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ELECTRO-MAGNETO-MECHANICAL CHARACTERIZATIONS OF THE VIBRATION OF MAGNETIC ORIGIN OF ELECTRICAL MACHINES

This paper contribu tes to the modeling of vibration of magnetic origin of electrical machines. lt is generally difficult to calculate the damping matrix of actual mechanical structure of electrical machines. Mechanical mode! that we present here is known as the modal superposition method. It allows us to take ln tu account the damplng coefficients of the mechanical structure which can be inferred from experience. Associated with a numerical code for the computation of magnetic force il can be of a great help in the predetermination of the vibration of an electrical machine.

L INTRODUCTION

Nowadays the vast applications of permanent magnet machines in industrial area oblige engincers to improve thcir efficiency and to reducc thcir acoustic noise emission.

Design of noiseless permanent magnct machines takes sevcral steps. A preliminary design using simple analytical expressions of the main elecuomcchanical quantities [ l] such as torque and llux gives roughly the main dimensions of the machine (airgap value, thickness of magnets, ... ). Tuen other paramcters like the number of teeth, the number of poles, the type of winding, the shape of magncts must be determined. Thcsc paramcters can be vcry important for the vibratory behavior of the machine. To make the optimum choice, designers must study for each set of these paramctcrs the vibrations produced by the machine. Among the different type of vibrations produced by an elcctrical machine the one of magnetic origin is very important. Many searchers have proposed procedures bascd on the coupling of numcrical codes for cletromagnetic field and mechanical structure analysi,. In spite of improvrncnt in computation speed of hardware, simulations still takc a long timc.

This paper proposes merhod which can simplify designer tasks. ln section 1 the gencral proccdure [START_REF] Lefèvre | Determination of synchronous motor vibrations due 1o electromagnetic force harmonies[END_REF][START_REF] Henneberger | Procedure for the numerical computation of mechanical vibrations in elctrical machine[END_REF][START_REF] Benbouzid | Finite element modeling of a synchronous machine: Electromagnetic forces and mode shapes[END_REF] is recalled and applicd to predict the vibratory behavior of a variable speed synchronous motor. Section 2 shows how modal superposition method can rcducc simulation time. Finally this mcthod is used to charactcrize the magneto-mechanical behavior of an elcctrical machine.

II. COMPUT A TION OF VIBRATION OF MAGNETIC ÜRJGIN

Vibrations of rnagnetic origin arc computed by rneans of two numerical codes. The: first code is devotcd to caiculatc the evolution of magnetic forces applied on the stator. The second one is dcvotc,i to calculate the mechanical responsc of the stator.

A. Magnetic Force Calculation

In order to have a good evaluation of the distribution of rnagnetic forces along stators, forces exerted on teeth and on conductors are evaluated. A previous paper [START_REF] Lefèvre | Determination of synchronous motor vibrations due 1o electromagnetic force harmonies[END_REF] has shown experimentally that the integration of the surface force density given by Maxwell's stress tensor over a surface covering partially a tooth leads to magnetic force applied on i L

To obtain evolution of force in timc domain the evolution of the clectromagnetic field inside motors must be calculatcd. In synchronous rnotors with no damper windings, induced currcnts are neglected. Undcr stcady state conditions their dynamic operation can be assimilatcd to a succession of magnetic statcs govcrned by magnetostatîc equation. For each state, which is characterizcd by a position of the rotor relatively to the stator, the current density is calculated by means of the characteristics of the external power supply while magnetic field is computed by mcans of numerical method.

For the general case, a field computation code called EFCAD [START_REF] Sadowski | Modélisation des machines électriques à pàrtir de la résolution des équations du champ en tenant compte du mouvement et du circuit d'alimentation (Logiciel EFCAD)[END_REF] based on the finite clcment metJ10d is used. The rotor motion is taken into account by mcans of a rnoving band technique.

For permanent rnagnet synchronous motors without polar pieces a spccific procedure [START_REF] Javadi | Procédure spécifique pour modélisation et le calcul des vibrations d'origine magnétique dans une machine électrique[END_REF] has been developed. In this case the rotor motion is taken into account by mcans of the superposition principle. This method can be employed bccause the larninated core is not generally saturated (constant permeability) for this kind of motor. Further more the rotor has no polar pieces and the permeability of magncts are practically cqual to the one of air. Thus the rcluctancc of the motor doesn't change during rotor motion. Only one inversion of the matrix of rcluctivity of the discretized magnetic cquation is needed. An clcmentary source is defined for each phase supplied by a unit currcnt and for each position of magnets. The actual potential vector solution is obtained hy the superposition of each elementary solution multiplied by an adcquate coefficient. This method combined with symmetry considerations reduce drastically simulation time.

B. Structural Analysis

Whcn finitc element is used, the general equation of motion of a discrctizcd structure can be expresscd in the following form:

2 [M] � {x) + [ c] ..4__ (x) + [K] {x} = (F(1)} dt d / (!)
where {X} is the generalized displacement vector, {F} is the generalized equivalent force vector and [KJ, [MJ, [CJ are respectively the stiffness matrix, the mass matrix and the damping matrix. If the forces applied on the structure are pcriodic and if mechanical equations are linear then (1) can be solved by first splitting up F(t) in its harmonies then by solving complex algebraic system of equations:

[ [KJ + j Wh [CJ -of h [MJ] {Xh} = {F;,} (2) 
In our problem { F ,J is the complex vector force corresponding to harmonie of rank h of magnetic forces, {X hl is the complex displacement vector, (J)h is the pulsation of the harmonie h. [KJ, [M] and [CJ are real matrix. For an actual structure, matrix [CJ is generally difficult to calculate. When Wh is far from the resonance pulsalion of the structure, damping matrix can be neglectcd.

C. Application: Prediction of the Vibratory Behavior of Varaible Speed Permanent Magnet Mocor

In the case of variable speed control, synchronous motors are generally self-piloted and supplied by current controlled voilage inverter. When the speed of the motor changes while the torque is constant, theoretically the current waveshape versus rotor position remains the same. For a synchronous motor without damper windings this means a!so that ail magnetic quantities like flux, torque and force waveshapes remain the same. Only their frequency changes. Therefore to simulate the vibratory behavior of motor during speed variation only one magnetic forces calculation during one steady operation is needed. For each harmonie of magnetic forces the frequency response of the mechanical structure is computed by mcans of equation ( 2), mh varying from Whmin to Wh rnax corresponding to the minimum speed and the maximum speed of the motor.

To illustrate this modelling approach, it is applicd to calculate the vibrations produced by a permanent magnet synchronous motor without polar pieces. This motor has 3 phases, 4 poles and 36 teeth. Magnetic forces arc calculated under steady conditions. The motor is supplied by nominal currents at frequency equal Lo 13 Hz. Figure 1 shows the , radial and tangential forces applied on 4 successive teeth under one pole. Analysis of these curves shows that the forces exerted over stator teeth are related by relation:

F( t ) f toot h n = F( t -Ndp p .1 t ) f tooth n +Nd pp ( 3 )
wherc .1c is the lime for travelling from toolh n to tooth n+l and N dpp is the number of tceth per pole and pcr phase.

For this mater N d pp is equal LO 3. These results show also that the frequency of force are equal to twice the electrical frequency. Figure 2 shows for each harmonie the picture of distribution of forces along the stator. When picture of each distribution is animated, it looks like a swing progressive wave rotating at a speed proportional to the rang of harmonie. Results show that the distribution shape of harmonie of rank h, where h is an integer inferior to the number of teeth per pole Nd, is closely similar to the one of harmonie of rank (Nd-h) and also to the one of harmonie of rank (m, Nd ±h) where m is an integer. For the distributed motor thcre are only five types of ditribution of the harmonies of magnetic forces. Ali of them are displayed on figure 2.

The frequency responsc of the mechanical structure to each harmonie of magnetic forces is calculated by means of the software EFMEC* which solved the inhomogenous cquations (2). As mentionned above and according to many authors (7], [START_REF] Morel | Vibrations des machines et diagnostic de leur état mécanique[END_REF], damping matrix [CJ is difficult to calculate and is commonly neglected. Frequency responses to harmonie of rank 1 and 9 are shown on figure 3. Each response curve presents resonance frequency. The resonance frequencies correspond to the natural frequencies of the mechanical structure calculated by means of another software EFFMP*, which computes eigenvalues and eigenvectors of the undamped homogenous equation [START_REF] Javadi | Procédure spécifique pour modélisation et le calcul des vibrations d'origine magnétique dans une machine électrique[END_REF]. Figure 4 shows the fi vc first mode shapes and the natural frequencies of the stator of the studied motor. According to figure 3 and4, resonance frequency appears at the natural frequency of mode 4 if the first harmonie of magnetic forces is applied, and at the natural frequency of mode O if the 9th harmonie is applied. Next section is devoted to make clear relations between distribution of forces and frequency response charactcristics.

III. MüDALSUPERPOSITTON METI-1.0D

In the space of general ized displacement vector {X) of the discretizcd structure, the undamped homogenous equation of ( 1) is a standard eigenvalue problcm with the eigenvalues being the square of natural pulsations and eigenvectors the corresponding mode shapes. The eigenvectors are orthogonal with respect to both matrix [MJ and [KJ. And if they are normalized the generalized displacement vector {X) and the generalized force vector {F} can be exprcssed in the modal space [START_REF] Benbouzid | Finite element modeling of a synchronous machine: Electromagnetic forces and mode shapes[END_REF]. For the harmonie of rank h we have: [c]=[(:J!IJJ , ... ,[J!Nnwde)J JT [CJ [{J!i/J , ... ,(:JNmode)J J

Nmod, (ii Nm°"' [/ (•))T ] ('1 {Xh} = L }h,i (x } = L, \X {X•} (x ) (5) 
[ mJ and [ /tJ are diagonal matrix but [ c J is gencrally not. This means that equations of motion in the modal space are coupled only by the viscous damping. However, in common assumption [ c J is often considcred as a diagonal array the componcnts of which are inferrcd from cxpcricnce. Thus the equation of motion is decoupled into a set of equations in single degree of freedom. Thus for the h th harmonie of magnetic force. , the equation of motion along the i th mode shape is: m, 4 Jh,i + Ci A_ Jh.i + /t; Jh,i = /h,i dt dt [START_REF] Sadowski | Modélisation des machines électriques à pàrtir de la résolution des équations du champ en tenant compte du mouvement et du circuit d'alimentation (Logiciel EFCAD)[END_REF] From relations ( 5) and ( 6) and the complex form of equation ( 9) the following equation is dcduccd:

{X.]= [G(ùl.)] /F,,) (JO) 
where [G( ro h ) J is the transfer matrix of the mechanical structure which can be expressed by;

[ G(.,.)] =J / , ( 1 , )

(x ")()' • n \ ffl.i li); 1-ü)� +j Ci Wh f (11) \ Wi
In this expression mi, üJi, and Ci are rcspectively the generalized mass, natural pulsation and the damping coefficient of mode i.

Table 1 gives for some harmonies of magnetic forces their modal components fh,i-According to this table harmonie of rank 1 excites more probably the mode 4 and harmonie of rank 9 excites the mode zero. These results are consistent wit.h the dynamic response frequency displayed on figure 3. Using equation ( 10) and (11) can predict the vibration of the mechanical structure. Nevertheless, their utilisation must be made carefully because numerical problems may occur. These problems are due to the fact that to perform this computation only the first modes are taken into account, lûgher modes are neglected.

In fact in a design procedure, these last simulations are not necessary because table 1 synthesizes very well the studied mechanical behavior. This saves much computation time because only mode shapes, natural frequencies and the modal components of force have to be calculated.

Û)NCWSI ON

Using the method of modal superposition for calculating the vibration level of an electrical machine structure, the designers are free from calculating its displacement by the mechanical motion equation. In tlûs calculation they can also consider the coefficient damping of the structure. For this, we have to determine accurately the mode shapes of the stator that can be done at once and it allows us to reduce the total computation time. Moreover, the present paper gives a new conception of the distribution form of the magnetic forces over the stator. Knowing of these distribution forms leads to distinguish the excitation mode of the stator produced by the magnetic force harmonies.
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