, roughly speaking,
for each link request that gets rejected at some round, there are at least further cd link requests (in
the current or previous rounds) towards the same “bad” destination. Since there are a total of dn
requests that need to be accepted and a total of cdn available accepting slots, the number of such
“bad” destinations needs to be small, thus the destinations of rejected requests may be compressed.

For clarity sake, we think of the original available randomness R ∈ {0, 1}nTd log ∆ organized
as an n × Td matrix M, where each entry is a block of log ∆ bits (see Fig. 1). The compressed
counterpart ofM, denoted as C (see Fig. 2), consists of three tables (a detailed description of each
table can be found in the next subsection).

In order to implement the first idea, for each node v ∈ S we need to identify, in its row of the
uncompressed representation M, which slots of log ∆ bits refer to destinations in S of accepted
link requests. Notice that this cannot be done naively, indeed even just identifying the set of slots
of accepted requests would naively require log

(
Td
d

)
bits. However, we can first encode the number

`v of used slots, with a prefix free encoding8 requiring at most log `v bits and then the set of d slots
referring to accepted requests by using log

(
`v
d

)
bits (see Fig. 2: Field 1 in Table 2). While for some

“unlucky” nodes `v can be large, the overall amortized number of bits
∑

v∈S

[
O(log `v) + log

(
`v
d

)]
turns out smaller than s log

(
Td
d

)
. Once we have identified the set of accepted requests, we can

identify the set of those referring to destinations in S (see Fig. 2: Field 2 in Table 2) and, finally,
we can encode each of those destinations by using log[(1 − δv)∆] bits instead of log ∆ bits, where
δv is the fraction of neighbors of v outside S (see Fig. 2: Field 3 in Table 2). Notice that we can
identify which requests of each node end up inside and outside S by encoding the set S itself, once
and for all, using O(log s) + log

(
n
s

)
bits (see Fig. 2: Table 1).

In order to implement the second main idea, for each node v ∈ S we need to identify the
destinations of its `v − d rejected link requests. Notice that each rejected request ends up on a
node, say w, receiving at least further cd requests. Those further requests include requests accepted
by w in some previous round and requests rejected by w in the current round. We exploit that
property to reduce the number of bits used to encode such destinations: roughly speaking, at each
round t we distinguish between semi-saturated and critical nodes. We call semi-saturated at round
t a node that already accepted at least cd/2 requests up to round t− 1. Notice that (i) the number
of semi-saturated nodes can never exceed 2n/c and (ii) we already know the set of semi-saturated
nodes at round t, if we know the accepted requests of all nodes up to round t − 1. Hence, we
can encode each request to a semi-saturated node by using only log(2n/c) bit (notice that this is
smaller than log ∆ whenever c > 2/α). In order to distinguish which ones of the `v − d rejected
destinations refer to semi-saturated nodes and which ones refer to critical nodes we use further `v−d
bits. Finally, for critical nodes (i.e., destinations of rejected requests that are not semi-saturated)

8See, e.g., Elias δ-coding (https://en.wikipedia.org/wiki/Elias_delta_coding).
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dT slots of log ∆ random bits

Figure 1: Uncompressed representation M of R

we first encode once and for all the set of such nodes at each round, using O(log ct) + log
(
n
ct

)
for

each round t, so that we can encode the destination of a rejected request toward a critical node at
round t using only log ct bits.

Summing up all the contributions involved (see Section 4.4 for all the details) we end up encoding
a string R ∈ {0, 1}nTd log ∆ leading to a non-expanding set with a bit string of length nTd log ∆−
Ω(log n). Thus the overall number of bit strings leading to non-expanding sets is at most an O(n−c)
fraction of all the bit strings, for some c > 0.

4.2 The compressed representation: Full description

We use the following notation throughout the remainder of the paper. For a node v ∈ S, we denote
by δv the fraction of v’s edges in E that have an end-point in V − S, i.e.,

δv ·∆ = eG(v, V − S) and δ =
1

s

∑
v∈S

δv . (4)

We also denote by εv the fraction of v’s accepted link requests (so edges of subgraph H) with
end-points in V − S, i.e.,

εv · d = eH(v, V − S) and ε =
1

s

∑
v∈S

εv . (5)

In the paragraphs that follow, we describe how the evolution of the protocol is encoded in the
presence of a non-expanding subset S (with |S| = s 6 n/2 without loss of generality).

In the remainder, we repeatedly use the following facts:

• Node numbering: when representing destinations of link requests submitted by nodes of the
network, we can use the fact that the encoding and decoding algorithms have full knowledge
of the underlying graph. In particular, we assume a total ordering of the nodes is defined,
so that a node u is simply specified by an integer in {1, ..., n}, denoting u’s position in this
ordering. At the same time, we can use a local numbering to represent the neighbors of a
given node v. For example, if v’s neighbors are the nodes {2, 5, 8} with respect to the global
ordering, node 5 can be represented as 2 with respect to v, i.e., the second neighbor of v with
respect to the global ordering.

• Subset encoding: given the set [k] of the first k integers, we represent any subset S ⊂ [n] by
its position i in the lexicographic order of all subsets of [n] of size |S|. In order to completely
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Table 1: Set S

2 log |S|+ log

(
n
|S|

)

Table 3: Critical Nodes

∑T
t=1

[
2 log ct + log

(
n
ct

)]

V \ S

S

Nodes in

Nodes in

Cost(Av) =

2 log `v + log

(
`v
d

)

Subset Av of

accepted requests in V \ S

Cost(Aout
v ) =

2 log(εvd) + log

(
d
εvd

)

Destinations of

accepted requests

Cost(Dest(Av))=
εvd log ∆ + (1− εv)d log ((1− δ)∆)

Destinations of

rejected requests

Size Index of the set

Sizes Indices of sets

U
ncom

pressed

Node v

accepted requests

Subset Aout
v of

ouside S (uncompressed) +

+ inside S (compressed)

Semi-saturated / Critical

`v − d

S.-sat.

dest.
S.-sat. S.-sat.

dest. dest.

log(n/c) log(n/c) log(n/c)

dest. dest.dest.
Crit. Crit. Crit.

log ct1 log ct2 log ctk

Table 2

Field 1 Field 4Field 2 Field 3

Unused

randomness

Figure 2: Compressed representation C of R

specify S, we separately encode its size in a prefix-free way using 2 log |S| bits, and its position
i in the lexicographic order using log

(
n
|S|
)

bits.

We next discuss the compressed encoding we use. We remark that, as argued in [19, Section 7],
we can avoid taking ceilings in the expressions which measure the number of bits necessary for the
encoding.

Unused randomness. For every node v, we have enough randomness to describe exactly dT
choices. If v completes its execution of the protocol after performing `v requests, the remaining
randomness (corresponding to dT−`v requests) is not used. This unused randomness is both present
in the uncompressed representation M and in its compressed counterpart C and is represented as
is, thus corresponding to

∑
v∈V (dT − `v) log ∆ bits in both M and C.

Table 1: The set S. We represent S in C by writing the number s := |S| in a prefix-free way
using 2 log s bits, and then writing the number k such that S is the k-th set of size s in lexicographic
order, which takes log

(
n
s

)
bits. Using prefix δ-codes, in total, the cost to encode S is

Cost(S) = 2 log s+ log

(
n

s

)
. (6)

Table 2, upper part: Randomness of nodes in V − S. We represent the randomness of
nodes in V − S as it is, with no gain or loss. Notice that, thanks to Table 1, a decoder can infer
that the first (n − s) rows of Table 2 (see Fig 2) describe the executions of every node in V − S.
This is a fixed-length encoding formed by (n− s) rows, each consisting of dT blocks of log ∆ bits:
hence a decoder knows where the lower portion of C encoding the executions of nodes in S begins.
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For every node v ∈ S, the lower part of Table 2 contains a variable-length row, in turn consisting
of a set of consecutive fields, which encode the following information.

Table 2, Field 1: Subset Av of requested links originating from v that are accepted.
This field consists of two parts. In the first part we write, in a prefix free way, the number `v, using
2 log `v bits. As a second part of this field, we specify the subset of the d accepted link requests
among the `v submitted by v.9 To this purpose, we again encode the integer i, such that the d
accepted requests correspond to the i-th subset of {1, . . . , `v} of size d, in lexicographic order. The
overall cost incurred for this field is thus

Cost(AS) =
∑
v∈S

Cost(Av) =
∑
v∈S

2 log `v + log

(
`v
d

)
. (7)

Remark: note that this field allows to iteratively infer the round in which each request was submitted
by v. Also notice that the subset of rejected link requests originating from v can be derived as the
complement of subset Av.

Table 2, Field 2: Subset Aout
v ⊆ Av of accepted links originating from v to V − S. For

a node v ∈ S, recall that εvd is the number of outgoing accepted links from v into V − S. In this
field, we encode the subset Aout

v of such accepted links, using the same encoding used for subset
Av in the first field. We can thus recover the relative positions of such accepted requests in the
overall sequence of the `v requests made by v. In total, this cost is

Cost(Aout
S ) =

∑
v∈S

Cost(Aout
v ) =

∑
v∈S

2 log(εvd) + log

(
d

εvd

)
. (8)

Remark: note that the encoding of Aout
v is relative to subset Av. For example, if d = 4 and

Av = {1, 3, 5, 6}, we would know that the first, third, fifth and sixth requests placed by v were
accepted. Moreover, if Aout

v = {2, 3}, we would know that out of these, the second and third (i.e.,
the third and fifth request out of the `v submitted by v) had destination in V − S.

Note that the boundary between the first field and the second one above is uniquely determined
by the value of `v, which is encoded in a prefix-free way. The same holds for the second field.

Table 2, Field 3: Destinations of accepted links originating from v. This field consists of
two parts. In the first part, we represent accepted links with destinations in V −S as they are (i.e.,
using log ∆ bits), with no gain or loss. In the second part, we represent destinations of accepted
links in S using log((1− δv)∆) bits instead of log ∆. Overall, the cost we incur is

Cost(Dest(AS)) =
∑
v∈S

(1− εv)d log((1− δv)∆) + εvd log ∆ . (9)

Remark. Note that here we are using a local numbering for neighbors of v that belong to S.
Moreover, thanks to the information encoded in the previous fields (i.e. the size of Aout

v and that
of Av) we can use a standard block code for both the above parts since we know exactly their
respective lengths.

9Recall that we are encoding executions of the algorithm that terminate within T rounds.
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Table 2, Field 4: Destinations of rejected requests originating from v. We finally com-
press the encoding of the destinations of rejected requests. In order to do so, we first introduce the
following notions.

Definition 8 (Semi-saturated and Critical Nodes.). We call a node w

• semi-saturated at round t, if the number of accepted incoming links up to round t − 1, plus
the number of requested links at round t originating from nodes in V − S is at least cd/2.

• critical at round t, if it is not semi-saturated at round t but it has more than cd links (accepted
or requested) at round t (note that this implies that w received more than cd/2 requests from
S at round t).

We will make use of the following facts.

Lemma 9. For every round t, it holds that:

• The number of semi-saturated nodes is at most 2n/c.

• The number of critical nodes is at most n/c.

Proof. Consider a node that is semi-saturated at round t. This node was the recipient of at least
cd/2 link requests, that it either accepted before round t, or it received in round t. Since, from the
definition of raes, for every node, the overall number of its link requests that are accepted within
round t− 1, plus the number of link requests it issues at round t cannot exceed d, we have a total
of at most dn such requests over the entire network. This immediately implies that the number
of semi-saturated nodes at round t cannot exceed 2n/c. The argument for the number of critical
nodes at round t proceeds along the same lines and is omitted for the sake of brevity.

In what follows we represent the subsets of semi-saturated and critical nodes.

• The subset of semi-saturated nodes at each step. From its definition, the set of semi-
saturated nodes needs not be represented explicitely. In fact, for every round t, this set is
uniquely determined by the evolution of the protocol (and thus by the corresponding portions
of our Tables) up to round t − 1 and by link requests issued by nodes in V − S at round t,
whose randomness is represented as it is (see Table 2, upper portion).

• Table 3: The subset of critical nodes at each step. We represent the subsets of critical
nodes in each round explicitely. Let Ct be the set of critical nodes at round t and let ct := |Ct|.
We represent all such sets in a separate table (see Table 3 in Figure 2). This table consists
of two fields. The first is the sequence of the critical set sizes, encoded in a prefix-free way.
The second field is the sequence of the integers representing Ct ⊂ V , for t = 1, . . . , T . Note
that, the length of the field encoding Ct is completely determined once we know ct. Overall,
encoding information in Table 3 has cost

Cost(C) =
T∑
t=1

2 log ct + log

(
n

ct

)
. (10)

Given this premise, this field consist of two parts. The first part is a sequence of exactly `v − d
bits. The i-th such bit specifies whether the destination of the i-th rejected request was a semi-
saturated or critical node in the round in which the request was issued. The second part of the field
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is simply the sequence of destinations of rejected requests, encoded in compressed form thanks to
Lemma 9. Specifically, for each round t, we represent each rejected connection toward to a critical
node using log ct bits (recall that we explicitely represent Ct), and each other rejected connection,
which necessarily goes to a semi-saturated node, using log(2n/c) bits.

To compute the corresponding cost of representing destinations of rejected requests, let rct(v)
be the number of rejected requests from v to critical nodes in round t, and let rss(v) be the overall
number of rejected connection requests from v to semi-saturated nodes, over the entire process.
Then, the overall cost of encoding the destinations of rejected requests from v is

Cost(Dest(Rej)) = (`v − d) + rss(v) · log
2n

c
+

T∑
t=1

rct(v) · log ct . (11)

Observe that the additive term (`v−d) in the equation above corresponds to the aforementioned
first part of the field.

4.3 Decoding algorithm

We show correctness of our encoding, discussing how the entire evolution of the protocol can
be recovered from its compressed encoding without loss of information. Before describing this
decoding algorithm, it is useful to define, for the remainder of this section, the notion of state of
raes’s execution at round t.

Definition 10. The state Xt of raes’s execution at time t is a vector, whose component Xt(v) is
the ordered sequence of the destinations of all link requests issued by v in round t.

We note that knowledge of {X1, . . . ,Xt} allows to fully characterize the evolution of the process
up to round t. In particular, for every round i = 1, . . . , t, we can tell exactly which requests were
accepted and which were rejected in that round.

Further notation used in this subsection. For a node v and a round t, we define by xt(v) and
at(v) respectively the overall number of link requests submitted by v in round t and the number
of those that were accepted. We let x6t(v) =

∑t
i=1 xi(v) and a6t(v) =

∑t
i=1 ai(v) for conciseness

(note that at(v) 6 xt(v) and a6t(v) 6 x6t(v) by definition). For every v ∈ V , we denote by Destt(v)
the set of destinations of requests issued by v in round t. We denote by SSt and Ct respectively
the subsets of semi-saturated and critical nodes in round t.

We next outline the main steps of a decoding algorithm Dec(G, C). The algorithm takes as
input the underlying graph G and the compressed encoding C and it returns the evolution of raes
over the at most T steps of its execution. More precisely, for every t, Dec(G, C) returns a special
symbol ∅ if raes completed its execution before time t. Otherwise, Dec(G, C) returns Xt, i.e.,
for every v, the sequence of requests issued by v in round t. Note that this is enough to recover
M, since unused randomness is represented as is both in M and C. In particular we show how,
given G, C and {X1, . . . ,Xt−1}, it is possible to recover Xt.

10 The main steps of the algorithm are
summarized as Algorithm 2 below, while details on how each piece of information can be recovered
from C have been discussed in Section 4.2. This is enough to prove that the compressed encoding
is lossless.

10Note that X0 simply contains an empty request sequence for every v.
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Algorithm 2 Dec(G, C)
1: Identify S from Table 1
2: for t = 1, . . . , T do
3: Use {X1, . . . ,Xt−1} to compute x6t−1(v) and a6t−1(v), for every v ∈ V
4: if a6t−1(v) = d for every v ∈ V then return ∅
5: end if
6: for v ∈ V − S do
7: Look up v’s row in Table 2, using x6t−1(v) and a6t−1(v) to identify the set Destt(v) of

the destinations of the d− a6t−1(v) requests that were submitted by v in round t
8: Use {X1, . . . ,Xt−1} and Destt(V − S) (the latter computed in the previous step) to

identify the subset SSt of semi-saturated nodes in round t
9: Use Table 3 to identify the subset Ct of critical nodes in round t

10: end for
11: for v ∈ S do
12: Use Field 1 of v’s row in C to identify the subset of v’s accepted requests that were

submitted in round t and compute their number at(v)
13: Use information collected in the previous step, Field 2 and Field 3 to identify the desti-

nations of accepted requests submitted by v in round t
14: Use Field 4 and SSt and Ct computed above to identify the destinations of rejected

requests submitted in round t
15: end for
16: end for
17: return Xt

4.4 Rate of compression

In this subsection, we show that, if R represents an execution terminating and returning a non
expanding graph H, the corresponding encoding according to the scheme presented in the previous
section uses ndT log ∆− Ω(log n). In more detail, we apply our encoding scheme described in the
previous subsection to any subset S ⊂ V that is not an “ε-expander” in the graph H returned by
raes.

The analysis of the achieved compression rate proceeds by carefully bounding the costs of the
compressed representation R′ and comparing them with their counterparts in the uncompressed
representation R. We first show that the additive costs (with respect to R) of representing the
non-expanding set S (see Table 1 of Fig. 2 and (6)) and the subsets Aout

S of accepted requests
with destinations in V − S (see Field 2 in Table 2 and (8)) are more than compensated by the
compression achieved in the representation of accepted requests with destinations in S (see Field 3
in Table 2 and (9)), with total savings Ω(ds log n

s ). This first step corresponds to bounding the

partial cost Cost(S) + Cost(Aout
S ) + Cost(Dest(AS)) and it is provided in Lemma 12.

If this is intuitively the key argument, it is neglecting the fact that we now need to identify
the subset AS of requests originating from S that are accepted (see Field 1 of Table 2 and (7)).
For each node, this cost depends on the number of failures and in general cannot be compensated
by the aforementioned savings. To this purpose, we need to exploit the further property that, for
each node, failures have destinations that, for each round t, correspond to an O(1/c) fraction of the
vertices. Thanks to the use of semisatured and critical nodes (see Field 4 of Table 2), compressing
the destinations of these requests allows to compensate the aforementioned cost almost entirely.
This second step corresponds to bounding the partial cost Cost(AS)+Cost(C)+Cost(Dest(Rej))
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and it is provided in Lemma 14.
We state and prove a useful bound, that easily follows from the expansion property of the

underlying graph G and Lemma 2.

Lemma 11. Let G = (V,E) be a ∆-regular graph and let λ be the second largest eigenvalue of G’s
adjacency matrix. Then, for any subset S ⊆ V , it holds that

1− δ 6
s

n
+
λ

∆
.

where s = |S| and δ is defined as in (4).

Proof. From the definition of δv we have that the number of edges with both end-points in S is

e(S, S) =
∑
v∈S

(1− δv)∆ = (1− δ)s∆ .

From Lemma 2 it thus follows that

(1− δ) =
e(S, S)

s∆
6

1

2s∆

(
∆s2

n
+ λs

)
=

1

2

(
s

n
+
λ

∆

)
.

As a first, crucial step of our compression analysis, we evaluate the cost Cost(Dest(AS)) - see
(9) - of representing the destinations corresponding to the subset AS of accepted link requests from
nodes in S. We decided to isolate this step since it is the only one in which we make use of the
expansion property of the underlying graph G, stated in the lemma above.

Lemma 12 (Bounding Cost(Dest(AS))). Under the hypotheses of Theorem 5, the cost Cost(Dest(AS))
- see (9) - of representing the destinations corresponding to the subset AS of accepted link requests
from nodes in S satisfies the following bound:

Cost(Dest(AS)) 6
∑
v∈S

(1− εv)d log((1− δv)∆) + εvd log ∆ 6 sd log ∆− 1− ε
2

sd log
n

s
+ 2εds . (12)

Proof. We directly give a lower bound to the savings achieved with respect to the cost of the
uncompressed representation, the latter being sd log ∆. Namely, we prove that

sd log ∆−

(∑
v∈S

(1− εv)d log((1− δv)∆) +
∑
v∈S

εvd log ∆

)
>

1− ε
2

ds log
n

s
− 2εds , (13)

whence (12) immediately follows. First of all, the LHS of (13) can be written as

∑
v∈S

d log ∆−
∑
v∈S

εvd log ∆−

(∑
v∈S

(1− εv)d log((1− δv)∆)

)

= d
∑
v∈S

(1− εv) log ∆− d
∑
v∈S

(1− εv) log((1− δv)∆) = d
∑
v∈S

(1− εv) log
1

1− δv
. (14)

Next, we consider two cases.
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Case s < α∆. By definition of δv, we easily get that

(1− δv)∆ = eG(v, S) 6 s

that immediately implies

1− δv 6
s

∆
. (15)

From (14), we get

d
∑
v∈S

(1− εv) log
1

1− δv
> d

∑
v∈S

(1− εv) log
∆

s
= (1− ε)sd log

∆

s
>

1− ε
2

sd log
n

s
,

where we used (15) to write the first inequality, while the last inequality follows from the definition
ε = (1/s)

∑
v∈S εv and since, in this case,

∆

s
>

1

α
=
n

∆
,

which in turn implies
∆

s
· ∆

s
=

(
∆

s

)2

>
n

∆
· ∆

s
=
n

s
.

Case α∆ 6 s 6 n/2. In this case, the proof is a bit more articulated. To begin, we can write

∑
v∈S

(1− εv) log
1

1− δv
= −

∑
v∈S

(1− εv) log(1− δv) = −(1− ε)s
∑
v∈S

1− εv
(1− ε)s

log(1− δv)

> −(1− ε)s log

∑
v∈S(1− εv)(1− δv)

(1− ε)s
> −(1− ε)s log

∑
v∈S(1− δv)
(1− ε)s

= (1− ε)s log
1− ε
1− δ

. (16)

Here, to derive the third inequality we used Jensen’s inequality on the function∑
v∈S

1− εv
(1− ε)s

log(1− δv) ,

which is a convex combination of values of a concave function.
Next, going back to (14), from (16) and Lemma 11 we easily get

d
∑
v∈S

(1− εv) log
1

1− δv
> (1− ε)ds log

1− ε
1− δ

> (1− ε)ds log
(1− ε)n∆

λn+ ∆s
(17)

Since we are assuming s > α∆, for any λ 6 εα2∆, it holds that λ 6 εα2∆, and, hence,

1

s
6 (1 + ε)

∆

s∆ + λn
.

This, in turn, implies that
(1− ε)n∆

λn+ ∆s
>
n

s
· 1− ε

1 + ε
.

From the above inequality and (17), we easily get

17



d
∑
v∈S

(1− εv) log
1

1− δv
> (1− ε)ds log

(
n

s
· 1− ε

1 + ε

)
> (1− ε)ds log

n

s
− (1− ε)ds log

(
1 +

2ε

1 + ε

)
> (1− ε)ds log

n

s
− (1− ε)ds

(
2ε

1 + ε

)
> (1− ε)ds log

n

s
− ds2ε .

The above lemma is then used below to bound the first partial cost of our compressed repre-
sentation of R.

Lemma 13 (Bounding Cost(S)+Cost(Aout
S )+Cost(Dest(AS))). Under the hypotheses of Theo-

rem 5, the overall cost of representing sets S, Aout
S and Dest(AS) - see (6), (8), and (9) - satisfies

the following bound

Cost(S) + Cost(Aout
S ) + Cost(Dest(AS)) 6 3s log

n

s
+ ds log ∆− 1− 13ε log(1/ε)

2
ds log

n

s
+ 2εds

(18)

Proof. As for Cost(S), from (6), notice that

2 log s+ log

(
n

s

)
6 3s log

n

s
, (19)

since we are assuming s 6 n/2 and it holds log
(
n
s

)
6 s log(ne/s).

As for Cost(Aout
S ), the first term in (8) can be bounded as follows

2
∑
v∈S

log(εvd) = 2 log
∏
v∈S

(εvd) 6 2 log

(∑
v∈S εvd

s

)s
= 2s log(εd) , (20)

where the second inequality follows from the AM-GM inequality [23], while the last equality follows
from the definition of ε (seei (5)). Moreover, the second term in (8) can be bounded as follows∑

v∈S
log

(
d

εvd

)
6 d

∑
v∈S

εv log
e

εv
= εds log e+ d

∑
v∈S

εv log
1

εv
6 εds log e+ εds log

1

ε
. (21)

Here, the second equality follows again from the definition of ε, while the third inequality follows
since the optimum of the following problem

max g(x1, ..., xk) =
k∑
i=1

xi log
1

xi

k∑
i=1

xi = B with xi > 0 , i = 1, . . . , k

is achieved when x1 = . . . = xk = B/k.

18



Finally, combining (19), (20), (21), and (12) given in Lemma 12, we get

Cost(S) + Cost(Aout
S ) + Cost(Dest(AS))

6 3s log
n

s
+ 2s log(εd) + εds log e+ εds log

1

ε︸ ︷︷ ︸
∗

+ds log ∆− 1− ε
2

ds log
n

s
+ 2εds

6 3s log
n

s
+ ds log ∆− 1− 13ε log(1/ε)

2
ds log

n

s
+ 2εds , (22)

where the last inequality holds, since each of the starred terms is at most 2ε log(1/ε)ds log n
s ,

whenever s 6 n/2, and ε 6 1/2.

In the next lemma, we bound the remaining part of our compressed representation of R.

Lemma 14 (Bounding Cost(AS) + Cost(C) + Cost(Dest(Rej))). Under the hypotheses of Theo-
rem 5, the overall cost of representing sets AS, Cost(C), and Dest(Rej)) - see (7), (10), and (11)
- satisfies the following bound

Cost(AS) + Cost(C) + Cost(Dest(Rej)) 6 log ∆
∑
v∈S

(`v − d) +
1

4
ds .

Proof. As for Cost(AS), from (7), we next show that

Cost(AS) =
∑
v∈S

(
2 log `v + log

(
`v
d

))
6
∑
v∈S

(
5d(`v − d) +

d

4

)
. (23)

When `v = d, the last inequality follows from the hypothesis d > 44, since 2 log `v + log
(
`v
d

)
=

2 log d 6 d
4 . When `v > d, we note that

5d > d(log e+ 1)︸ ︷︷ ︸
(?)

+ 2d︸︷︷︸
(??)

,

and we observe that (??) accounts for the first term of Cost(AS)

2d(`v − d) > 2 log `v,

and that (?) accounts for the second term of Cost(AS)

log

(
`v
d

)
6 d log

e`v
d

= d log e+ d(log `v − log d) 6 d log e+ d(`v − d) = d(log e+ 1)(`v − d).

As for Cost(C), the definition of critical node at round t implies that each critical node at
round t is receiving more than cd/2 of its incoming requests from nodes in S. As a consequence,
we get ∑

v∈S
rct(v) >

cd

2
ct

where we recall that rct(v) is the number of rejected requests from node v to critical nodes and ct
is the size of the subset of nodes which turn to be critical at round t. For the first term in (10) this
implies

2
T∑
t=1

log ct 6 2
T∑
t=1

log

(
2

cd

∑
v∈S

rct(v)

)
<

4

cd

T∑
t=1

∑
v∈S

rct(v) 6
4

cd

∑
v∈S

(`v − d) , (24)
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where to derive the last inequality we exchanged the order of summation and used the fact that∑T
t=1 rct(v) 6 `v − d. As for the second term in (10), we get

log

(
n

ct

)
6 ct log

en

ct
6

2

cd

∑
v∈S

rct(v) log
en

ct
6
∑
v∈S

rct(v) log
2n

c · ct
. (25)

Here, to derive the third inequality we used the following

Claim 15. It holds

log

(
en

ct

) 2
cd

6 log
2n

c · ct
,

whenever c is large enough that d > 2
c log ce

2 .

Proof. The proof follows from simple calculus, recalling that the definition of critical
node implies that there are at most n/c of them at any round t.

By combining (23), (24), (25) and (11), we set γ = 1 + 5d + 4
cd and derive the following upper

bound

Cost(AS) + Cost(C) + Cost(Dest(Rej))

6
∑
v∈S

(
γ(`v − d) +

1

4
d+

T∑
t=1

rct(v) log
2n

c · ct
+ rss(v) · log

2n

c
+

T∑
t=1

rct(v) · log ct

)

=γ
∑
v∈S

(`v − d) +
1

4
ds+

∑
v∈S

(
T∑
t=1

rct(v) log
2n

c
+ rss(v) · log

2n

c

)

=γ
∑
v∈S

(`v − d) +
1

4
ds+

∑
v∈S

(`v − d) log
2n

c

=γ
∑
v∈S

(`v − d) +
1

4
ds+

∑
v∈S

(`v − d) log
2n√
c
− 1

2

∑
v∈S

(`v − d) log c

(a)

6 γ
∑
v∈S

(`v − d) +
1

4
ds+

∑
v∈S

(`v − d) log ∆− 1

2

∑
v∈S

(`v − d) log c

(b)

6 log ∆
∑
v∈S

(`v − d) +
1

4
ds , (26)

where we used that we can assume c large enough so that, in (a), c > (2/α)2 and ∆ = αn imply
∆ > 2n/

√
c, while in (b) we used γ = 1 + 5d+ 4

cd 6 1
2 log c.

Wrap up: Proof of Theorem 5. From Lemmas 13 and 14 it follows that the total number of
bits to encode the executions of nodes in S is as follows (recall that we use (n− s)dT log ∆ bits for
vertices in V − S).

Cost(S) + Cost(Aout
S ) + Cost(Dest(AS)) + Cost(AS) + Cost(C) + Cost(Dest(Rej))

6 3s log
n

s
+ ds log ∆− 1− 13ε log(1/ε)

2
ds log

n

s
+ 2εds+ log ∆

∑
v∈S

(`v − d) +
1

4
ds (27)
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To this cost, we should also add the randomness that was not used, which is exactly (dT − `v) log ∆
for the generic node v. Our savings are then

Savings > dsT log ∆

−

(
3s log

n

s
+ ds log ∆− 1− 13ε log(1/ε)

2
ds log

n

s
+ 2εds+ log ∆

∑
v∈S

(dT − d) +
1

4
ds

)

= −3s log
n

s
+

1− 13ε log(1/ε)

2
ds log

n

s
−
(

1

4
+ 2ε

)
ds ,

Finally, the expression above is Ω(log n), as soon as ε is a sufficiently small (absolute) constant.

5 Future work

A first interesting open problem is extending the analysis of raes to non-dense expanders, i.e., to
cases in which ∆ = o(n). In this setting, both the proofs of convergence and of expansion might
need to be revisited in significant ways. For example, if ∆ < n/c, we can no longer guarantee that all
nodes will eventually establish d connections: it might well be the case that all neighbours of some
node become saturated at some point, before the node itself can see all its requests accommodated.
In fact, ∆ = Ω(log n) is necessary to ensure that this does not occur with high probability. Another
interesting generalization is extending the analysis to the case of non-regular graphs, possibly relying
on the corresponding generalization of the Expander Mixing Lemma. Finally, it would be interesting
to investigate the robustness of raes in dynamic settings, in which nodes and/or vertices of the
underlying graph G may join or leave the network.

References

[1] Zeyuan Allen-Zhu, Aditya Bhaskara, Silvio Lattanzi, Vahab Mirrokni, and Lorenzo Orecchia.
Expanders via local edge flips. In Proceedings of the 27th Annual ACM-SIAM Symposium on
Discrete algorithms (SODA 2016), pages 259–269. Society for Industrial and Applied Mathe-
matics, 2016. 3

[2] Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-Ramanujan sparsifiers.
SIAM J. Comput., 41(6):1704–1721, 2012. 1, 3

[3] Petra Berenbrink, Tom Friedetzy, Christiane Lammersen, and Thomas Sauwervald. Parallel
randomized load balancing. Unpublished Manuscript, 2018. 4

[4] Petra Berenbrink, Kamyar Khodamoradi, Thomas Sauerwald, and Alexandre Stauffer. Balls-
into-bins with nearly optimal load distribution. In Proceedings of the 25th Annual ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA 2013), pages 326–335, New
York, NY, USA, 2013. ACM. 4

[5] Keren Censor-Hillel, Bernhard Haeupler, Jonathan A. Kelner, and Petar Maymounkov. Global
computation in a poorly connected world: fast rumor spreading with no dependence on con-
ductance. In Proceedings of the 44th Symposium on Theory of Computing Conference (STOC
2012) New York, NY, USA, May 19 - 22, 2012, pages 961–970, 2012. 5, 8

[6] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of measure for the analysis of
randomized algorithms. Cambridge University Press, 2009. 7, 8, 23

21



[7] Alan M. Frieze and Michael Molloy. Splitting an expander graph. J. Algorithms, 33(1):166–172,
1999. 3

[8] Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of generic cryptographic
constructions. In Proceedings of the 41st Annual Symposium on Foundations of Computer
Science (FOCS 2000), pages 305–313. IEEE, 2000. 2

[9] Christos Gkantsidis, Milena Mihail, and Amin Saberi. Random walks in peer-to-peer networks:
Algorithms and evaluation. Perform. Eval., 63(3):241–263, March 2006. 2, 3

[10] Bernhard Haeupler. Simple, fast and deterministic gossip and rumor spreading. In Proceed-
ings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2013), New
Orleans, Louisiana, USA, January 6-8, 2013, pages 705–716, 2013. 5, 8

[11] Ioannis Koutis and Shen Chen Xu. Simple parallel and distributed algorithms for spectral
graph sparsification. ACM Transactions on Parallel Computing (TOPC), 3(2):14, 2016. 3

[12] Ching Law and K-Y Siu. Distributed construction of random expander networks. In Pro-
ceedings of the 22nd Annual Joint Conference of the IEEE Computer and Communications
(INFOCOM 2003), volume 3, pages 2133–2143. IEEE, 2003. 3

[13] Christoph Lenzen and Roger Wattenhofer. Tight bounds for parallel randomized load balanc-
ing: Extended abstract. In Proceedings of the 43rd Annual ACM Symposium on Theory of
Computing (STOC 2011), pages 11–20, New York, NY, USA, 2011. ACM. 4

[14] David A. Levin and Yuval Peres. Markov Chains and Mixing Times: Second Edition. American
Mathematical Society, 2017. 4
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Appendix

A Mathematical Tools

In Section 3, we used the method of bounded differences. In particular, we applied - a slight
generalization of11 - the concentration bound in [6, 17].

Theorem 16. Let Y = (Y1, . . . , Ym) be independent r.v.s, with Yj taking values in a set Aj.
Suppose the real-valued funcion f defined on

∏
Aj satisfies

|f(y)− f(y′)| 6 βj

whenever vectors y and y′ differs only in the j-th coordinate. Let µ be an upper bound to the
expected value of r.v. f(Y). Then, for any M > 0, it holds that

Pr (f(Y)− µ > M) 6 e
− 2M2∑m

j=1
β2
j .

B Proving Lemma 6 via an encoding argument

We provide here an elegant, alternative proof for the fact raes on graph G completes its task
within a logarithmic number of rounds, w.h.p. The proof relies on a simple encoding argument [19]
and it can be seen as a “warm-up” for the much more complex analysis given in Section 4 which
makes use of the same approach.

Lemma 17. Let G = (V,E) be any ∆-regular graph with ∆ = αn and 0 < α 6 1 and let d > 1 be
any absolute constant. Then, for any c > 1/α, any β > 2, and any large-enough n, raes(G, d, c)
on graph G terminates within (β/ log(αc)) log n rounds with probability at least 1− n−(β−2)/2.

Proof. We prove the lemma via an encoding argument [19]12. Notice that any execution of raes for
t rounds is completely determined by a sequence of tnd log ∆ random bits: Indeed, log ∆ random
bits can be used for each link request of any fixed node, each node makes at most d link requests
at each round, and this procedure is repeated for every node and for t rounds.

Consider an execution where there is a node v with d′ < d outgoing edges at round t and note
that this node must have had at least one rejected request in each of the t rounds. We can encode
the sequence of tnd log ∆ bits that generates such an execution as follows: The first log n bits
encode node v; The following t(n − 1)d log ∆ bits encode all possible random choices of all nodes
but v; As for the random bits of node v, let `v be the number of random choices actually made by
v during the t rounds; we can use

• 2 log `v bits to encode in a prefix-free way the number `v;

• 2 log d′ bits to encode in a prefix-free way the number d′ of accepted requests;

• log
(
`v
d′

)
bits to encode the positions of the accepted requests in the sequence of `v requests;

11Via a simple coupling argument, in the bound in [6, 17] we can substitute to the expected value an upper bound
to it.

12As remarked in Section 4.2, we can avoid taking ceilings of the quantities measuring the number of bits for the
encoding.
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• log ∆ bits for each one of the d′ accepted request and log(n/c) bits for each one of the `v − d′
rejected ones. Notice that we can use only log(n/c) bits instead of log ∆ to encode a rejected
request since (i) each rejected request was directed to a node that was overloaded (i.e., a node
that received at least further cd incoming requests) at the time of the request from v; (ii) since
each node sends at most d requests at each round, it follows that the number of overloaded
nodes is at most n/c at each round; (iii) the previous bits of our encoding uniquely identify
the set of overloaded nodes at each round.

In contrast to the `v log ∆ bits used by node v in the uncompresed encoding we thus use only

2 log `v + 2 log d′ + log

(
`v
d′

)
+ d′ log n+ (`v − d′) log(n/c) =

= `v log(n/c) + 2 log(`vd
′) + d′ log c+ log

(
`v
d′

)
=

= `v log ∆−
[
`v log(αc)− 2 log(`vd

′)− d′ log c− log

(
`v
d′

)]
Hence, the total number of bits for node v saved in our encoding is

`v log(αc)− d′ log c− log

(
`v
d′

)
− 2 log(`vd

′)

> `v log(αc)− d′ log c− d′ log
e`v
d′
− 2 log(`vd

′)

> (1/2)`v log(αc)

where in the first inequality we used that log
(
`v
d′

)
6 d′ log(e`v/d

′) and the last inequality holds for
`v large enough, since c, d′, and α are O(1).

By using that `v > t > (β/ log(αc)) log n and that in our encoding we use log n bits to identify
node v, the fraction of strings determining an execution such that there is a node v with d′ < d
outgoing edges at round t is thus at most

2−(1/2)`v log(αc)+logn 6 2−(1/2)t log(αc)+logn 6 2−(1/2)β logn+logn = n−(β−2)/2 .
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