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Abstract - This paper contribu tes to the
modeling of vibration of magnetic origin of 
electrical machines. lt is generally difficult to 
calculate the damping matrix of actual mechanical 
structure of electrical machines. Mechanical mode! 
that we present here is known as the modal 
superposition method. It allows us to take ln tu 
account the damplng coefficients of the mechanical 
structure which can be inferred from experience. 
Associated with a numerical code for the 
computation of magnetic force il can be of a great 
help in the predetermination of the vibration of an 
electrical machine. 

L INTRODUCTION 

Nowadays the vast applications of permanent magnet 
machines in industrial area oblige engincers to improve thcir 
efficiency and to reducc thcir acoustic noise emission. 

Design of noiseless permanent magnct machines takes 
sevcral steps. A preliminary design using simple analytical 
expressions of the main elecuomcchanical quantities [ l] such 
as torque and llux gives roughly the main dimensions of the 
machine (airgap value, thickness of magnets, ... ). Tuen other 
paramcters like the number of teeth, the number of poles, the 
type of winding, the shape of magncts must be determined. 
Thcsc paramcters can be vcry important for the vibratory 
behavior of the machine. To make the optimum choice, 
designers must study for each set of these paramctcrs the 
vibrations produced by the machine. Among the different 
type of vibrations produced by an elcctrical machine the one 
of magnetic origin is very important. Many searchers have 
proposed procedures bascd on the coupling of numcrical 
codes for cletromagnetic field and mechanical structure 
analysi,. In spite of improvrncnt in computation speed of 
hardware, simulations still takc a long timc. 

This paper proposes merhod which can simplify designer 
tasks. ln section 1 the gencral proccdure [3-5] is recalled and 
applicd to predict the vibratory behavior of a variable speed 
synchronous motor. Section 2 shows how modal 
superposition method can rcducc simulation time. Finally 
this mcthod is used to charactcrize the magneto-mechanical 
behavior of an elcctrical machine. 

II. COMPUT A TION OF VIBRATION OF MAGNETIC
ÜRJGIN 

Vibrations of rnagnetic origin arc computed by rneans of 
two numerical codes. The: first code is devotcd to caiculatc 
the evolution of magnetic forces applied on the stator. The 
second one is dcvotc,i to calculate the mechanical responsc of 
the stator. 

A. Magnetic Force Calculation

In order to have a good evaluation of the distribution of
rnagnetic forces along stators, forces exerted on teeth and on 
conductors are evaluated. A previous paper [3) has shown 
experimentally that the integration of the surface force 
density given by Maxwell's stress tensor over a surface 
covering partially a tooth leads to magnetic force applied on 
i L 

To obtain evolution of force in timc domain the 
evolution of the clectromagnetic field inside motors must be 
calculatcd. In synchronous rnotors with no damper windings, 
induced currcnts are neglected. Undcr stcady state conditions 
their dynamic operation can be assimilatcd to a succession of 
magnetic statcs govcrned by magnetostatîc equation. For 
each state, which is characterizcd by a position of the rotor 
relatively to the stator, the current density is calculated by 
means of the characteristics of the external power supply 
while magnetic field is computed by mcans of numerical 
method. 

For the general case, a field computation code called 
EFCAD [9] based on the finite clcment metJ10d is used. The 
rotor motion is taken into account by mcans of a rnoving 
band technique. 

For permanent rnagnet synchronous motors without polar 
pieces a spccific procedure [2] has been developed. In this 
case the rotor motion is taken into account by mcans of the 
superposition principle. This method can be employed 
bccause the larninated core is not generally saturated 
(constant permeability) for this kind of motor. Further more 
the rotor has no polar pieces and the permeability of magncts 
are practically cqual to the one of air. Thus the rcluctancc of 
the motor doesn't change during rotor motion. Only one 
inversion of the matrix of rcluctivity of the discretized 
magnetic cquation is needed. An clcmentary source is defined 
for each phase supplied by a unit currcnt and for each 
position of magnets. The actual potential vector solution is 
obtained hy the superposition of each elementary solution 
multiplied by an adcquate coefficient. This method combined 
with symmetry considerations reduce drastically simulation 
time. 

B. Structural Analysis

Whcn finitc element is used, the general equation of
motion of a discrctizcd structure can be expresscd in the 
following form: 

2 

[M] � {x) + [ c] ..4__ (x) + [K] {x} = (F(1)}
dt 

d / (!) 



where {X} is the generalized displacement vector, {F} is the 
generalized equivalent force vector and [KJ, [MJ, [CJ are 
respectively the stiffness matrix, the mass matrix and the 
damping matrix. If the forces applied on the structure are 
pcriodic and if mechanical equations are linear then (1) can be 
solved by first splitting up F(t) in its harmonies then by 
solving complex algebraic system of equations: 

[ [KJ + j Wh [CJ - of h [MJ] {Xh} = {F;,} (2) 

In our problem { F ,J is the complex vector force 
corresponding to harmonie of rank h of magnetic forces, 
{X hl is the complex displacement vector, (J)h is the 
pulsation of the harmonie h. [KJ, [M] and [CJ are real 
matrix. For an actual structure, matrix [CJ is generally 
difficult to calculate. When Wh is far from the resonance 
pulsalion of the structure, damping matrix can be neglectcd. 

C. Application: Prediction of the Vibratory Behavior of
Varaible Speed Permanent Magnet Mocor

In the case of variable speed control, synchronous motors 
are generally self-piloted and supplied by current controlled 
voilage inverter. When the speed of the motor changes while 
the torque is constant, theoretically the current waveshape 
versus rotor position remains the same. For a synchronous 
motor without damper windings this means a!so that ail 
magnetic quantities like flux, torque and force waveshapes 
remain the same. Only their frequency changes. Therefore to 
simulate the vibratory behavior of motor during speed 
variation only one magnetic forces calculation during one 
steady operation is needed. For each harmonie of magnetic 
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Fig. 1. Evolution of magnetic force in the synchronous 
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forces the frequency response of the mechanical structure is 
computed by mcans of equation (2), mh varying from Whmin 
to Whrnax corresponding to the minimum speed and the 
maximum speed of the motor. 

To illustrate this modelling approach, it is applicd to 
calculate the vibrations produced by a permanent magnet 
synchronous motor without polar pieces. This motor has 3 
phases, 4 poles and 36 teeth. Magnetic forces arc calculated 
under steady conditions. The motor is supplied by nominal 
currents at frequency equal Lo 13 Hz. Figure 1 shows the 

, radial and tangential forces applied on 4 successive teeth 
under one pole. Analysis of these curves shows that the 
forces exerted over stator teeth are related by relation: 

F(t) f tooth n = F(t - Ndpp .1t) f tooth n+Ndpp (3) 

wherc .1c is the lime for travelling from toolh n to tooth n+l 
and N dpp is the number of tceth per pole and pcr phase. 

For this mater N dpp is equal LO 3. These results show 
also that the frequency of force are equal to twice the 
electrical frequency. Figure 2 shows for each harmonie the 
picture of distribution of forces along the stator. When 
picture of each distribution is animated, it looks like a swing 
progressive wave rotating at a speed proportional to the rang 
of harmonie. Results show that the distribution shape of 
harmonie of rank h, where h is an integer inferior to the 
number of teeth per pole Nd, is closely similar to the one of 
harmonie of rank (Nd-h) and also to the one of harmonie of 
rank (m,Nd±h) where m is an integer. For the distributed 
motor thcre are only five types of ditribution of the 
harmonies of magnetic forces. Ali of them are displayed on 
figure 2. 



The frequency responsc of the mechanical structure to 
each harmonie of magnetic forces is calculated by means of 
the software EFMEC* which solved the inhomogenous 
cquations (2). As mentionned above and according to many
authors (7],[8], damping matrix [CJ is difficult to calculate
and is commonly neglected. Frequency responses to 
harmonie of rank 1 and 9 are shown on figure 3. Each
response curve presents resonance frequency. The resonance 
frequencies correspond to the natural frequencies of the 
mechanical structure calculated by means of another software 
EFFMP*, which computes eigenvalues and eigenvectors of 
the undamped homogenous equation (2). Figure 4 shows the 
fi vc first mode shapes and the natural frequencies of the stator 
of the studied motor. According to figure 3 and 4, resonance 
frequency appears at the natural frequency of mode 4 if the 
first harmonie of magnetic forces is applied, and at the 
natural frequency of mode O if the 9th harmonie is applied. 
Next section is devoted to make clear relations between 
distribution of forces and frequency response charactcristics. 

III. MüDALSUPERPOSITTON METI-1.0D

In the space of general ized displacement vector {X) of the 
discretizcd structure, the undamped homogenous equation of 
(1) is a standard eigenvalue problcm with the eigenvalues
being the square of natural pulsations and eigenvectors the
corresponding mode shapes. The eigenvectors are orthogonal
with respect to both matrix [MJ and [KJ. And if they are 
normalized the generalized displacement vector {X) and the 
generalized force vector {F} can be exprcssed in the modal
space [5]. For the harmonie of rank h we have:

Nmod, (ii Nm°"' [/ (•))T ] ('1 

{Xh} = L }h,i (x } = L, \X {X•} (x ) (5) 
i==l i=l N..,,.,, r,J Nnwd, [I (•)

}
T ] (,) 

{F.) = I /h,, {x J = L, X {F•) (x ) (6) 
i=l i�1 

whcrc Yh,i.fh,i are the modal component of vector of disp-
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Fig. 3. Evolution of the dynamic response of the stator 

induced two different harmonies of the ma etic forces 

lacements and the vector of forces and { x<i) } is the mode 
vector i. Relations (5) and (6) define the transformation 
matrix transferring physical coordinates to modal coordinates. 
Application of this transformation to equation (1) gives 
equation: 

fmJ {y"J + fcJ {y'J + tiJ {y}= {f} (7) 

where [mJ, {iq and [ cl are matrix defined by relations: 
[mJ=[[xOiJ, ... ,{:x!Nmcde)jjT [MJ [(Jfl)J, ... ,[:J!NrruuiL)Jj 
[/tj =[(:J!l!j , .. ,,[Y!Nmod,)} F {Kj [{:Jfl)j , ... ,[J!Nmode)J J (8) 
[c]=[(:J!IJJ , ... ,[J!Nnwde)J JT [CJ [{J!i/J , ... ,(:JNmode)J J 

[ mJ and [ /tJ are diagonal matrix but [ c J is gencrally not. This 
means that equations of motion in the modal space are 
coupled only by the viscous damping. However, in common 
assumption [ c J is often considcred as a diagonal array the 
componcnts of which are inferrcd from cxpcricnce. Thus the 
equation of motion is decoupled into a set of equations in 
single degree of freedom. Thus for the hth harmonie of 
magnetic force., the equation of motion along the ith mode 
shape is: 

m, 4 Jh,i + Ci A_ Jh.i + /t; Jh,i = /h,i 
dt dt (9) 

From relations (5) and (6) and the complex form of 
equation (9) the following equation is dcduccd: 

{X.]= [G(ùl.)] /F,,) (JO) 
where [G( roh) J is the transfer matrix of the mechanical 
structure which can be expressed by; 

[ G(.,.)]=J / , ( 1
,

) 
(x ")()' •n 

\ ffl.i li); 1- ü)� +j Ci Wh f (11)
\ Wi 

In this expression mi, üJi, and Ci are rcspectively the 
generalized mass, natural pulsation and the damping 
coefficient of mode i. 

Table 1 gives for some harmonies of magnetic forces 
their modal components fh,i- According to this table 
harmonie of rank 1 excites more probably the mode 4 and 
harmonie of rank 9 excites the mode zero. These results are 
consistent wit.h the dynamic response frequency displayed on 
figure 3. 

mode harmonies of the forces 
shaoes 1 2 6 9 12 

2 l.9xl0·' 1.6x10·" 2.5xto·" 2.0x10· J 9.JxJO·O
3 2.1x10·" 2.sx10·" l.lx!O., 3.0x!O· :- 6.5xJo· J 

- 0.1780 .. .I.Ox!O-T -�-:-::::-:î --·-

4 14.951 l.Sxl0 2.5xl0· 4 
5 3.8x10-" 5.9xl0· J 3.4x 10· 4 1.4d0. J 3.2xl0· 4 
6 -l.7xl0·,; l.3xl0· j 2.8x 10· j 6.tx!O"" 2.1x10· 4 

0 l.2x10· :l 1.lxl0-2 2.lxtü· 2 0.457 3.6xlo· 3
Table l: amplitude of the harnumic of magnetic forces of an 

electrical machine in the space of ils mode shapes 



From equation (10) the frequency response to each 
harmonie can be again calculated this time by taking into 
account the viscous damping of each mode. Figure 5 shows 
results for harmonies of rank 1 and 9 of magnetic forces for 
three values of the damping factor of mode 4 and 0, the other 
factors are fixed to a random constant between 0.01 and 0.2. 
These results are similar to results shown on figure (3) 
except that resonance peaks are not infinite and resonance 
frequencies are a bit different from natural frequencies. 
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Fig.5. Dynarnic response frequency determined by the modal 
su sition rnethod 

Using equation (10) and (11) can predict the vibration of 
the mechanical structure. Nevertheless, their utilisation must 
be made carefully because numerical problems may occur. 
These problems are due to the fact that to perform this 
computation only the first modes are taken into account, 
lûgher modes are neglected. 

In fact in a design procedure, these last simulations are 
not necessary because table 1 synthesizes very well the 
studied mechanical behavior. This saves much computation 
time because only mode shapes, natural frequencies and the 
modal components of force have to be calculated. 

Û)NCWSION 

Using the method of modal superposition for calculating 
the vibration level of an electrical machine structure, the 
designers are free from calculating its displacement by the 
mechanical motion equation. In tlûs calculation they can also 
consider the coefficient damping of the structure. For this, 
we have to determine accurately the mode shapes of the stator 
that can be done at once and it allows us to reduce the total 
computation time. Moreover, the present paper gives a new 
conception of the distribution form of the magnetic forces 
over the stator. Knowing of these distribution forms leads to 
distinguish the excitation mode of the stator produced by the 
magnetic force harmonies. 
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