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Abstract

During speech development, babies learn to perceive and
produce speech units, especially syllables and phonemes. How-
ever, the mechanisms underlying the acquisition of speech units
still remain unclear. We propose a Bayesian model of speech
communication, named “COSMO SylPhon”, for studying the
acquisition of both syllables and phonemes. In this model,
speech development involves a sensory learning phase, mainly
concerned with perception development, and a motor learning
phase, mainly concerned with production development. We
study how an agent can learn speech units during these two
phases through an unsupervised learning process based on syl-
lable stimuli. We show that the learning process enables to effi-
ciently learn the distribution of syllabic stimuli provided in the
environment. Importantly, we show that if agents are equipped
with a bootstrap process inspired by the Frame-Content Theory
of speech development, they learn to associate consonants to
specific articulatory gestures, providing the basis for consonan-
tal articulatory invariance.
Index Terms: speech development, Bayesian modeling, speech
units, coarticulation, articulatory invariance

1. Introduction

It is generally considered that babies first acquire phonetic rep-
resentations at the syllable level [1, 2] and that phonemes are
acquired later [3]. However, the mechanisms underlying this
developmental sequence still remain poorly understood.

One approach to study acquisition is computer modeling.
Several models have already been proposed with different pur-
poses. Some global models study speech development as a
whole [4, 5], while other models focus on the understanding
of some aspects of phonological development [6, 7, 8, 9].

However, to our knowledge, a model comparing the joint
development of different kinds of speech units does not exist
yet. In this paper, we propose a framework able to compare in
the same model syllable and phoneme acquisition. It is called
“COSMO SylPhon”.

In the following, after presenting the COSMO SylPhon
model in Section 2 and its detailed implementation in Section 3,
we show with simulation results in Section 4 that it is indeed
possible to learn acoustic distributions of syllabic inputs in an
unsupervised manner, and that this results in efficient learning
of vowel distributions. Still, the learning of consonants appears
to involve specific motor development. These results highlight
the primacy of syllable speech units and illustrate the possibility
to use COSMO SylPhon to analyze both kinds of speech units
in a sensory-motor framework.

2. COSMO SylPhon: a Bayesian model

COSMO SylPhon is a new extension of the COSMO model of
speech communication. COSMO already was used to study the
emergence of sound systems in human languages [10], the role
of the motor system in speech perception [11, 12, 13] or the
acquisition of idiosyncrasies [14].

COSMO SylPhon is a Bayesian model based on the
Bayesian Programming methodology [15]. It consists of a main
distribution including all variables of the model, called the joint
distribution, which is decomposed into a product of distribu-
tions, each representing a piece of knowledge of the model (see
Fig. 1, top, for a schematic representation).

The joint probability space features four kinds of variables:
motor variables M considered in this paper as articulatory pa-
rameters, sensory variables S restricted to the auditory modal-
ity (formants) in this paper, kernels K that are unlabelled cate-
gories that the agent learns to associate with speech units in an
unsupervised manner, and, finally, coherence variables � which
link and ensure coherence between variables of the same nature.

Each variable can be linked to one specific speech unit:
syllables Syl or phonemes P . In the current model, we only
consider Consonant-Vowel (CV) syllables. In this way, both
syllables and phonemes are composed of consonants C (corre-
sponding to Closed gestures) and vowels O (corresponding to
Open gestures). For instance, regarding this notation, MP

C cor-
responds to the Motor command for a consonant (“Closed”) in
the Phonemic part of the model and KO

S corresponds to a vo-
calic (“Open”) kernel linked to Sensory variables.

The decomposition of the joint distribution is shown in
Fig. 1 (bottom). This decomposition has six family of distri-
butions, nearly all present in the initial COSMO model. Prior
distributions P (K) and P (M) are prior knowledge over ker-
nels and motor parameters. Motor and sensory repertoires,
P (M | K) and P (S | K) respectively correspond to motor
and sensory knowledge related to kernels and required for their
production and perception. The internal model P (S | M) re-
lates the motor and sensory spaces. Consonantal dependen-
cies P (MC | �M MO) are distributions specific to COSMO
SylPhon, which ensure adequate coarticulation between conso-
nants and vowels. They express motor gestures for consonants
MC as a mixture of the motor gesture for the vowel MO and a
specific consonant gesture �M , that closes the vocal tract from
MO , and that is supposed independent of the vowel. Finally, co-
herence distributions associated to the � variables, not displayed
in Fig. 1 (bottom), link variables of the same nature by equality
constraints (see [15, 16] for mathematical descriptions).

In the following, we only analyze learning and behavior of
four kinds of distributions: prior distributions over kernels, sen-
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Figure 1: COSMO-SylPhon. Top: schematic architecture. Bot-
tom: Joint probability distribution and its decomposition, with
priors (a), syllable and phoneme motor repertoires (b), syllable
and phoneme sensory repertoires (c), internal models relating
sensory and motor variables (d) and consonantal dependencies
(e). Coherence distributions associated to � variables are not
displayed for the sake of simplicity.

sory and motor repertoires and internal models. We assume that
prior distributions over motor gestures, consonantal dependen-
cies and coherence distributions are initially defined.

3. Simulation principles and tools

3.1. Learning set

Let us first define the dataset of speech units that the agent must
acquire during learning. It consists of twenty-one CV sylla-
bles composed of seven French vowels /i u e o E O a/ and three
French plosive consonants /b d g/. We use them to learn both
the phonemic and syllabic parts of the model.

Stimuli are generated and represented in terms of motor and
sensory information, thanks to an articulatory model of the vo-
cal tract called VLAM (Variable Linear Articulatory Model),
able to transform articulatory parameters into formants [17].
VLAM is composed of seven articulatory parameters, control-
ling some of the organs of the vocal tract: one for the jaw, one
for the larynx, three for the tongue and two for the lips.

Three articulatory parameters are considered sufficient to
perform the selected vowels: one parameter for the open/closed
movement of the lips (lip height, LH) and two for the move-
ments of the tongue, that are tongue body (TB) for horizontal
movements and tongue dorsum (TD) for vertical movements.

Figure 2: Distribution of the acoustic input provided by the en-
vironment: Top, vocalic part in the (F1, F2) space, in Hz; Bot-
tom, consonantal part in the (F2, F3) space, in Hz. One point
represents formants for one consonant or one vowel in a CV
sequence.

Sensory values for vowels (open configurations) are represented
in the (F1, F2) vowel space. Regarding plosive consonants, two
parameters are used in addition to LH , TB and TD: one for
the jaw (J) and one for the tongue apex (TA). Sensory values
for plosives (closed configurations) are represented in the (F2,
F3) dimensions [18].

Vowels are produced by drawing upon a Gaussian proba-
bility distribution in the (TB, TD, LH) space around proto-
types for the 7 selected vowels. To realize the 21 corresponding
syllables, the 3 consonants are produced by applying specific
consonantal gestures on top of the vowel: a combination of jaw
J and lips LH for consonant /b/, a combination of jaw J and
tongue apex TA for consonant /d/ and a combination of jaw
J and tongue dorsum TD for consonant /g/. Formants in the
closed configurations are computed just before or after closure.
The corresponding distribution of formants for open and closed
configurations is shown in Fig. 2, with large variability for con-
sonants due to coarticulation. This is the distribution of acoustic
stimuli provided to the agent for learning.

3.2. Learning processes

In models of speech development, learning is generally based
on supervised techniques (i.e., [4, 5, 9, 19]). However, babies
appear able to learn statistical distributions of their phonetic en-
vironment in an unsupervised manner [20]. Some experiments
on unsupervised learning of speech units have been performed,
mainly focusing on learning the sensory repertoire associated
to phonemic units [21, 22, 23, 24]. In this study, we investigate
unsupervised learning for the acquisition of motor and sensory
repertoires in the case of syllable and phonemic speech units.
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3.2.1. Global structure of the learning process

In this unsupervised learning process, the agent receives audi-
tory stimuli s resulting from CV syllables. This process in-
volves a sensory learning phase during which the agent learns
its sensory kernel priors and its sensory repertoires, and a motor
learning phase during which the agent updates first its internal
model and then its motor kernel priors and its motor repertoires.

During sensory learning, the agent computes which kernel
best corresponds to stimulus s. At each learning step, it in-
fers the best kernel k corresponding to the received stimulus s.
Then, it updates the sensory kernel prior for the inferred kernel
k and the sensory repertoires with the couple < s, k >.

During the first step of motor learning, the agent tries to
imitate the sound received from the environment. It starts by
inferring the best motor value m corresponding to the received
stimulus s. Then, it produces this selected motor command m
and perceives the corresponding auditory stimulus s0. It updates
its internal model with the couple < m, s0 >. This algorithm
based on imitation is called “accommodation learning”.

In the second step, the agent exploits the value m computed
from input stimulus s to select the best motor kernel corre-
sponding to m. As in sensory learning, the agent infers the best
kernel k corresponding to the motor information m and updates
its motor repertoire using the couple < k,m >.

These learning phases are performed sequentially for both
syllabic and phonemic acquisition. To simplify analyses, syl-
labic and phonemic learning are considered independent (see
details in [25]).

3.2.2. Implementation

Based on the learning data presented in Section 3.1 and apply-
ing the learning process described in Section 3.2.1, the agent
learns all its probability distributions. We use a number of ker-
nels larger than the number of corresponding speech units, with
10 consonantal kernels (for 3 consonantal categories), 50 vo-
calic kernels (for 7 vowels) and 60 syllabic kernels (for 21 syl-
lables). Concerning distributions to be learned, kernel prior dis-
tributions follow Laplace laws of succession (that is, histograms
with small residual probability values instead of 0 values). Mo-
tor and sensory repertoires as well as internal models are all rep-
resented by Gaussian probability distributions, with their clas-
sical parameters, that is, their mean vectors and covariance ma-
trices. All variables are discrete.

An important aspect of the COSMO SylPhon implemen-
tation concerns consonantal acquisition. It is well known that
different motor gestures can result in the same sensory stim-
ulus (many-to-one mapping). Among all the potential motor
gestures, just a few are really used (see optimal motor control
models [26]). In this study, we question the way in which a
baby acquires “optimal” motor gestures, that is, gestures dis-
playing compact representations likely to provide articulatory
invariants.

Inspired by the Frame/Content theory [27], we hypothesize
that babies perform initial movements that influence learning,
shape experience, and guide them to learn optimal motor ges-
tures. We test this hypothesis with COSMO SylPhon in the
consonantal case.

As a matter of fact, the learning set defined in Section 3.1
was based on supposedly well-formed consonants, in which the
plosives /b d g/ were performed with DeltaM consonantal ges-
tures superimposed to open motor configurations MO , and in-
volving a single specific articulator per consonant, in addition
to jaw movements: LH for /b/, TA for /d/ and TD for /g/. In a

Figure 3: Most probable kernels recognized for each sensory
value in the phonemic portion of the model: Top, vocalic part
in the (F1, F2) space, in Barks [28]; Bottom, consonantal part
in the (F2, F3) space, in Barks.

similar way, we implement a bootstrap mechanism at the begin-
ning of the learning process, that favors the use of one specific
motor parameter per consonant. Specifically, initial configura-
tions for each Gaussian distribution of DeltaM have mean vec-
tor values set to 0 in all dimensions, and have a large variance
value for a single motor parameter (that is LH , TA or TD) in
addition to J , and small variance values for all other parameters.
This corresponds to a bootstrap configuration similar to what is
described in the Frame-Content framework, with prototypical
gestures at the onset of babbling in which jaw closure results
in closing the vocal tract either at the region of the lips, at the
dental region or at the palatal region. The question we ask in
the following simulations is to know whether this initialization
enables the agent to discover and replicate the adequate optimal
consonantal gestures provided in the learning set.

4. Results

4.1. Analysis of sensory learning

We first investigate the sensory portion of the model, that is,
distributions of the model acquired during the sensory learning
phase. We examine these distributions in both the syllabic and
phonemic parts of the model.

To do this, we first analyze convergence of the sensory dis-
tributions P (S) for syllables, vowels and consonants to those of
the learning set generated with VLAM. We compute the sym-
metric Kullback-Leibler divergence between the sensory distri-
butions P (S) of the agent and those of the learning set, and
verify that it decreases towards 0 during learning. Therefore,
all learned distributions converge towards those of the learning
set, which means that the agent correctly learns the distribu-
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tions of the stimuli in the environment. We report in Fig. 3 the
sensory repertoires obtained at the end of the learning phase in
the phonemic part of the model, by displaying the most proba-
ble kernel corresponding to each sensory value provided by the
Master. The distributions for vowels show that in the sensory
portion of the model, the agent acquires seven main vocalic ker-
nels, each corresponding to one of the seven vowels. Similarly,
analysis of the syllabic repertoire (not displayed on the figure)
shows that each significant syllabic kernel is linked to one spe-
cific syllable, although there are several kernels for each speech
unit [25]. However, we observe on the figure that the sensory
representations of consonants are less well-defined, since each
principal kernel is related to several potential consonants and no
clear representation of consonant place of articulation emerges.

4.2. Analysis of consonantal learning in the motor branch

We now examine articulatory gestures learned for consonants,
and their relation with the bootstrap mechanism. Bootstrapping
should ensure that, in the consonantal space �M , motor distri-
butions are spread along specific dimensions for each consonant
place of articulation: LH (for /b/), TA (for /d/) or TD (for /g/).

We show in Fig. 4 three 2-D plots, displaying Gaussian dis-
tributions related to kernels with significant priors (> 0.01), in
the form of contour plots. We observe that each Gaussian is
indeed elongated along one dimension, with a large variance
along this dimension and small variances in the other dimen-
sions.

Conversely, we notice that this is not found in kernels that
have prior probability close to 0 (< 0.01), that are characterized
by large variance values in several motor dimensions. This con-
firms that bootstrapping is indeed necessary for ensuring “op-
timal” consonantal gestures associated to specific articulatory
configurations.

5. Discussion and conclusion

Our experimental results suggest interesting developmental be-
haviors. First, in each learning phase, we show convergence of
the agent’s sensory distributions towards the sensory distribu-
tion of the environment. However, it appears that only vowels
and syllables seem to be correctly acquired during the sensory
learning phase, whereas consonantal representations appear to
require motor learning. Since the sensory phase is known to be
faster than the motor phase [12], it is consistent with the fact
that vowels are acquired before consonants, and suggests that
syllables are acquired before phonemes.

Secondly, bootstrapping enables to learn “optimal” conso-
nants with invariant articulatory characteristics. Hence, prefer-
ence for some specific, stereotypical gestures at the beginning
of the learning process could help babies to select “optimal”
gestures in the course of speech development.

Importantly, it appears that all units (and particularly conso-
nants and syllables) are represented by several Gaussian distri-
butions, associated with several kernels. In other words, learn-
ing has not identified a one-to-one correspondence between
speech units and kernels. Interestingly, the presence of several
Gaussian distributions to represent a given speech unit could
correspond to allophonic variations, that are sub-categories cor-
responding to the same phoneme but not necessarily used in the
same context. It could be the case that these are regularized or
grouped together by some other learning process later on, such
as, maybe, explicit learning of a written speech code.

In conclusion, the COSMO SylPhon model is able to learn

Figure 4: Illustration of consonantal Gaussian distributions for
significant kernels (with prior probability > 0.01), in the dimen-
sions TD, LH and TA of the motor space �M . Each ellipse
with one color represents the same Gaussian distribution in the
three sub-plots.

phonetic representations from syllabic inputs, providing some
computational basis for the emergence of phonemes. The model
suggests potential complementary properties for vowels, that
are well learned in the sensory branch, and consonants, that re-
quire the development of the motor branch for adequate rep-
resentation of their articulatory properties. Of course, this
model, which extends a previous series of developments of
COSMO [12, 13, 14] towards the processing of sequences and
temporal information, is just a very preliminary attempt. It de-
serves extensive work involving natural stimuli, and relating the
model architecture to the literature on sequence processing in
the human brain.
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