
HAL Id: hal-02002315
https://hal.science/hal-02002315v2

Submitted on 4 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semi-automatic implementation of the complementary
error function

Anastasia Volkova, Jean-Michel Muller

To cite this version:
Anastasia Volkova, Jean-Michel Muller. Semi-automatic implementation of the complementary error
function. ARITH 2019 - 26th IEEE Symposium on Computer Arithmetic, Jun 2019, Kyoto, Japan.
pp.1-8. �hal-02002315v2�

https://hal.science/hal-02002315v2
https://hal.archives-ouvertes.fr

Semi-automatic implementation of the
complementary error function

Anastasia Volkova∗, Jean-Michel Muller†
∗ Univ Lyon, Inria, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR 5668, F-69007 Lyon, France
† Univ Lyon, CNRS, ENS de Lyon, Inria, Université Claude Bernard Lyon 1, LIP UMR 5668, F-69007 Lyon, France

Abstract—The normal and complementary error functions are
ubiquitous special functions for any mathematical library. They
have a wide range of applications. Practical applications call for
customized implementations that have strict accuracy require-
ments. Accurate numerical implementation of these functions
is, however, non-trivial. In particular, the complementary error
function erfc for large positive arguments heavily suffers from
cancellation, which is largely due to its asymptotic behavior. We
provide a semi-automatic code generator for the erfc function
which is parameterized by the user-given bound on the relative
error. Our solution exploits the asymptotic expression of erfc and
leverages the automatic code generator Metalibm that provides
accurate polynomial approximations. A fine-grained a priori
error analysis provides a libm developer with the required
accuracy for each step of the evaluation. In critical parts,
we exploit double-word arithmetic to achieve implementations
that are fast, yet accurate up to 50 bits, even for large input
arguments. We demonstrate that for high required accuracies
the automatically generated code has performance comparable
to that of the standard libm and for lower ones our code
demonstrated roughly 25% speedup.

Index Terms—Error function, floating-point arithmetic, error
analysis, semi-automated code generation.

I. INTRODUCTION

Erf and erfc have applications in statistics and finance [1],
Gaussian sampling in cryptography [2], partial differential
diffusion equations, etc. They are significantly more complex
to implement than exponentials, logarithms and trigonometric
functions. The main reasons are that there is no obvious
relation that allow range reduction, and that the asymptotic
behavior of these functions makes them difficult to approxi-
mate by polynomials or rational functions for large arguments.
This is in particular the case for erfc(x) with large x.

Much work on the implementation of these functions is due
to Cody [3]–[6]. A recent presentation is given by Beebe [1,
Chapter 19]. Beebe summarizes that existing approaches for
the approximations to erfc work on segment-by-segment basis.
A classical approach is to decompose the implementation
domain into several subdomains and use rational approxi-
mations. However, achieving close-to-1/2ulp error is non-
trivial even for small |x|: for example the current GNU
libm has a 4ulp error for x = 2797326291814245/251 =
1.24 · · · and the current Apple libm has 7ulp error for
x = 7812247216079717/251 = 3.47 · · · . Since the field of
application of the erfc function is very vast, different flavors
of the functions are required, with different accuracy/speed
tradeoffs.

We aim at satisfying needs for different flavors of the
erfc function by an automatic implementation. In particular,
we rely on the automatic code generator for mathematical
functions Metalibm1 [7]. This tool provides implementations
using polynomial approximations and ensures that a user-
given target error bound for both approximation and evaluation
is satisfied. Metalibm can be used in a “naive way” when
the function is relatively regular and easy to approximate by
polynomials, for example this is the case for the erfc function
in the domain [0; 5]. However, in more complex cases, such as
erfc(x) for large x, some expert-knowledge is still required.

We propose a solution that is parametrized by the user-
given error bound and consider in details the case when the
underlying arithmetic is binary64 (a.k.a. “double precision”).
First, we present some useful properties of the erfc function
and our approximation technique. The center-point of our
solution is the ability to control the accuracy of certain
polynomial approximations via Metalibm. Our goal is, given
a certain “error budget,” to deduce the required accuracy of
different steps of the evaluation of erfc. For this we first
provide a completely generic step-by-step error analysis with
a straightforward error budget distribution. Then, we assume
binary64 data formats and show how, by using double-word
arithmetic in critical places, one can significantly improve
the accuracy of computations. Finally, we demonstrate our
solution on several flavors of the erfc function.

II. BACKGROUND

In the following, we assume that the underlying arithmetic
is the binary64 arithmetic of the IEEE 754 Floating-Point
(FP) Standard [8]. For expressing errors, we frequently use
the “rounding unit” u = 2−53. RN is the round-to-nearest
function.

Functions erf and erfc are defined as follows:

erf(x) =
2√
π

∫ x

0

e−t
2

dt (1)

erfc(x) =
2√
π

∫ ∞
x

e−t
2

dt (2)

Definitions (1) and (2) imply the following properties [9]:

erfc(x) = 1− erf(x) (3)
erfc(−x) = 2− erfc(x) (4)

1http://www.metalibm.org/ANRMetaLibm/

0

0.5

1

1.5

2

−4 −2 0 2 4

erfc(x)

Fig. 1. Function erfc for input arguments in [−5; 5].

For large x, erfc(x) has the following asymptotic behavior

erfc(x) ∼x→+∞ e−x
2

/(x
√
π). (5)

A plot of function erfc is given Fig. 1. We have:
• if x ≤ −6601809522387275/250 ≈ −5.863584748755

then the binary64 number nearest erfc(x) is 2;
• if x ≥ xLARGE = 3735631527617609/247 ≈ 26.543258

then erfc(x) is in the subnormal domain;
• if x > xBIG = 1915860633068287/246 ≈ 27.22601711

then the binary64 number nearest erfc(x) is 0;
• if xMID = 4295860071587845/253 is the binary64 number

nearest the solution of the equation erfc(x) = 1/2 then
RN(erfc(xMID)) = 1/2.

These properties facilitate the implementation and testing of
the erfc function, as described below.

III. APPROXIMATION TECHNIQUE

The basic technique consists in dividing the input domain
into several subdomains. In the “internal” subdomains (i.e.,
those that do not contain the extremal input values), conven-
tional polynomial or rational approximation techniques hold
and Metalibm automatically gives convenient approximations
that satisfy a user-given target error bound. In the other
“external” subdomains, one has to cleverly use the asymptotic
behavior of the function. For erfc, the external subdomain of
the negative side is easily handled. Hence, in this paper, we
mainly focus on the external subdomain of the positive side
(say, the domain [5, xBIG]), which is much more difficult to
tackle: roughly speaking, erfc becomes too “flat” to be easily
approximable by a polynomial or a rational function, but not
close enough to its asymptotic equivalent e−x

2

/(x
√
π) to be

just replaced by it.2 In that domain, we use the asymptotic
expression and a correction. More precisely, defining

g(x) =
1

xex2 erfc(x)
− 2, (6)

we design, using Metalibm, an approximation to this easier-to-
approximate function g (see Fig. 2). Function g is a decreasing
function, negative in [5, xBIG]. Hence |g(x)| is less than its limit
at +∞, namely 2 − √π ≤ 0.228. The evaluation of erfc in

2For instance, for x = 26, the ratio between erfc and the asymptotic
equivalent is 0.99926 · · · , i.e., still significantly far from 1.

-0.23

-0.225

-0.22

-0.215

-0.21

-0.205

-0.2

-0.195

-0.19

-0.185

xbig5 10 15 20 25

g(x)

Fig. 2. Function g(x) for x ∈ [5;xBIG].

[5, xBIG] is reduced to the evaluation of the approximation to
g(x), followed by the use of

erfc(x) =
e−x

2

2x+ xg(x)
. (7)

Eq. (7), however, cannot be used in a straightforward manner.
The main reason is that the computation of e−x

2

may under-
flow. Since x ∈ [5;xBIG], we have −x2 ∈ [−741.256,−25],
while if we want it to use all the available precision (i.e., the
output is not in subnormal) the exp function accepts arguments
between −708.396 · · · and 670.96 · · · . The solution is to scale
the computation by some number es. To facilitate rescaling
back by e−s, we propose to set s = k ln 2, where k is an
integer, in a domain that we are going to explicit, chosen
such that s is as close as possible to a FP number. Hence
multiplication by e±s is replaced by errorless multiplication
by 2±k. Depending on the desired final accuracy, and denoting
Ω = 21024 − 2971 the largest FP number, we can have two
different strategies for choosing k:

1) We wish to represent −x2+k ln 2 as a full precision (i.e.,
not subnormal) FP number. This gives the constraints

−741.256 + k ln 2 > −1022 ln 2 (8)
−25 + k ln 2 < ln Ω. (9)

2) We wish to represent −x2 + k ln 2 as a “double-
word” number, i.e., the unevaluated sum (th, t`) of two
floating-point numbers. This gives the constraints

−741.256 + k ln 2 > (−1022 + 54) ln 2 (10)
−25 + k ln 2 < ln Ω. (11)

The first set of constraints gives 48 ≤ k ≤ 1060, and the
second one gives 102 ≤ k ≤ 1060. In these domains, we
choose k that minimizes |k ln 2−RN(k ln 2)|. We obtain k =
61 in the first case and k = 1021 in the second one.

Hence, what we finally compute is

erfc(x) = 2−ke−x
2+ŝ/(2x+ xg(x)), (12)

where ŝ = RN(k ln 2), k = 61 for a binary64 represen-
tation with an absolute error 0.2583u; and ŝ = sh + s`,
sh = RN(k ln 2), s` = RN(k ln 2 − sh), k = 1021 for a
double-word representation with an absolute error 0.0289u2.

For x ≥ xLARGE, erfc(x) is in the subnormal domain: trying to
guarantee a good relative error does not make sense. For such

values, we need to focus on the absolute error, and the best
possible absolute error bound is 1

2 ulp(subnormal) = 2−1075.
The general problem is to evaluate erfc via (12) with a

user-required accuracy. The outline of our technique can be
summarized as:
• On the interval [0;xMID] compute an approximation to the

erf function, using Metalibm, and exploit Property (3);
• On the interval (xMID; 5) compute a polynomial approxi-

mation to the erfc function, using Metalibm;
• On the interval [5;xBIG], use (12), and for that, determine

the required accuracy for each step of the evaluation
of (12) and for the approximations to g(x) and exp.

• For negative arguments, exploit Property (4).
To guarantee a user-given relative error bound on the

evaluation of erfc, we provide a fine-grained error analysis
and a repartition of the error budget among the various steps,
where the accuracy requirements for each step are modeled as
functions of the target bound ε. We first give a generic step-
by-step error analysis which assumes arbitrary error bounds
even for the basic arithmetic operations. This approach makes
it possible to assume different underlying hardware formats.
If the arithmetic operations are performed in binary64 (with-
out double-word arithmetic), their relative accuracy strongly
restricts the maximum possible accuracy of the evaluation of
erfc. In Section V we show how to use double-word arithmetic
in critical parts of the evaluation and significantly improve the
range of supported accuracies. The central point here is that
we can control the accuracy of the approximations to g and
exp using Metalibm.

IV. GENERIC ERROR ANALYSIS

As said above, we focus on the “difficult case” x ∈ [5, xBIG].
The computations involved in (12) are performed in several

steps. Let us use the following notation for them:

y(x) = 2−ka(x)/d(x)

a(x) = et(x)

t(x) = −x2 + k ln 2,

d(x) = 2x+ r(x)

r(x) = xg(x)

In the following we analyze these various steps and assume
a generic a priori error bound for each of them, chaining the
bounds in the end to obtain a table of necessary accuracies.
We use a naive equal budget distribution for the generic
analysis, and slightly refine it in Section V. To distinguish
the “exact” values defined above and the “computed” ones,
we add a “hat” to the computed ones: â(x) is the computed
value that approximates a(x). In the following, relative errors
of arithmetic operations such as addition or division are
parameters (e.g., variable εADD below). This is to make the
analysis as generic as possible. Of course, if we perform the
operations in binary64 arithmetic (i.e., we do not use double-
word operations), the relative error bound on the arithmetic
operations is u, provided that no underflow or overflow occurs.

A. Computation of y(x) = 2−ka(x)/d(x)

The left shift 2−k is an exact operation. However, both a(x)
and d(x) are computed with some relative errors:

â(x) = a(x) · (1 + εa), (13)

d̂(x) = d(x)/(1 + εd). (14)

Hence, we obtain an approximation ŷ to erfc(x) as:

ŷ = 2−kRN(â(x)/d̂(x))

= 2−k (a(x)/d(x)) · (1 + εDIV) · (1 + εa) · (1 + εd)

= 2−k (a(x)/d(x)) · (1 + εy) , (15)

where

εy =εa + εd + εDIV

+ εaεd + εDIVεa + εDIVεd + εDIVεaεd. (16)

If it must be ensured that |εy| ≤ ε, ε > 0, then different
strategies for the error budget repartition are possible. When
distributing the error budget equally, one requires

|εa| ≤ ε/4, |εd| ≤ ε/4, |εDIV| ≤ ε/4. (17)

Indeed, if the above conditions hold, we obtain |εy| ≤ 61
64ε.

B. Computation of a(x) = et(x)

We assume that the floating-point function EXP implements
the real function exp with relative error εEXP. To guarantee a
relative error bound on the exponential of t(x), we need to
guarantee an absolute error bound on t(x). Thus, we assume

t̂(x) = t(x) + ∆t. (18)

We have,

â(x) = EXP(t(x) + ∆t) = et(x)+∆t · (1 + εEXP)

= et(x) · (1 + e∆t − 1) · (1 + εEXP)

= et(x) · (1 + εa) , (19)

where, when denoting ε̃t = e∆t − 1,

εa = ε̃t + εEXP + ε̃tεEXP. (20)

To ensure a relative error bound ε > 0 for the evaluation
of a(x), it suffices to guarantee |εEXP| ≤ ε/4 and |ε̃t| ≤ ε/4,
or in terms of absolute error, |∆t| ≤ ln(1 + ε/4). Indeed, if
these bounds hold, then |εa| ≤ 9

16ε.

C. Computation of t(x) = −x2 + k ln 2

The approximation of k ln 2 introduces an absolute error
0.2583u (or 0.0289u2 if double-word arithmetic is used),
which restricts the range of possible precision requirements.
Indeed, computing t(x) accurately needs the use of double-
word arithmetic. This will be detailed in Section V. Let us
analyze here what happens if we just perform a straightforward
binary64 evaluation of t(x):

xh = RN(x2), t̂ = RN(−xh + ŝ), (21)

TABLE I
SUMMARY OF THE GENERIC ERROR ANALYSIS BASED ON EQUAL ERROR BUDGET DISTRIBUTION ON EACH STEP.

Computation step Error terms Examples of error requirements

|εy | δ 2−32 2−46 2−53

y(x) = 2−ka(x)/d(x) |εDIV| δ/4 2−34 2−48 2−55

a(x) = et(x) |εEXP| δ/16 2−36 2−50 2−57

t(x) = −x2 + k ln 2 |∆t| ln(1 + δ/16) 1.99 · 2−37 1.99 · 2−51 1.99 · 2−58

d(x) = 2x+ r(x) |εADD| δ/8 2−35 2−49 2−56

r(x) = xg(x) |εMUL| δ
4α(8+δ)

1.94 · 2−35 1.94 · 2−49 1.94 · 2−56

g(x) |εg | δ
4α(8+δ)

1.94 · 2−35 1.94 · 2−49 1.94 · 2−56

where ŝ = RN(61 ln 2). The overall approximation error∣∣t̂− t∣∣ can be decomposed in the following way:∣∣t̂− t∣∣ ≤ |ŝ− k ln 2|+
∣∣xh − x2

∣∣+
∣∣t̂− (−xh + ŝ)

∣∣ . (22)

We remind the reader that |ŝ− k ln 2| ≤ 0.2583u. Since x ∈
[5;xBIG], we have x2 ≤ 742 and the error due to squaring is∣∣xh − x2

∣∣ ≤ 1

2
ulp(742) ≤ 2−44. (23)

The error due to addition is∣∣t̂− (−xh + ŝ)
∣∣ ≤ 1

2
ulp(−742 + ŝ) ≤ 2−44. (24)

Hence, the overall error is bounded by∣∣t̂− t∣∣ ≤ 2−44 + 2−44 + 0.2583u ≤ 1024.2583u. (25)

D. Computation of d(x) = 2x+ r(x)

The multiplication 2x is exact. The term r(x) is computed
with a certain relative error εr. Thus, we actually compute

d̂(x) = RN (2x+ r(x) · (1 + εr))

= (2x+ r(x) + r(x)εr) · (1 + εADD)

= (2x+ r(x)) · (1 + εd) (26)

where

εd = εADD + α(x)εr + α(x)εrεADD (27)

with α(x) = r(x)
2x+r(x) = 1 − 2xex

2

erfc(x). Function α is a
decreasing function, negative in [5, xBIG]. Hence we can bound
|α(x)| by its limit at +∞, namely α = 2

√
π − 1 ≤ 0.129.

Given a generic error bound ε > 0, different error budget
repartition strategies are possible for (27). For example, one
can choose to dedicate half of the error budget to the rounding
error due to addition and then adapt the requirement for r(x)
accordingly (which consequently influences the bound on the
approximation error for g(x)). If |εADD| ≤ ε/2, then

|εd| ≤ ε/2 + |α(x)| · |εr| (1 + ε/2). (28)

Consequently, if we require

|εr| ≤ ε/(α(2 + ε)), (29)

then |εd| ≤ ε.

E. Computation of r(x) = xg(x)

Rounding errors in the computation of r(x) can be handled
analogously. Function g(x) is approximated, using Metalibm,
with some accuracy εg:

ĝ(x) = g(x) · (1 + εg). (30)

Thus, the approximation r̂(x) to r(x) satisfies

r̂(x) = xg(x) · (1 + εg) · (1 + εMUL)

= xg(x) · (1 + εr) , (31)

where

εr = εg + εMUL + εgεMUL. (32)

If the error budget is repartitioned equally, i.e.

|εMUL| ≤ ε/4, |εg| ≤ ε/4 (33)

then |εr| ≤ ε.
F. Summary of the error bounds

In the above analysis we considered generic error bounds
for each evaluation. Now, given a relative error bound δ > 0
that must be satisfied by the implementation of erfc, we can
express bounds on each step of the evaluation in terms of δ.

First, from (17) we obtain: |εa| ≤ δ/4, |εd| ≤ δ/4, and
|εDIV| ≤ δ/4. Then, we use the bound for εa as the requirement
in Section IV-B and obtain that the exponential function must
have a relative error bounded by δ/16 and t(x) must be
computed with absolute error ln(1+δ/16). We continue anal-
ogously and summarize the obtained accuracy requirements
in Table I. There we also illustrate the obtained bounds for
several values of δ. The step requiring the highest accuracy
is the computation of t(x). With a binary64 approximation
to k ln 2 and a straightforward evaluation, the absolute error
∆t is bounded by 1024.2583u ≤ 0.5002 ·2−42. Hence, in this
case, the erfc function can be approximated only up to relative
error 0.5002 · 2−38. As we show below, using double-word
arithmetic can significantly improve the accuracy of t(x).

V. USE OF DOUBLE-WORD ARITHMETIC AT CRITICAL
PLACES

As said above, if all arithmetic operations are performed in
binary64 arithmetic, the relative errors due to these operations
in the above analysis are bounded by u. The error budget

must be large enough to account for the arithmetic operations
and leave some room for the approximations to exp and g(x),
whose accuracy we control using Metalibm. We have seen in
Section IV-F that simple binary64 arithmetic operations yield
high errors and, hence, restrict the minimum size of the error
budget. In this Section we still assume binary64 arithmetic but
at some critical places we use double-word arithmetic [10]–
[13]. We need two well-known algorithms of the floating-point
literature. Algorithm Fast2Sum, that takes two FP numbers a
and b as input and returns two FP numbers s and t such that
s = RN(a + b) and t = a + b − s (i.e., t is the error of
the FP addition of a and b), and Algorithm Fast2Mul, that
requires the availability of an FMA instruction and takes two
FP numbers a and b as input and returns two FP numbers π
and ρ such that π = RN(ab) and ρ = ab− π. Fast2Sum(a, b)
consists in first computing s = RN(a+b), then z = RN(s−a)
and t = RN(b − z). Fast2Mul(a, b) consists in computing
π = RN(ab) and ρ = RN(ab− π).

To return a correct result, Fast2Sum requires the floating-
point exponent of a to be larger than or equal to the floating-
point exponent of b. See [14] for a recent presentation.

Our goal now is to take into account the accuracy of the
straightforward binary64 operations, possibly using double-
word arithmetic for certain computations, and to deduce the
requirements on the accuracy of the functions exp and g.

In Section V-F we analyze the restrictions due to double-
word arithmetic and deduce the range of accuracies for the erfc
function that can be supported with the proposed approach.

A. Computation of y = 2−ka(x)/d(x)

Assuming binary64 division, we have |εDIV| ≤ u. Then,
bound (16) becomes

|εy| ≤ u+ (1 + u) · (εa + εd + εaεd) (34)

Hence, to ensure a generic error bound ε > u, it suffices to
guarantee |εa| ≤ ε−u

4(1+u) and |εd| ≤ ε−u
4(1+u) .

B. Ensuring a smaller absolute error bound on t(x)

To improve the accuracy of the evaluation of t(x), we
compute it as a double-word number, i.e., as an unevaluated
sum th + t` of two FP numbers. In the following we propose
two methods for computing t(x). The first one guarantees an
absolute error bounded by 1.009 · 2−48 at the cost of 6 FP
operations, and the second, more accurate one guarantees an
error bound 1.034 · 2−55 at the cost of 10 FP operations.

Method 1 (gives
∣∣t̂− t∣∣ ≤ 32.259u ≤ 1.009 · 2−48). As

previously, we use ŝ = RN(61 ln(2)).
1) Compute x2 exactly using Fast2Mul:

(xh, x`) = Fast2Mul(x, x)

Since x ≤ xBIG, we have x2 ≤ 742, hence |x`| is less
than 1

2 ulp(742) = 2−44.
2) Subtract the lower part:

e = RN(ŝ− x`)

From the value of ŝ and the bound on x` we
have |ŝ− x`| ≤ 42.29. Therefore |e− (ŝ− x`)| ≤
1
2 ulp(42.29) = 2−48.

3) Subtract the higher part:

(th, t`) = Fast2Sum(−xh, e)
Fast2Sum can be used: since xh ≥ 25 and e ≤ 42.29,
either exponent(xh) ≥ exponent(e), or xh ≤ e ≤ 2xh
(in which case, thanks to Sterbenz Lemma [14], the FP
subtraction −xh+e is exact: th = −xh+e and t` = 0).

Overall, adding the error with which ŝ approximates 61 ln(2),
we deduce that th+t` approximates t(x) with an absolute error
|th + t` − t| ≤ 2−48 + 0.2583u ≤ 32.259u ≤ 1.009 · 2−48.

Method 2 (gives
∣∣t̂− t∣∣ ≤ 0.2584u ≤ 1.034 · 2−55)

1) As in Method 1, compute x2 exactly using Fast2Mul:

(xh, x`) = Fast2Mul(x, x)

2) Subtract the lower part x` using Fast2Sum:

(rh, r`) = Fast2Sum(ŝ,−x`),
which gives |rh| ≈ 42.281 and |r`| ≤ 2−48.

3) Compute the higher part of the result using Fast2Sum:

(zh, z`) = Fast2Sum(−xh, rh).

Fast2Sum can be used: since xh ≥ 25 and rh ≈ 42.281,
either exponent(xh) ≥ exponent(rh), or xh ≤ rh ≤ 2xh
(in which case the FP subtraction −xh + rh is exact).
We have |−xh + rh| ≤ |−742 + 42.281| ≤ 700. Hence,
|z`| ≤ 1

2 ulp(700) = 2−44.
4) Add together the lower parts:

e = RN(z` + r`),

for which we have |z` + r`| ≤ 2−44 + 2−48 so the error
of that FP addition is bounded by 1

2 ulp(2−44) = 2−97.
zh+e approximates t(x) with an absolute error less than
0.2583u + 2−97 ≤ 0.2584u ≤ 1.034 · 2−55. However,
the pair (zh, e) is not necessarily a double-word, since
|e| may be significantly larger than 1

2 ulp(zh). Hence we
need to “normalize” that pair as follows:

(th, t`) = Fast2Sum(zh, e).

Fast2Sum can be used here: |zh| < |e| would mean that
the subtraction rh − xh is a “catastrophic cancellation”.
A consequence of this would be that z` = 0, so that
|e| = |r`| ≤ 2−48, and that rh, xh (and therefore zh)
would be multiple of ulp(rh) = 2−47.

C. Computation of a(x) = et(x)

Since t(x) is approximated by a double-word number, the
evaluation of its exponential must be adjusted accordingly.

If Method 1 is used for the evaluation of t(x), then th+ t`
approximates t(x) with an absolute error ∆t ≤ 32.259u ≤
1.009 · 2−48. Hence, we have

et = ethet`e∆t . (35)

The lower part t` is small in magnitude (less than 2−44),
thus we can replace its exponential by E` = 1 + t` (which is
not necessarily a FP number, we just memorize t`). The overall
absolute error of that substitution is bounded as follows:

|E` − et` | = |(1 + t`)− et` | ≤ t2`
2! e

t` ,

therefore the relative error

εE` =
|E` − et` |

et`

is bounded by t2`/2 ≤ 2−89 = 2−36u. The relative error εt
resulting from the absolute error ∆t is bounded by |e∆t − 1|,
which gives |εt| ≤ 32.26u.

The product eth · E` is therefore computed (with an FMA
instruction) as eth + etht`. The relative error of this operation
is bounded by εFMA. Assuming that the exponential eth is
computed with a certain relative error εEh , we have

â(x) = ethE` (1 + εEh) (1 + εE`) (1 + εt) (1 + εFMA)

Assuming εFMA ≤ u and using the bounds on εt and εE` we can
express the relative error εa as a function of the unit roundoff
and accuracy of exp:

|εa| ≤ (1 + εEh) (1 + 33.261u)− 1. (36)

Hence, to guarantee a generic relative error ε > 33.261u
for εa, it is sufficient to require the exponential function with
an error bounded by

|εEh | ≤
ε− 33.261u

1 + 33.261u
. (37)

If Method 2 is used to evaluate t(x), the error study is
similar to previously, with now εt ≤ 0.2585u, and |t`| ≤
2−43 + 2−48, which gives εE` ≤ (1089/244) · u, so that

|εa| ≤ (1 + εEh) (1 + 1.259u)− 1. (38)

Hence, to guarantee a generic relative error ε > 1.259u for
εa, it is sufficient to require the exponential function with an
error bounded by

|εEh | ≤
ε− 1.259u

1 + 1.259u
. (39)

It is possible to improve the bound 1.259u as follows. One
can evaluate eth as a double-word number and then compute
the product eth ·et` using the algorithm DWTimesFP1 of [12],
for which |εMUL| ≤ (3/2)u2 + 4u3. By doing this, a becomes
a double-word number (this of course needs to be taken into
account in the final step of computation of y(x)). We then
obtain

|εa| ≤ (1 + εEh) (1 + 0.259u)− 1. (40)

D. Computation of d(x) = 2x+ r(x)

In (27) we substitute |εADD| ≤ u and obtain

|εd| ≤ u+ |α(x)| · |εr|+ |α(x)| · |εr| · u (41)

If we require the relative error |εd| to be bounded by a certain
ε > u, the requirement on εr can be expressed as

|εr| ≤ (ε− u)/(α(1 + u)). (42)

Since α ≤ 0.129, this can be simplified to |εr| ≤ 7.76(ε− u).

TABLE II
ERROR BOUNDS FOR APPROXIMATIONS TO FUNCTIONS exp AND g THAT

WORK FOR erfc ACCURATE UP TO 0.76 · 2−50 .

Error terms Examples of error requirements

|εy | δ 2−32 2−46

∣∣εEh ∣∣
Method 1 for δ > 0.52 · 2−45

δ−u
4(1+u)

−33.261u

1+33.261u

0.49 · 2−33 -

Method 2 for δ > 0.76 · 2−50

δ−u
4(1+u)

−1.259u

1+1.259u

0.49 · 2−33 0.47 · 2−47

|εg |
7.76

(
δ−u

4(1+u)
−u

)
−u−u2−u3

1+u+u2+u3 0.96 · 2−31 0.92 · 2−45

E. Computation of r(x) = xg(x)

In binary64 arithmetic, |εMUL| ≤ u. In order to satisfy a
generic error bound ε > u for the relative error εr, it is
sufficient to satisfy

|εg| ≤ (ε− u)/(1 + u). (43)

However, in practice Metalibm often reports ĝ(x) to be
represented as a double-word number (gh, g`) such that |g`| ≤
u · |ĝ|. This leads to modifications in the computation of r(x)
and, in particular, a new error bound for the multiplication
must be deduced. We propose to evaluate x(gh+g`) as follows:

1) Multiply x by the lower part:

ξ̂ = RN(xg`), (44)

which gives ξ̂ = xg` · (1 + εξ), with |εξ| ≤ u.
2) Multiply x by the higher part gh and add ξ̂ using an

FMA instruction:

φ̂ = RN(xgh + ξ̂), (45)

which gives φ̂ = (xgh + ξ̂) · (1 + εFMA), with |εFMA| ≤ u.
We have

φ̂ = xĝ + xg`εξ + xĝεFMA + xg`εξεFMA,

from which we deduce

|φ̂− xĝ| ≤ xĝ · (u+ u2 + u3).

Hence, the overall relative error of the multiplication
satisfies εMUL ≤ u+ u2 + u3.

Consequently, in order to satisfy a generic bound ε > u+u2 +
u3 for the approximation of r(x), it suffices to approximate
function g(x) with a relative error

|εg| ≤
ε− u− u2 − u3

1 + u+ u2 + u3
. (46)

F. Summary of the error bounds

Given an error bound δ that must be satisfied by the
implementation, we now deduce accuracy requirements for
the approximations to functions exp and g(x). Analogously
to what was done in Section IV-F, we propagate the error
requirement δ through the computations (see Table II for
a summary). However, since the accuracy of the arithmetic
operations is fixed, we must also deduce lower bounds on the
feasible “error budget” δ.

The computation of a(x) imposes δ ≥ 0.52 ·2−45 > 133.1u
if Method 1 is used to evaluate t(x) and δ ≥ 0.76 · 2−50 =
6.04u if Method 2 is used. The addition in the computation of
d(x) requires the error budget δ to be at least 0.626 · 2−50 >
5u + 4u2. Consequently, the multiplication in r(x) requires
δ > 0.69 · 2−50 > 5.51u.

Hence, by combining binary64 arithmetic and double-
word arithmetic in critical places, we can implement the
erfc function up to relative error 0.76 · 2−50. Compared to
the generic case when t(x) is evaluated in straightforward
binary64 arithmetic, this lower bound on δ is a significant
improvement. This bound can be improved further if, instead
of the binary64 approximation ŝ we use a double-word approx-
imation ŝ = sh + s`, sh = RN(k ln 2), s` = RN(k ln 2− sh),
k = 1021.

Table II shows that taking into account the accuracy of the
basic arithmetic operations and tuning them up using double-
word arithmetic, allowed us to slightly relax the requirements
on the accuracy of the approximations to exp and g (compare
to Table I).

VI. NUMERICAL EXPERIMENTS

Matching the performance of the hand-tuned standard libm
by an automatic code generation tool is a difficult challenge.
The advantages of our approach are the numerical guarantees
and the possibility of trying numerous different flavors for
function implementation. As we shall see in this section,
accuracy can be traded for performance while automatically
providing numerical guarantees.

Our approach was implemented as a semi-automatic code
generation tool, written in the C and Sollya3 languages, that
generates C source files. The automation is not yet full: the
tool still requires a human intervention for the generation of
approximations with Metalibm. We provide numerical results
for implementations with several user-given relative accuracy
requirements: 2−32, 2−46 and 0.76 · 2−50. Naturally, we
compare our code to the standard GNU libm library provided
with the GNU C compiler, in our case we use version 6.3.0.

Approximation choice: Using Table II, for any user-
given error-bound δ ≥ 0.76 · 2−50, one can deduce the
target errors for approximations to functions exp and g. We
use Metalibm to generate approximations that satisfy the a
priori error bounds. Apart from the target error, Metalibm
supports a variety of parameters that influence the performance

3Freely available at http://sollya.gforge.inria.fr.

TABLE III
MAXIMUM ABSOLUTE AND RELATIVE ERRORS OF THE LIBM AND OUR

IMPLEMENTATIONS ACCORDING TO RANDOM TESTS

accuracy [0; 5] [5;xLARGE] [xLARGE, xBIG]
abs rel abs rel abs

GNU libm 4 ulp 6.34 u 3 ulp 3.98 u 1.5 ulp
0.76 · 2−50 2 ulp 3.84 u 4 ulp 4.02 u 1.5 ulp
2−46 18 ulp 21.07 u 15 ulp 16.6 u 1.5 ulp

of the generated code. In particular, the degree of the ap-
proximation polynomials heavily affects the evaluation delay
and the number of subdomains (restricting possibilities for
vectorization). In this work we semi-automatized the design
space exploration, and chose the degrees that, empirically,
suited best the chosen platform. However, one might wish to
fully automatize this step of the implementation. In [15], an
example of a possible methodology is presented.

Experimental settings: Experiments were done on a
computer with an Intel Xeon Gold 6136 CPU with 12 cores
running at 3.00 GHz but execution was single-threaded. The
performance is reported in number of clock cycles. The
absolute and relative errors (measured by comparison with
GNU MPFR, version 4.0.0) are given in terms of ulps and
multiples of u, respectively.

We measured performance and rounding errors on test
inputs in three subdomains: the “easy” domain [0; 5] where
the Metalibm-generated polynomial approximations to erf
and erfc are directly used; the “difficult” domain [5;xLARGE]
where our double-word based approach is used; the domain
[xLARGE;xBIG], where RN(erfc(x)) is subnormal. We tested the
code on both random and equally-distributed inputs in each
domain, taking sets of 107 points.

Results: Table III illustrates the maximum relative and
absolute errors for the GNU libm and our implementations4,
while Fig. 3 and 4 compare the performance with and without
compiler optimization, respectively. For all implementations
we use Method 2 to evaluate t(x).

Our first observation is that the GNU libm is far from
providing an evaluation of erfc with error around 1/2ulp,
having errors as large as 4ulp. We encountered even larger
errors (up to 7ulp), with the standard Apple libm.

In terms of evaluation time, standard libm’s performance
remains unchanged when enabling compiler optimizations.
Our implementations, in the meantime, experience a roughly
2× speedup with the −O3 optimization level. Use of FMA
instruction is forced at all times, though.

Fig. 3 illustrates the “staircase” effect in the reported timings
for our implementations. This is due to the domain decomposi-
tion and possibly non-uniform approximation degrees. Overall,
for the “easy” domain, our implementations, even with the
highest accuracy, have better or comparable performance.
Moreover, our implementation with δ = 0.76 · 2−50 has
absolute error twice as small as the error of the libm.

4The low-accuracy implementation with δ = 2−32 has, as expected, very
large absolute and relative errors and is left out in Table III.

0 5 10 15 20 25 30
200

400

600

800

1,000

x

N
um

be
r

of
cy

cl
es

GNU libm
δ = 2−32

δ = 2−46

δ = 0.76 · 2−50

Fig. 3. Performance comparison with maximum compiler optimization (-O3).

0 5 10 15 20 25 30
200

400

600

800

1,000

1,200

x

N
u
m
b
er

of
cy
cl
es

GNU libm

δ = 2−32

δ = 2−46

δ = 0.76 · 2−50

Fig. 4. Performance comparison without compiler optimization (-O0).

In the domain [5;xLARGE] our automatically-generated im-
plementation matches the performance of the libm while
guaranteeing the relative error to be bounded by 2−46. For ap-
plications where accuracy 2−32 is enough, our implementation
permits to win roughly 25% of the evaluation time. Finally,
our most accurate implementation, with accuracy 0.76 · 2−50,
has only 15% overhead in the average number of clock cycles,
compared to the libm.

Metalibm is somewhat conservative in its implementation
technique (actual rounding errors are usually smaller than the
target error bound), and in practice our implementations are,
as well, more accurate than the user-given error bound. For in-
stance, the maximum relative error that we encountered during
tests of our implementation with δ = 0.76 · 2−50 = 6.08u is
only 4.02u.

We observed that in the region [xLARGE;xBIG] the libm heavily
looses in performance, reaching as much as 962 clock cycles.
Our implementations experience a similar behavior but keep-
ing up with around 500 cycles. It should be noted that all
implementations, including the GNU libm one, fail to ensure
close-to-1/2ulp error for the subnormal outputs.

VII. CONCLUSION AND PERSPECTIVES

We have presented a partly-automated implementation of
the complementary function. The advantages of this approach
are i) easy adaptation to accuracy requirements, ii) guaranteed
error bounds, and iii) the possibility of exploring a large

design space. Our analysis could be adapted for other spe-
cial functions, in particular those with a similar asymptotic
behavior. For instance, we can easily extend our approach to
the e−x

2/2σ2

Gaussian function, which is needed for Gaussian
sampling for Lattice-based cryptography.

In general, the decisions on the “error budget” allocation for
each step (done straightforwardly in this brief presentation)
could be optimized for given criteria, for example towards
improvement of the final error, or toward avoiding as much as
possible costly multiple-word arithmetic. A future work will
be to formalize such an optimization problem. Another future
goal is to extend our approach to the inverse error function
and design codes that support efficient vectorization.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their very
helpful comments and Christoph Lauter for interesting discus-
sions on the topic of this work. This work has been partly
supported by the FastRelax project of the French Agence
Nationale de la Recherche (ANR-14-CE25-0018-01).

REFERENCES

[1] N. Beebe, The Mathematical Function Handbook. Springer, 2017.
[2] M. O. Saarinen, “Gaussian sampling precision and information leakage

in lattice cryptography,” IACR Cryptology ePrint Archive, 2015.
[3] W. J. Cody, “The FUNPACK package of special function subroutines,”

ACM Transactions on Mathematical Software, vol. 1, no. 1, 1975.
[4] ——, “Rational Chebyshev approximations for the error function,”

Mathematics of Computation, vol. 23, no. 107, 1969.
[5] ——, “Performance evaluation of programs for the error and comple-

mentary error functions,” ACM Transactions on Mathematical Software,
vol. 16, no. 1, pp. 29–37, Mar. 1990.

[6] ——, “Algorithm 715: SPECFUN – a portable FORTRAN package
for special function routines and test drivers,” ACM Transactions on
Mathematical Software, vol. 19, no. 1, pp. 22–32, Mar. 1993.

[7] N. Brunie, F. de Dinechin, O. Kupriianova, and C. Q. Lauter, “Code
generators for mathematical functions,” in 22nd IEEE Symposium on
Computer Arithmetic, 2015, pp. 66–73.

[8] IEEE Computer Society, IEEE Standard for Floating-Point Arithmetic.
IEEE Standard 754-2008, Aug. 2008.

[9] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions
with formulas, graphs and mathematical tables, ser. Applied Math.
Series 55. National Bureau of Standards, Washington, D.C., 1964.

[10] X. Li, J. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar,
W. Kahan, A. Kapur, M. Martin, T. Tung, and D. J. Yoo, “Design,
implementation and testing of extended and mixed precision BLAS,”
Lawrence Berkeley National Laboratory, Tech. Rep. 45991, 2000.

[11] ——, “Design, implementation and testing of extended and mixed
precision BLAS,” ACM Transactions on Mathematical Software, vol. 28,
no. 2, pp. 152–205, 2002.

[12] M. Joldeş, J.-M. Muller, and V. Popescu, “Tight and rigourous error
bounds for basic building blocks of double-word arithmetic,” ACM
Transactions on Mathematical Software, vol. 44, no. 2, Oct. 2017.

[13] Y. Hida, X. S. Li, and D. H. Bailey, “C++/fortran-90 double-double and
quad-double package, release 2.3.17,” Mar. 2012.

[14] J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod, M. Joldes,
V. Lefèvre, G. Melquiond, N. Revol, and S. Torres, Handbook of
Floating-Point Arithmetic. Birkhäuser Boston, 2018.

[15] E. Darulova and A. Volkova, “Sound approximation of programs
with elementary functions,” Tech. Rep., 2018. [Online]. Available:
http://arxiv.org/abs/1811.10274

