
HAL Id: hal-02002315
https://hal.science/hal-02002315v1

Preprint submitted on 31 Jan 2019 (v1), last revised 4 Apr 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semi-automatic implementation of the complementary
error function

Anastasia Volkova, Jean-Michel Muller

To cite this version:
Anastasia Volkova, Jean-Michel Muller. Semi-automatic implementation of the complementary error
function. 2019. �hal-02002315v1�

https://hal.science/hal-02002315v1
https://hal.archives-ouvertes.fr

Semi-automatic implementation of the

complementary error function

Anastasia Volkova
Univ Lyon, Inria,

CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP

Jean-Michel Muller
Univ Lyon, CNRS,

ENS de Lyon, Inria, Université Claude Bernard Lyon 1, LIP

January 31, 2019

Abstract

The normal and complementary error functions are ubiquitous spe-
cial functions for any mathematical library. They have a wide range
of applications in probability and statistics. Practical applications call
for customized implementations that have strict accuracy requirements.
Accurate numerical implementation of these functions is, however, non-
trivial. In particular, the complementary error function erfc for large
positive arguments heavily suffers from cancellation, which is largely due
to its asymptotic behavior. In this paper we provide a semi-automatic
code generator for the erfc function which is parameterized by the user-
given bound on the relative error. Our solution exploits erfc’s asymptotic
expression and leverages the automatic code generator Metalibm that pro-
vides accurate polynomial approximations. A fine-grained a priori error
analysis provides a libm developer with the required accuracy for each step
of the erfc evaluation. In critical parts, we exploit double-word (also called
“double-double” in the literature) arithmetic to achieve implementations
that are fast, yet accurate up to 50 bits, even for large input arguments.
We demonstrate that for high required accuracies the automatically gen-
erated code has performance comparable to that of the standard libm and
for lower ones our code demonstrated roughly 25% speedup.

Keywords. Error function, floating-point arithmetic, error analysis, semi-
automated code generation.

1 Introduction

Erf and erfc are important functions, they have applications in statistics and
finance [1], Gaussian sampling in cryptography [2], partial differential diffusion

1

equations, etc. They are significantly more complex to implement than expo-
nentials, logarithms and trigonometric functions. The main reasons for that
is that there is no obvious relation that allow some range reduction, and that
the asymptotic behaviour of these functions make them difficult to approximate
by polynomials or rational functions for large arguments. This is in particular
the case for erfc(x) with large x: roughly speaking the function is close enough

to its asymptotical expression e−x
2

/(x
√
π) to be very “flat” — which is not a

behaviour easily approximable by polynomials — but not close enough to be
just replaced by the asymptotical expression.

Much work on the implementation of these functions is due to Cody [3–6].
A recent presentation is given by Beebe [1, Chapter 19]. Beebe summarizes
that existing approaches for the approximations to the erfc work on segment-by-
segment basis. A classical approach is to decompose the implementation domain
into several subdomains and use rational approximations. However, achieving
close-to-1/2ulp error is non-trivial even for small |x|: for example the current
GNU libm has a 4ulp error for x = 2797326291814245/251 = 1.24 · · · and the
current Apple libm has 7ulp error for x = 7812247216079717/251 = 3.47 · · · .
Since the field of application of the erfc function is very vast, different flavors of
the functions are required, with different accuracy/speed tradeoffs.

With this work we aim at satisfying needs for different flavors of the erfc
function by an automatic implementation. In particular, we rely on the au-
tomatic code generator for mathematical functions Metalibm1 [7]. This tool
provides implementations using polynomial approximations and ensures that a
user-given target error bound for both approximation and evaluation is satis-
fied. Metalibm can be used in a “naive way” when the function is relatively
regular and easy to approximate by polynomials, for example this is the case
for the erfc function in the domain [0; 5]. However, in more complex cases, such
as erfc(x) for large x, some expert-knowledge is still required.

We will propose a solution that is parametrized by the user given error
bound and consider in details the case when the underlying arithmetic is bi-
nary64 (a.k.a. “double precision”). First, we present some useful properties
of the erfc function and our approximation technique. The center-point of our
solution is the ability to control accuracy of certain polynomial approximations
via Metalibm. Our goal is, given a certain error budget, to deduce the required
accuracy of different steps of the evaluation of erfc. For this we first provide
a completely generic step-by-step error analysis with a straightforward error
budget distribution. Then, we assume binary64 data formats and show how,
by using double-word arithmetic in critical places, one can significantly improve
the accuracy of computations. Finally, we demonstrate our solution on several
flavors of the erfc function.

1http://www.metalibm.org/ANRMetaLibm/

2

0

0.5

1

1.5

2

−4 −2 0 2 4

erfc(x)

Figure 1: Function erfc for input arguments in [−5; 5].

2 Background

In the following, we assume that the underlying arithmetic is the binary64
arithmetic of the IEEE 754 Floating-Point (FP) Standard [8]. For expressing
errors, we will frequently use the “rounding unit” u = 2−53. RN is the round-
to-nearest function.

Functions erf and erfc are defined as follows:

erf(x) =
2√
π

∫ x

0

e−t
2

dt (1)

erfc(x) =
2√
π

∫ ∞
x

e−t
2

dt (2)

Definitions (1) and (2) imply the following properties (see [9] for more)

erfc(x) = 1− erf(x) (3)

erfc(−x) = 2− erfc(x) (4)

For large x, erfc(x) has the following asymptotic behaviour

erfc(x) ∼x→+∞
e−x

2

x
√
π
. (5)

A plot of function erfc is given Fig. 1.
We have the following properties:

• if x ≤ −6601809522387275/250 ≈ −5.863584748755 then the binary64
number nearest erfc(x) is 2;

• if x ≥ xLARGE = 3735631527617609/247 ≈ 26.543258 then erfc(x) is in the
subnormal domain;

3

• if x > xBIG = 1915860633068287/246 ≈ 27.22601711 then the binary64
number nearest erfc(x) is 0;

• if xMID = 4295860071587845/253 is the binary64 number nearest the solu-
tion of the equation erfc(x) = 1/2 then RN(erfc(xMID)) = 1/2.

These properties facilitate the implementation and testing of the erfc function,
as described below.

3 Approximation technique

The basic technique consists in dividing the input domain into several subdo-
mains. In the “internal” subdomains (i.e., those that do not contain the extremal
input values), conventional polynomial or rational approximation techniques
hold and Metalibm automatically gives convenient approximations that satisfy
a user-given target error bound. In the other, “external” subdomains, one has
to cleverly use the asymptotic behaviour of the function. For erfc, the external
subdomain of the negative side is easily handled. Hence, in this paper, we will
mainly focus on the external subdomain of the positive side (say, the domain
[5, xBIG]). That subdomain is much more difficult to tackle: roughly speaking,
function erfc becomes too “flat” to be easily approximable by a polynomial or a
rational function, but not close enough to its asymptotic equivalent e−x

2

/(x
√
π)

to be just replaced by it.2 In that domain, we will use the asymptotic expression
and a correction. More precisely, defining

g(x) =
1

xex2 erfc(x)
− 2, (6)

we will design, using Metalibm, an approximation to this easier to approximate
function g (see Fig. 2). Function g is a decreasing function, negative in [5, xBIG].
Hence |g(x)| is less than its limit at +∞, namely 2−√π ≤ 0.228. The evaluation
of erfc in [5, xBIG] will be reduced to the evaluation of the approximation to g(x),
followed by the use of

erfc(x) =
e−x

2

2x+ xg(x)
. (7)

Eq. (7), however, cannot be used in a straightforward manner. The main reason

is that the computation of e−x
2

may underflow. Since x ∈ [5;xBIG], we have
−x2 ∈ [−741.256,−25], while if we want it to use all the available precision (i.e.,
the output is not in subnormal) the exp function accepts arguments between
−708.396 · · · and 670.96 · · · . The solution is to scale the computation by some
number es. To facilitate rescaling back by e−s, we propose to set s = k ln 2,
where k is an integer, in a domain that we are going to explicit, chosen such
that s is as close as possible to a FP number. Hence multiplication by e±s is

2For instance, for x = 26, the ratio between erfc and the asymptotic equivalent is
0.99926 · · · , i.e., still very far from 1.

4

-0.23

-0.225

-0.22

-0.215

-0.21

-0.205

-0.2

-0.195

-0.19

-0.185

xbig5 10 15 20 25

g(x)

Figure 2: Function g(x) for x ∈ [5;xBIG].

replaced by multiplication by 2±k. Depending on the desired final accuracy,
and denoting Ω = 21024− 2971 the largest positive FP number, we can have two
different strategies for choosing k:

1. We wish to represent −x2 + k ln 2 as a full precision FP number. This
gives the constraints

−741.256 + k ln 2 > −1022 ln 2 (8)

−25 + k ln 2 < ln Ω. (9)

2. We wish to represent −x2 +k ln 2 as a “double word” (also called “double-
double”) number, i.e., the unevaluated sum (th, t`) of two floating-point
numbers. This gives the constraints

−741.256 + k ln 2 > (−1022 + 54) ln 2 (10)

−25 + k ln 2 < ln Ω. (11)

The first set of constraints gives 48 ≤ k ≤ 1060, and the second one gives
102 ≤ k ≤ 1060. In these domains, we choose k that minimizes |k ln 2 −
RN(k ln 2)|. We obtain k = 61 in the first case and k = 1021 in the second
one.

Hence, what we finally compute is

erfc(x) = 2−ke−x
2+ŝ · 1

2x+ xg(x)
, (12)

where ŝ = RN(k ln 2), k = 61 for a binary64 representation with an absolute
error 0.2583u; and ŝ = sh + s`, sh = RN(k ln 2), s` = RN(k ln 2− sh), k = 1021
for a double-word representation with an absolute error 0.0289u2.

Note that for x ≥ xLARGE, erfc(x) is in the subnormal domain, so that trying
to guarantee a good relative error no longer makes sense: for such values, one

5

needs to focus on the absolute error (and the best possible absolute error bound
is 1

2ulp(subnormal) = 2−1075).
The general problem is to evaluate erfc via (12) with a user-required accu-

racy. The outline of our technique can be summarized as:

• On the interval [0;xMID] compute an approximation to the erf function,
using Metalibm, and exploit Property (3);

• On the interval (xMID; 5) compute a polynomial approximation to the erfc
function, using Metalibm;

• On the interval [5;xBIG], use (12), and for that, determine the required
accuracy for each step of the evaluation of (12) and for the approximations
to g(x) and exp.

• For negative arguments, exploit Property (4).

To guarantee a user-given relative error bound on the evaluation of erfc, we
provide a fine-grained error analysis and a repartition of the error budget among
the various steps, where the accuracy requirements for each step are modeled as
functions of the target bound ε. We first give a generic step-by-step error anal-
ysis which assumes arbitrary error bounds even for the basic arithmetic opera-
tions. This approach makes it possible to assume different underlying hardware
formats. If the arithmetic operations are performed in binary64 (and we do not
use double-word arithmetic), the relative accuracy of the basic arithmetic op-
erations strongly restricts the maximum possible accuracy of the evaluation of
erfc. In section 5 we show how to use double-word arithmetic for critical parts
of the evaluation and significantly improve the range of supported accuracies.
The central point here is that we can control the accuracy of the approximations
to g and exp using Metalibm.

4 Generic error analysis

As said above, we focus on the “difficult case” x ∈ [5, xBIG].
The computations involved in (12) are performed in several steps. Let us

use the following notation for them:

y(x) = 2−ka(x)/d(x)

a(x) = et(x)

t(x) = −x2 + k ln 2,

d(x) = 2x+ r(x)

r(x) = xg(x)

In the following we analyze these various steps and assume a generic a priori
error bound for each of them, chaining the bounds in the end to obtain a table
of necessary accuracies. We use a naive equal budget distribution for the generic

6

Table 1: Summary of the generic error analysis based on equal error budget
distribution on each step.

Computation step Error terms Examples of error requirements

|εy| δ 2−32 2−46 2−53

y(x) = 2−ka(x)/d(x) |εDIV| δ/4 2−34 2−48 2−55

a(x) = et(x) |εEXP| δ/16 2−36 2−50 2−57

t(x) = −x2 + k ln 2 |∆t| ln(1 + δ/16) 1.99 · 2−37 1.99 · 2−51 1.99 · 2−58

d(x) = 2x+ r(x) |εADD| δ/8 2−35 2−49 2−56

r(x) = xg(x) |εMUL| δ
4α(8+δ) 1.94 · 2−35 1.94 · 2−49 1.94 · 2−56

g(x) |εg| δ
4α(8+δ) 1.94 · 2−35 1.94 · 2−49 1.94 · 2−56

analysis, and slightly refine it in section 5. To distinguish the “exact” values
defined above and the “computed” ones, we will add a “hat” to the computed
ones: â(x) is the computed value that approximates a(x). In the following,
relative errors of arithmetic operations such as addition or division are param-
eters (e.g., variable εADD below). This is because we want the analysis to be as
generic as possible. Of course, if we perform the operations in binary64 arith-
metic (i.e., we do not use double-word operations), the relative error bound on
the arithmetic operations is u, provided that no underflow or overflow occurs.

4.1 Computation of y(x) = 2−ka(x)/d(x)

The left shift 2−k is an exact operation. However, both a(x) and d(x) are
computed with some relative errors:

â(x) = a(x)(1 + εa), (13)

d̂(x) = d(x)/(1 + εd). (14)

Hence, we obtain an approximation ŷ to erfc(x) as:

ŷ = 2−kRN
(
â(x)/d̂(x)

)
= 2−k (a(x)/d(x)) (1 + εDIV)(1 + εa)(1 + εd)

= 2−k (a(x)/d(x)) (1 + εy) , (15)

where

εy =εa + εd + εDIV

+ εaεd + εDIVεa + εDIVεd + εDIVεaεd. (16)

If it must be ensured that |εy| ≤ ε, ε > 0, then different strategies for the error
budget repartition are possible. When distributing the error budget equally,
one requires

|εa| ≤ ε/4, |εd| ≤ ε/4, |εDIV| ≤ ε/4. (17)

7

Indeed, if the above conditions hold, we obtain |εy| ≤ 61
64ε.

4.2 Computation of a(x) = et(x)

We assume that the floating-point function EXP implements the real function
exp with relative error εEXP. To guarantee a relative error bound on the expo-
nential of t(x), we need to guarantee an absolute error bound on t(x). Thus, we
assume

t̂(x) = t(x) + ∆t. (18)

We have

â(x) = EXP(t(x) + ∆t) = et(x)+∆t (1 + εEXP)

= et(x)(1 + e∆t − 1) (1 + εEXP)

= et(x) (1 + εa) , (19)

where, when denoting ε̃t = e∆t − 1,

εa = ε̃t + εEXP + ε̃tεEXP. (20)

To ensure a relative error bound ε > 0 for the evaluation of a(x), it suf-
fices to guarantee |εEXP| ≤ ε/4 and |ε̃t| ≤ ε/4, or in terms of absolute error,
|∆t| ≤ ln(1 + ε/4). Indeed, if these bounds hold, then |εa| ≤ 9

16ε.

4.3 Computation of t(x) = −x2 + k ln 2

With our approach, the approximation of k ln 2 introduces an absolute error
equal to 0.2583u (or 0.0289u2 if double-word arithmetic is used), which restricts
the range of possible precision requirements. Indeed, computing t(x) accurately
needs the use of double-word (or even, possibly, multiple-word) arithmetic. This
will be detailed in Section 5. Let us analyze here what happens if we just perform
a straightforward binary64 evaluation of t(x):

xh = RN(x2), t̂ = RN(−xh + ŝ), (21)

where ŝ = RN(61 ln 2). The overall approximation error
∣∣t̂− t∣∣ can be decom-

posed in the following way:∣∣t̂− t∣∣ ≤ |ŝ− k ln 2|+
∣∣xh − x2

∣∣+
∣∣t̂− (−xh + ŝ)

∣∣ . (22)

We remind the reader that |ŝ− k ln 2| ≤ 0.2583u. Since x ∈ [5;xBIG], we have
x2 ≤ 742 and the error due to squaring is∣∣xh − x2

∣∣ ≤ 1

2
ulp(742) ≤ 2−44. (23)

8

The error due to addition is∣∣t̂− (−xh + ŝ)
∣∣ ≤ 1

2
ulp(−742 + ŝ) ≤ 2−44. (24)

Hence, the overall error is bounded by∣∣t̂− t∣∣ ≤ 2−44 + 2−44 + 0.2583u ≤ 1024.2583u. (25)

4.4 Computation of d(x) = 2x + r(x)

The multiplication 2x is exact. The term r(x) is computed with a certain relative
error εr. Thus, we actually compute

d̂(x) = RN (2x+ r(x)(1 + εr))

= (2x+ r(x) + r(x)εr) (1 + εADD)

= (2x+ r(x)) (1 + εd) (26)

where

εd = εADD + α(x)εr + α(x)εrεADD (27)

with α(x) = r(x)
2x+r(x) = 1 − 2xex

2

erfc(x). Function α is a decreasing function,

negative in [5, xBIG]. Hence we can bound |α(x)| by its limit at +∞, namely
α = 2

√
π − 1 ≤ 0.129.

Given a generic error bound ε > 0, different error budget repartition strate-
gies are possible for (27). For example, one can choose to dedicate half of
the error budget to the rounding error due to addition and then adapt the re-
quirement for r(x) accordingly (which consequently influences the bound on the
approximation error for g(x)). If |εADD| ≤ ε/2, then

|εd| ≤ ε/2 + |α(x)| · |εr| (1 + ε/2). (28)

Consequently, if we require

|εr| ≤
ε

α(2 + ε)
, (29)

then |εd| ≤ ε.

4.5 Computation of r(x) = xg(x)

Rounding errors in the computation of r(x) can be handled analogously. Func-
tion g(x) is approximated, using Metalibm, with some accuracy εg:

ĝ(x) = g(x)(1 + εg). (30)

Thus, the approximation r̂(x) to r(x) satisfies

r̂(x) = xg(x)(1 + εg)(1 + εMUL)

= xg(x) (1 + εr) , (31)

9

where

εr = εg + εMUL + εgεMUL. (32)

If the error budget is repartitioned equally, i.e.

|εMUL| ≤ ε/4, |εg| ≤ ε/4 (33)

then |εr| ≤ ε.

4.6 Summary of the error bounds

In the above analysis we considered generic error bounds for each evaluation.
Now, given a relative error bound δ > 0 that must be satisfied by the implemen-
tation of erfc, we can express bounds on each step of the evaluation in terms of
δ.

First, from (17) we obtain: |εa| ≤ δ/4, |εd| ≤ δ/4, and |εDIV| ≤ δ/4. Then,
we use the bound for εa as the requirement in section 4.2 and obtain that the
exponential function must have a relative error bounded by δ/16 and t(x) must
be computed with absolute error ln(1 + δ/16).

We continue analogously and summarize the obtained accuracy requirements
in Table 1. There we also illustrate the obtained bounds for several values of δ:
2−32, 2−46 and 2−53.

Naturally, the step requiring the highest accuracy is the computation of t(x).
With a binary64 approximation to k ln 2 and a straightforward evaluation, the
absolute error ∆t is bounded by 1024.2583u ≤ 0.5002 ·2−42. Hence, in this case,
the erfc function can be approximated only up to relative error 0.5002 · 2−38.
As we show below, using double-word arithmetic can significantly improve the
accuracy of t(x).

5 Use of double-word arithmetic

As said above, if all arithmetic operations are performed in binary64 arithmetic,
the relative errors due to these operations in the above analysis are bounded
by u. Obviously, the error budget must be large enough to account for the
arithmetic operations and leave some room for the approximations to exp and
g(x), whose accuracy we can control using Metalibm. We have seen in section 4.6
that straightforward binary64 arithmetic operations yield extremely high errors
and, hence, restrict the minimum size of the error budget.

In this section we still assume binary64 arithmetic but at some critical places,
such as the computation of t(x), we use double-word arithmetic [10–13]. We need
two well-known algorithms of the floating-point literature. Algorithm Fast2Sum,
that takes two FP numbers a and b as input and returns two FP numbers s and
t such that s = RN(a + b) and t = a + b − s (that is, t is the error of the
floating-point addition of a and b), and Algorithm Fast2Mul, that requires the
availability of an FMA instruction and takes two FP numbers a and b as input

10

and returns two FP numbers π and ρ such that π = RN(ab) and ρ = ab − π.
Fast2Sum(a, b) consists in first computing s = RN(a + b), then z = RN(s − a)
and t = RN(b − z). Fast2Mul(a, b) consists in computing π = RN(ab) and,
assuming FMA is available, ρ = RN(ab− π).

To return a correct result, Fast2Sum requires the floating-point exponent of
a to be larger than or equal to the floating-point exponent of b. See [14] fort a
recent presentation.

Our goal now is to take into account the accuracy of the straightforward
binary64 operations, possibly using double-word arithmetic for certain compu-
tations, and to deduce the requirements on the accuracy of the functions exp
and g.

In Section 5.6 we analyze the restrictions due to double-word arithmetic and
deduce the range of accuracies for the erfc function that can be supported with
the proposed approach.

5.1 Computation of y = 2−ka(x)/d(x)

Assuming binary64 division, we have |εDIV| ≤ u. Then, bound (16) becomes

|εy| ≤ u+ (1 + u)(εa + εd + εaεd) (34)

Hence, to ensure a generic error bound ε > u, it suffices to guarantee |εa| ≤
ε−u

4(1+u) and |εd| ≤ ε−u
4(1+u) .

5.2 Ensuring a smaller absolute error bound on t(x)

To improve the accuracy of the evaluation of t(x), we compute it as a double-
word number, i.e., as an unevaluated sum th + t` of two FP numbers. In the
following we propose two methods for the evaluation of t(x). The first one guar-
antees an absolute error bounded by 1.009 · 2−48 at the cost of 6 FP operations,
and the second, more accurate one guarantees an error bound 1.034 · 2−55 at
the cost of 10 FP operations.

Method 1 (gives
∣∣t̂− t∣∣ ≤ 32.259u ≤ 1.009 · 2−48). As previously, we use

ŝ = RN(61 ln(2)).

1. Compute x2 exactly using Fast2Mul

(xh, x`) = Fast2Mul(x, x)

Since x ≤ xBIG, we have x2 ≤ 742, hence |x`| is less than 1
2ulp(742) = 2−44.

2. Subtract the lower part:

e = RN(ŝ− x`)

From the value of ŝ and the bound on x` we have |ŝ− x`| ≤ 42.29. There-
fore |e− (ŝ− x`)| ≤ 1

2ulp(42.29) = 2−48.

11

3. Subtract the higher part:

(th, t`) = Fast2Sum(−xh, e)

where the usage of Fast2Sum is possible, since xh ≥ 25 and e ≤ 42.29,
hence exponent(xh) ≥ exponent(e).

Overall, adding the error with which ŝ approximates 61 ln(2), we deduce that
th+t` approximates t(x) with an absolute error |th + t` − t| ≤ 2−48 +0.2583u ≤
32.259u ≤ 1.009 · 2−48.

Method 2 (gives
∣∣t̂− t∣∣ ≤ 0.2584u ≤ 1.034 · 2−55)

1. As in Method 1, compute x2 exactly using Fast2Mul

(xh, x`) = Fast2Mul(x, x)

2. Subtract the lower part x` using Fast2Sum:

(rh, r`) = Fast2Sum(ŝ,−x`),

which gives |rh| ≈ 42.281 and |r`| ≤ 2−48.

3. Compute the higher part of the result using Fast2Sum:

(zh, z`) = Fast2Sum(−xh, rh).

Here we can use Fast2Sum since xh ≥ 25 and rh ≈ 42.281, i.e. exponent(xh)
≥ exponent(rh). We have |−xh + rh| ≤ |−742 + 42.281| ≤ 700. Hence,
|z`| ≤ 1

2ulp(700) = 2−44.

4. Add together the lower parts:

e = RN(z` + r`),

for which we have |z` + r`| ≤ 2−44 + 2−48 so that the error of that FP
addition is bounded by 1

2ulp(2−44) = 2−97.

zh+e approximates t(x) with an absolute error less than 0.2583u+2−97 ≤
0.2584u ≤ 1.034·2−55. However, the pair (zh, e) is not necessarily a double-
word, since |e| may be significantly larger than 1

2ulp(zh). Hence we need
to “nomalize” that pair as follows:

(th, t`) = Fast2Sum(zh, e).

The Fast2Sum algorithm can be used here: |zh| < |e| would mean that
the subtraction rh − xh is a “catastrophic cancellation”. A consequence
of this would be that z` = 0, so that |e| = |r`| ≤ 2−48, and that rh, xh
(and therefore zh) would be multiple of ulp(rh) = 2−47.

12

5.3 Computation of a(x) = et(x)

Now, since t(x) is approximated by a double-word number (th, t`), the evaluation
of its exponential must be adjusted accordingly.

If Method 1 is used for the evaluation of t(x), then th + t` approximates
t(x) with an absolute error ∆t ≤ 32.259u ≤ 1.009 · 2−48. Hence, we have

et = ethet`e∆t . (35)

The lower part t` is small in magnitude (less than 2−44), thus we can replace
its exponential by E` = 1 + t` (which is not necessarily a FP number, we just
memorize t`). The overall absolute error of that substitution is bounded as
follows:

|E` − et` | = |(1 + t`)− et` | ≤ t2`
2! e

t` ,

therefore the relative error

εE` =
|E` − et` |

et`

is bounded by t2`/2 ≤ 2−89 = 2−36u. The relative error εt resulting from the
absolute error ∆t is bounded by |e∆t − 1|, which gives

|εt| ≤ 32.26u.

The product eth ·E` is therefore computed (with an FMA instruction) as eth +
etht`. The relative error of this operation is bounded by εFMA. Assuming that
the exponential eth is computed with a certain relative error εEh , we have

â(x) = ethE` (1 + εEh) (1 + εE`) (1 + εt) (1 + εFMA)

Assuming εFMA ≤ u and using the bounds on εt and εE` we can express the
relative error εa as a function of the unit roundoff and accuracy of exp:

|εa| ≤ (1 + εEh) (1 + 33.261u)− 1. (36)

Hence, to guarantee a generic relative error ε > 33.261u for εa, it is sufficient
to require the exponential function with an error bounded by

|εEh | ≤
ε− 33.261u

1 + 33.261u
. (37)

If Method 2 is used to evaluate t(x), the error study is similar to pre-
viously, with now εt ≤ 0.2585u, and |t`| ≤ 2−43 + 2−48, which gives εE` ≤
(1089/244) · u, so that

|εa| ≤ (1 + εEh) (1 + 1.259u)− 1. (38)

Hence, to guarantee a generic relative error ε > 1.259u for εa, it is sufficient to
require the exponential function with an error bounded by

|εEh | ≤
ε− 1.259u

1 + 1.259u
. (39)

13

It is possible to improve the bound 1.259u as follows. One can evaluate
eth as a double-word number and then compute the product eth · et` using the
algorithm DWTimesFP1 of [12], for which |εMUL| ≤ (3/2)u2 + 4u3. By doing
this, a will be a double-word number (this of course will need to be taken into
account in the final step of computation of y(x)). We then obtain

|εa| ≤ (1 + εEh) (1 + 0.259u)− 1. (40)

5.4 Computation of d(x) = 2x + r(x)

In the definition (27) for εd we substitute |εADD| ≤ u and obtain

|εd| ≤ u+ |α(x)| · |εr|+ |α(x)| · |εr| · u (41)

If we require the relative error |εd| to be bounded by a certain ε > u, the
requirement on εr can be expressed as

|εr| ≤
ε− u

α(1 + u)
. (42)

Since α ≤ 0.129, the above bound can be simplified to |εr| ≤ 7.76(ε− u).

5.5 Computation of r(x) = xg(x)

In binary64 arithmetic, |εMUL| ≤ u. In order to satisfy a generic error bound
ε > u for the relative error εr, it is sufficient to satisfy

|εg| ≤
ε− u
1 + u

. (43)

However, in practice Metalibm often reports ĝ(x) to be represented as a
double-word number (gh, g`) such that |g`| ≤ u · |ĝ|. This leads to modifica-
tions in the computation of r(x) and, in particular, a new error bound for the
multiplication must be deduced. We propose to evaluate x(gh + g`) as follows:

1. Multiply x by the lower part:

ξ̂ = RN(xg`), (44)

which gives ξ̂ = xg` · (1 + εξ), with |εξ| ≤ u.

2. Multiply x by the higher part gh and add ξ̂ using an FMA instruction:

φ̂ = RN(xgh + ξ̂), (45)

which gives φ̂ = (xgh + ξ̂) · (1 + εFMA), with |εFMA| ≤ u.

We have
φ̂ = xĝ + xg`εξ + xĝεFMA + xg`εξεFMA,

14

Table 2: Error bounds for approximations to functions exp and g that work for
erfc accurate up to 0.76 · 2−50.

Error terms Examples of error requirements

|εy| δ 2−32 2−46

|εEh |

Method 1 for δ > 0.52 · 2−45

δ−u
4(1+u)

−33.261u

1+33.261u

0.49 · 2−33 -

Method 2 for δ > 0.76 · 2−50

δ−u
4(1+u)

−1.259u

1+1.259u

0.49 · 2−33 0.47 · 2−47

|εg| 7.76(δ−u
4(1+u)

−u)−u−u2−u3

1+u+u2+u3 0.96 · 2−31 0.92 · 2−45

from which we deduce

|φ̂− xĝ| ≤ xĝ · (u+ u2 + u3).

Hence, the overall relative error of the multiplication satisfies εMUL ≤
u+ u2 + u3.

Consequently, in order to satisfy a generic bound ε > u + u2 + u3 for the
approximation of r(x), it suffices to approximate function g(x) with a relative
error

|εg| ≤
ε− u− u2 − u3

1 + u+ u2 + u3
. (46)

5.6 Summary of the error bounds

Given an error bound δ that must be satisfied by the implementation, we now
deduce accuracy requirements for the approximations to functions exp and g(x).
Analogously to what was done in Section 4.6, we propagate the error requirement
δ through the computations (see Table 2 for a summary). However, since the
accuracy of the arithmetic operations is fixed, we must also deduce lower bounds
on the feasible “error budget” δ.

The computation of a(x) imposes δ ≥ 0.52 · 2−45 > 133.1u if Method 1 is
used to evaluate t(x) and δ ≥ 0.76 · 2−50 = 6.04u if Method 2 is used. The
addition in the computation of d(x) requires the error budget δ to be at least
0.626 · 2−50 > 5u + 4u2. Consequently, the multiplication in r(x) requires
δ > 0.69 · 2−50 > 5.51u.

Hence, by combining binary64 arithmetic with the double-word arithmetic in
critical places, we can implement the erfc function up to relative error 0.76·2−50.
Compared to the generic case when t(x) is evaluated in straightforward binary64
arithmetic, this lower bound on δ is a significant improvement. This bound
can be improved further if, instead of the binary64 approximation ŝ we use a

15

double-word approximation ŝ = sh + s`, sh = RN(k ln 2), s` = RN(k ln 2− sh),
k = 1021.

Table 2 shows that taking into account the accuracy of the basic arithmetic
operations and tuning them up using double-word arithmetic, allowed us to
slightly relax the requirements on the accuracy of the approximations to exp
and g (compare to Table 1).

6 Numerical experiments

Matching the performance of the hand-tuned standard libm by an automatic
code generation tool is a difficult challenge. The advantages of our approach are
the numerical guarantees and the possibility of trying numerous different flavors
for function implementation. As we shall see in this section, accuracy can be
traded for performance while automatically providing numerical guarantees.

Our approach was implemented as a semi-automatic code generation tool,
written in the C and Sollya3 languages, that generates C source files. The
automation is not yet full: the tool still requires a human intervention for the
generation of approximations with Metalibm. We provide numerical results for
implementations with several user-given relative accuracy requirements: 2−32,
2−46 and 0.76 ·2−50. Naturally, we compare our code to the standard GNU libm
library provided with the GNU C compiler, in our case we use version 6.3.0.

Approximation choice Using Table 2, for any user-given error-bound δ ≥
0.76 ·2−50, one can deduce the target errors for approximations to functions exp
and g. We use Metalibm to generate approximations that satisfy the a priori
error bounds. Apart from the target error, Metalibm supports a variety of
parameters that influence the performance of the generated code. In particular,
the degree of the approximation polynomials heavily affects the evaluation delay
and the number of subdomains (restricting possibilities for the vectorization).
In this work we semi-automatized the design space exploration, and chose the
degrees that, empirically, suited best the chosen platform. However, one might
wish to fully automatize this step of the implementation. In [15], an example of
a possible methodology is presented.

Experimental settings Experiments were done on a machine with an Intel
Xeon Gold 6136 CPU with 12 cores running at 3.00 GHz. The performance is
reported in number of clock cycles. The absolute and relative errors (measured
by comparison with GNU MPFR, version 4.0.0) are given in terms of ulps and
multiples of u, respectively.

We measured performance and rounding errors on test inputs in three subdo-
mains: the “easy” domain [0; 5] where the Metalibm-generated polynomial ap-
proximations to erf and erfc are directly used; the “difficult” domain [5;xLARGE]
where our double-word based approach is used; the domain [xLARGE;xBIG], where

3Freely available at http://sollya.gforge.inria.fr.

16

Table 3: Maximum absolute and relative errors of the libm and our implemen-
tations according to random tests

[0; 5] [5;xLARGE] [xLARGE, xBIG]
abs rel abs rel abs

GNU libm 4 ulp 6.34 u 3 ulp 3.98 u 1.5 ulp
δ = 0.76 · 2−50 2 ulp 3.84 u 4 ulp 4.02 u 1.5 ulp
δ = 2−46 18 ulp 21.07 u 15 ulp 16.6 u 1.5 ulp

RN(erfc(x)) is subnormal. We tested the code on both random and equally-
distributed inputs in each domain, taking sets of 107 points.

Results Table 3 illustrates the maximum relative and absolute errors for the
GNU libm and our implementations4, while Figures 3 and 4 compare the per-
formance with and without compiler optimizations, respectively.

Our first observation is that the GNU libm is far from providing an evaluation
of erfc with error around 1/2ulp, having errors as large as 4ulp. We encountered
even larger errors (up to 7ulp), with the standard Apple libm.

In terms of evaluation time, standard libm’s performance remains unchanged
when enabling compiler optimizations. Our implementations, in the meantime,
experience ≈ 2x speedup with the −O3 optimization level.

Figure 3 illustrates the “staircase” effect in the reported timings for our
implementations. This is due to the domain decomposition and possibly non-
uniform approximation degrees. Overall, for the “easy” domain our implemen-
tations, even with the highest accuracy, have better or comparable performance.
Moreover, our implementation with δ = 0.76 · 2−50 has absolute error twice as
small as the error of the libm.

In the domain [5;xLARGE] our automatically-generated implementation matches
the performance of the libm while guaranteeing the relative error to be bounded
by 2−46. For applications where accuracy 2−32 is enough, our implementation
permits to win roughly 25% of the evaluation time. Finally, our most accurate
implementation, with accuracy 0.76 ·2−50 has only 15% overhead in the average
number of clock cycles, compared to the libm.

Metalibm is somewhat conservative in its implementation technique (actual
rounding errors are usually smaller than the target error bound), and in practice
our implementations are, as well, more accurate than the user-given error bound.
For instance, the maximum relative error that we encountered during tests of
our implementation with δ = 0.76 · 2−50 = 6.08u is only 4.02u.

We observed that in the region [xLARGE;xBIG] the libm heavily looses in
performance, reaching as much as 962 clock cycles. Our implementations ex-
perience a similar behavior but keeping up with around 500 cycles. It should

4The low-accuracy implementation with δ = 2−32 has, as expected, very large absolute
and relative errors and is left out in the Table 3.

17

0 5 10 15 20 25 30
200

400

600

800

1,000

x

N
um

be
r

of
cy

cl
es

GNU libm
δ = 2−32

δ = 2−46

δ = 0.76 · 2−50

Figure 3: Performance comparison with maximum compiler optimization (-O3).

be noted that all implementations, including the GNU libm one, fail to ensure
close-to-1/2ulp error for the subnormal outputs.

7 Conclusion and Perspectives

We have presented a partly-automated implementation of the complementary
function. The advantages of this approach are i) easy adaptation to accuracy
requirements, ii) guaranteed error bounds, and iii) the possibility of exploring
a large design space. Our analysis could be adapted for other special functions,
in particular those with a similar asymptotic behavior. For instance, we can
easily extend our approach to the e−x

2/2σ2

Gaussian function, which is needed
for Gaussian sampling for Lattice-based cryptography.

In general, the decisions on the “error budget” allocation for each step (done
straightforwardly in this brief presentation) could be optimized for given criteria,
for example towards improvement of the final error, or toward avoiding as much
as possible costly multiple-word arithmetic. A future work will be to formalize
such an optimization problem. Another future goal is to extend our approach to
the inverse error function and design codes that support efficient vectorization.

References

[1] N. Beebe, The Mathematical Function Handbook. Springer, 2017.

[2] M. O. Saarinen, “Gaussian sampling precision and information leakage in
lattice cryptography,” IACR Cryptology ePrint Archive, 2015.

18

0 5 10 15 20 25 30
200

400

600

800

1,000

1,200

x

N
u
m
b
er

o
f
cy
cl
es

GNU libm

δ = 2−32

δ = 2−46

δ = 0.76 · 2−50

Figure 4: Performance comparison without compiler optimization (-O0).

[3] W. J. Cody, “The FUNPACK package of special function subroutines,”
ACM Transactions on Mathematical Software, vol. 1, no. 1, 1975.

[4] ——, “Rational Chebyshev approximations for the error function,” Math-
ematics of Computation, vol. 23, no. 107, 1969.

[5] ——, “Performance evaluation of programs for the error and comple-
mentary error functions,” ACM Transactions on Mathematical Software,
vol. 16, no. 1, pp. 29–37, Mar. 1990.

[6] ——, “Algorithm 715: SPECFUN – a portable FORTRAN package for
special function routines and test drivers,” ACM Transactions on Mathe-
matical Software, vol. 19, no. 1, pp. 22–32, Mar. 1993.

[7] N. Brunie, F. de Dinechin, O. Kupriianova, and C. Q. Lauter, “Code gener-
ators for mathematical functions,” in 22nd IEEE Symposium on Computer
Arithmetic, 2015, pp. 66–73.

[8] IEEE Computer Society, IEEE Standard for Floating-Point Arithmetic.
IEEE Standard 754-2008, Aug. 2008.

[9] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with
formulas, graphs and mathematical tables, ser. Applied Math. Series 55.
National Bureau of Standards, Washington, D.C., 1964.

[10] X. Li, J. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan,
A. Kapur, M. Martin, T. Tung, and D. J. Yoo, “Design, implementation
and testing of extended and mixed precision BLAS,” Lawrence Berkeley
National Laboratory, Tech. Rep. 45991, 2000.

19

[11] ——, “Design, implementation and testing of extended and mixed precision
BLAS,” ACM Transactions on Mathematical Software, vol. 28, no. 2, pp.
152–205, 2002.

[12] M. Joldeş, J.-M. Muller, and V. Popescu, “Tight and rigourous error
bounds for basic building blocks of double-word arithmetic,” ACM Trans-
actions on Mathematical Software, vol. 44, no. 2, Oct. 2017.

[13] Y. Hida, X. S. Li, and D. H. Bailey, “C++/fortran-90 double-double and
quad-double package, release 2.3.17,” Mar. 2012.

[14] J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod, M. Joldes,
V. Lefèvre, G. Melquiond, N. Revol, and S. Torres, Handbook of Floating-
Point Arithmetic. Birkhäuser Boston, 2018.

[15] E. Darulova and A. Volkova, “Sound approximation of programs
with elementary functions,” Tech. Rep., 2018. [Online]. Available:
http://arxiv.org/abs/1811.10274

20

