
HAL Id: hal-02002078
https://hal.science/hal-02002078

Submitted on 31 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Eliciting Worker Preference for Task Completion
Mohammad Esfandiari, Senjuti Basu Roy, Sihem Amer-Yahia

To cite this version:
Mohammad Esfandiari, Senjuti Basu Roy, Sihem Amer-Yahia. Eliciting Worker Preference for Task
Completion. International Conference on Information and Knowledge Management, Oct 2018, Torino,
Italy. �hal-02002078�

https://hal.science/hal-02002078
https://hal.archives-ouvertes.fr

Eliciting Worker Preference for Task Completion
Mohammad Esfandiari #1, Senjuti Basu Roy #1, Sihem Amer-Yahia ∗2

NJIT, USA 1 me76@njit.edu, senjutib@njit.edu
∗ Univ. Grenoble Alpes, CNRS, LIG, France

2 sihem.amer-yahia@univ-grenoble-alpes.fr

Abstract—Current crowdsourcing platforms provide little sup-
port for worker feedback. Workers are sometimes invited to
post free text describing their experience and preferences in
completing tasks. They can also use forums such as Turker
Nation1 to exchange preferences on tasks and requesters. In fact,
crowdsourcing platforms rely heavily on observing workers and
inferring their preferences implicitly. In this work, we believe
that asking workers to indicate their preferences explicitly improve
their experience in task completion and hence, the quality of their
contributions. Explicit elicitation can indeed help to build more
accurate worker models for task completion that captures the
evolving nature of worker preferences. We design a worker model
whose accuracy is improved iteratively by requesting preferences
for task factors such as required skills, task payment, and task
relevance. We propose a generic framework, develop efficient
solutions in realistic scenarios, and run extensive experiments
that show the benefit of explicit preference elicitation over implicit
ones with statistical significance.

I. INTRODUCTION

The main actors of a crowdsourcing platform are tasks and
workers who complete them. A range of studies point out the
importance of designing incentive schemes, other than finan-
cial ones, to encourage workers during task completion [1],
[2]. In particular, it is expected that a crowdsourcing system
should “achieve both effective task completion and worker
satisfaction”. The ability to characterize the workforce with
factors that influence task completion is recognized to be
of great importance in building such a system [3], [4], [5],
[6], [7], [8], [9], [10], [11]. Those efforts have focused on
implicitly observing workers and inferring their preferences. In
this paper, we argue that solely relying on implicit observations
does not suffice and propose to elicit preferences from workers
explicitly, as they complete tasks. Any computational model,
designed for the workers to understand their task completion
likelihood needs to consume worker preference. The evolving
nature of worker preference requires to periodically ask work-
ers and refine such models. To the best of our knowledge, this
work is the first to examine the benefit of explicit preference
elicitation from workers and its impact on effective task
completion. Our proposed approach of explicit preference
elicitation does not incur additional burden to the workers;
in fact, platforms such as, Amazon Mechanical Turk2 already
seek worker feedback in the form of free text. Our effort is to
judiciously select questions for elicitation in a stuctured and
holistic fashion.

1http://turkernation.com/
2https://www.mturk.com/

In this paper, our objective is to design a framework that
advocates for explicit preference elicitation from workers to
develop a model that guides task completion. That differs
from developing solutions for task assignment. The objective
behind preference elicitation is to use obtained feedback to
effectively maintain a Worker Model. Given a task t that a
worker w undertakes (either via self-appointment or via an
assignment algorithm), there could be one of two possible
outcomes : 1. the task is completed successfully. 2. otherwise.
In reality, worker preferences are latent, i.e., they are to
be inferred through task factors and task outcomes. Popular
platforms, such as Mechanical Turk or Prolific Academic,3,
have characterized tasks using factors, such as type, payment
and duration. While our framework is capable to consume any
available task factors, our effort nevertheless is to propose a
generic solution that characterizes workers by understanding
their preferences for a given set of task factors [3], [4].

Our overarching goal is to seek feedback from workers to
effectively maintain a Worker Model for task completion. To
achieve this goal, the first challenge is to define an accurate
model that predicts, per worker, how much each task factor is
responsible for the successful completion of that task or for
its failure. We propose to bootstrap this model by selecting
a small set of tasks a worker needs to complete initially to
learn her model. An equally important challenge is to update
the Worker Model, as workers complete tasks. Indeed, unless
that model is updated periodically, it is likely to become
outdated, as worker’s preferences evolve over time. To update
the model, we advocate the need to explicitly elicit from a
worker her preferences. That is a departure from the literature
where workers are observed and their preferences computed
implicitly. We claim that the explicit elicitation of preferences
results in a more accurate Worker Model. Preferences are
elicited via the Question Selector that selects a set of k task
factors and asks a worker w to rank them. For example, a
worker may be asked “Rank task relevance and payment”. A
higher rank for payment will indicate the worker’s preference
for high paying tasks over those most relevant to her profile.
Once the worker provides her preference, the Worker Model
is updated with the help of the Preference Aggregator.
Question Selector and Preference Aggregator constitute the
two computational problems of our framework.

Worker Model. Our natural choice is to use a graphical
model [12], such as a Bayesian Network where each node

3https://www.prolific.ac/

ar
X

iv
:1

80
1.

03
23

3v
1

 [
cs

.D
B

]
 1

0
Ja

n
20

18

h
https://www.mturk.com/
https://www.prolific.ac/

is a random variable (task factors/worker preference/task out-
come) and the structure of the graph expresses the conditional
dependence between those variables. The observed variables
are task factors and task outcomes and the Worker Model
contains worker preferences in the form of latent variables
that are inferred through that model. It is however known
that structure learning in Bayesian Network is NP-hard [12]
and that the parameters could be estimated through methods
such as Expectation Maximization, that also are computa-
tionally expensive. As both Question Selector and Prefer-
ence Aggregator have to invoke the model many times, it
becomes prohibitively expensive to use it in real time. We
therefore propose a simplified model that has a one-to-one
correspondence between task factors and worker preference.
The preference of a worker for a task factor is construed as a
weight and the Worker Model becomes a linear combination
of the task factors. This simplification allows us to design
efficient solutions.

Question Selector. The question selector intends to select
the k-task factors whose removal maximizes the improvement
of the Worker Model F . The idea is to present those uncertain
factors to the worker and seek her explicit preference. We
prove that optimally selecting k questions, i.e., k task factors
for a worker, is NP-hard, even when the Worker Model is
linear. We develop an efficient alternative using an iterative
greedy algorithm that has a provable approximation bound.

Preference Aggregator. The second technical problem is to
update the Worker Model with the elicited preference. Given
a set of k task factors, worker w provides an absolute order
on these factors. The obtained ranking is expressed as a set
of k(k − 1)/2 pairwise linear constraints, as i > j, i > l,
etc. We design an algorithm that updates the Worker Model
using the same optimization function as the one used to build it
initially, modified by adding those constraints. With a Bayesian
Network as the underlying model, the addition of dummy
variables would encode the constraints aptly. However, with
one variable per constraint, the solution would not scale. For
the simplified linear Worker Model, we add them as pairwise
linear constraints. The problem then becomes a constrained
least squares problem that could be solved optimally in poly-
nomial time.

We run experiments that measure the accuracy of our
model and the scalability of our approach with real tasks
and workers: 165, 168 tasks from CrowdFlower involving 58
workers from Amazon Mechanical Turk. We measure the
accuracy of the Worker Model against several baselines: a
random selection of which task factors to invoke preferences
for, and implicit preference computation [13]. We show that
soliciting preferences explicitly and using them to update the
model greatly reduces error and largely outperforms implicit
solutions with statistical significance. We also show that our
approach scales well.

In summary, our contributions are:

• Problem Formalism (Section II): A framework that has a
Worker Model that captures, per worker, her preference
for task factors to predict the likelihood of task comple-

tion. We present an innovative formulation to bootstrap
the model. An important aspect of the model is that it
could be easily adapted to other crowdsourcing processes,
such as, task assignment or worker compensation. We
present two core problems around the model: Question
Selector that asks a worker to rank the k task factors
that cause the highest error in the model, and Preference
Aggregator that updates the model with elicited prefer-
ences.

• Technical Results (Section III): We study the hardness
of our problems and their reformulation under realistic
assumptions, as well as design efficient solutions with
provable guarantees.

• Experimental Results (Section IV): We present extensive
experiments that corroborate that explicit preference elic-
itation outperforms implicit preferences [13], and that our
framework scales well.

II. FORMALISM AND FRAMEWORK

We present our formalism, following which we provide an
overview of the proposed framework and the problems we
tackle.

Example 1: We are given a set of tasks, where each task is
characterized by a set of factors (e.g., type, payoff, duration are
some examples). A task could be of different types, such as,
image tagging, ranking, sentiment analysis. Payoff determines
the $ value the workers receives as payment, whereas, duration
is an indication of the time a worker needs to complete that
task. Generalizing this, one can imagine that each task could
be described as a vector of different factors and a set of tasks
together gives rise to a task factor matrix T f . One such matrix
of 6 tasks is presented below:

id tagging ranking sentiment payoff duration outcome
t1 1 0 0 high long 1
t2 1 0 0 low short 0
t3 0 1 0 low short 1
t4 0 1 0 low long 0
t5 0 0 1 high short 1
t6 0 0 1 high long 0

Given a task t that a worker w undertakes (either via self-
appointment or via an assignment algorithm), there could be
one of two possible outcomes : 1. the task is completed
successfully (denoted by 1). 2. otherwise (denoted by 0). The
last column of the task factor matrix indicates outcomes of
each of the tasks. These could be known from prior history or
predicted using a mathematical model.

A. Formalism

Task Factors. In a crowdsourcing platform, each task t in a
set of n given tasks T = {t1, ..., tn} is characterized by a set
of m factors whose values are either explicitly present or could
be extracted. For this work, we assume that for a task t, its
factors give rise to a vector ~tf that is given and we do not focus
on how to obtain them. This gives rise to the task-factor matrix
T f of dimension n × m. For the simplicity of exposition,
task factors are presented as binary, although our proposed
solutions adapt when they are continuous or categorical.

Using Example 1, the task factor matrix consists of 6 tasks
and each task is described by 5 factors.

Worker Preferences. The preferences of a worker w are
represented by a vector ~wf of length p that takes real val-
ues and determines the preferences of w for tasks. Using
Example 1, ~wf could be represented as latent variables,
such as, {skill, motivation, reputation}. The correspondence
between task factors and worker preference is surjective (e.g.,
task type → skill, {duration, payoff} → motivation). Worker
preference variables cannot be observed and must be inferred.

Explicit Questions. An explicit question is asked to elicit
w’s preference on a particular task factor, as the tasks dictate
worker preference and hence her performance thereof. In fact,
there is an one to one correspondence between the questions
and task factors. A set of k questions is asked to obtain
a preferred order among a set of k task factors (where k
is part of the input). As an example, one may ask to rank
“task duration, tagging tasks, ranking tasks, sentiment analysis
tasks, payment”. A worker provides an absolute order among
these 5 factors as her preference. The ranking can be simply
interpreted as the worker’s preference for the first factor
followed by the second, etc. For example, if the worker ranks
payment first, she means a preference for high paying tasks to
any others including those most relevant to her profile.

B. Framework and Challenges

We propose an iterative framework (refer to Figure 1) that
is designed to ask personalized questions to a worker to elicit
her preference in a crowdsourcing platform. The rationale for
our proposal is that while task factors are stable, a worker’s
preference evolves as workers undertake tasks. Workers’ skills
improve as they complete tasks and their motivation varies
during task completion [10], [13]. How to define an iteration
is orthogonal to our problem. Indeed, an iteration could be
defined by discretizing time into equal-sized windows, by
the number of available/completed tasks, by the number of
workers, or a combination thereof. We will see in Section IV
how we define an iteration in our experiments.

Central to our framework is a model F that consumes task
factors and given a worker’s history, infers her preference
vector to predict the outcome of a new task to be undertaken
by her. Even though we develop a worker model to predict
task completion quality, this information could be used in
many places to characterize the workforce of a crowdsourc-
ing platform and enable several improvements such as the
analysis of workers’ fatigue [10] and motivation, as well as
task assignment [14], [15], [16], [17], [13]. However, unless
the Worker Model is refreshed or updated periodically, it
is likely to become outdated, as worker preference evolves
over time [10], [4], [13]. To update the model, one has
to periodically invoke an explicit preference elicitation step
through Question Selector that selects a set of k task factors
and asks worker w to rank them. Once the worker provides her
preference, the Worker Model is updated by the Preference
Aggregator. These two components form the heart of our
computational challenges. The first is to quickly select the bst

Notation Definition
T a set of tasks {t1, . . . , tn}
~tf a vector describing task factors
T f task factor matrix
~wf worker w’s preference vector
Q a set of questions (task factors)
Qs a set of selected k questions
tO a label signaling task outcome
T O labels signaling task outcomes of a set T
B a set of b tasks for bootstrapping
E reconstruction error of the model F

TABLE I
TABLE OF IMPORTANT NOTATIONS

Task%Factor%
Matrix%

Bootstrap%
Model%F%

Worker%
Model%F%

Bootstrap
%budget%b%

Selected%b%
tasks%

w%completes%
bootstrap%set%
B%of%tasks%

Preference%
Aggregator%

Ques@ons%%
Selector%

Worker%
%%%%w%

When%
invoked%

Number%of%
ques@ons%k%

Explicit%
Preference%
Elicita@on%

Selected%k%
ques@ons%

Updated%
Model%F%

Fig. 1. Explicit Preference Elicitation Framework

set of k factos to invoke feedback for. The second is to quickly
relearn the model while satisfying the answers the worker has
provided.

The remainder of the paper focuses on a particular worker
w, unless otherwise stated - i.e., each of the components of
the framework is designed or invoked for her.
C. Problem Definitions

Worker Model. Given the task factor matrix T f of a set
of tasks T , where each task t is associated with a known
outcome (tO = 1/0 successfully completed or not), the Worker
Model F estimates the preference vector ~wf of a worker w.
F is a function of T f and ~wf , denoted as T f ⊗ ~wf . The
correctness of F is estimated using its reconstruction error,
i.e., E(T O − (T f ⊗ ~wf)) is minimized.

Once the model is built, it can predict the outcome of a
task undertaken by w. On Example 1, the model predicts the
likely outcome of each of the 6 tasks, by consuming T f and
inferring ~wf .

Bootstrapping. Initially, as no past history of a worker w is
available, she is treated akin to a “cold user” and the bootstrap
process selects a subset of tasks, B ⊂ T to be completed
by w. The size of B, denoted by b, is given as a budget
to bootstrapping. The idea is to leverage the contributions
of w for those b tasks to estimate her preference and build
the Worker Model F . During bootstrapping, the algorithm is
offline, i.e., it apriori decides all b tasks, without actually

observing outcomes of tasks completed by w. For that, it
selects the b tasks whose feedback minimizes the expected
reconstruction error over the remaining T − B tasks, i.e.,
E((T − B)O − ((T − B)f ⊗ ~wf)) is minimized. The same
approach is adopted in subsequent steps to refine F .

Given Example 1 with b = 3, the objective would be to
select 3 tasks that minimize the expected reconstruction error.

We are now ready to describe the two fundamental problems
that our system needs to solve.

Question Selector. This module selects the best set of k
questions for a worker w. The objective is to select those task
factors that are responsible for the model’s inaccuracy, i.e., re-
moving them would improve the most the reconstruction error
of F . Let E denote the current reconstruction error of F and
Ê denote it when k task factors are removed. Given Q, the k
questions are selected such that the model reconstruction error
improves the most, i.e., argmax{Qs∈Q:|Qs|=k}(E − Êm−Qs).

Using Example 1, if k = 2, this will select any two of the
five task factors in the task factor matrix.

Preference Aggregator. The preferences P provided by a
worker for task factors, could be expressed as a set of k(k −
1)/2 pairwise linear constraints of the form, i > j, i > l,
j > l. Worker’s preferences are taken as hard constraints.
Given P , the objective is to relearn F that satisfies P such that
its reconstruction error is minimized. The objective therefore
is to minimize E(T O − (T f ⊗ ~wf)) such that the constraints
in P are satisfied.

Using Example 1, if worker w explicitly states that she
prefers annotation tasks to ranking tasks, this prefer-
ence is translated into constraints expressed on the worker
preference vector. Those are then used by the preference
aggregator to update F .

III. SOLUTIONS

We now propose a generic approach for building and
bootstrapping the Worker Model and for solving the two
computational problems enunciated in Section II, namely,
Question Selector and Preference Aggregator. In each case,
we present our generic approach and then develop a simplified,
yet realistic framework, that enables efficient solutions with
theoretical guarantees.

A. Worker Model

As described in Section II-B, central to our framework
is a supervised model F , designed for a worker w, that
consumes task factors and predicts task outcomes by inferring
w’s preferences for those factors. There are several machine
learning models that could potentially be used. A natural
choice is a probabilistic graphic model [12], such as, Bayesian
Networks, where each node is a random variable (task fac-
tors/worker preferences/task outcome) and the structure of the
graph expresses the conditional dependence between them. In
particular, it could be expressed as a Bayesian Network, which
is represented as a directed acyclic graph (DAG). As described
in Figure 2, the observed variables are task factors and task
outcomes and the worker preferences are captured as latent
variables that are inferred.

Furthermore, we can impose constraints, such as, the task
factors are independent from each other, and the worker
preference variables are correlated/not, or the worker prefer-
ence variables determine task outcomes, which are in turn
dependent on the task factors. Given a set of tasks, each
with an outcome and associated vector of factors, the model
F corresponds to the factorization of the joint probability
distribution over these variables:

Pr(task factors, worker preferences, outcome) =
Pr(outcome|worker preferences)×

p∏
i=1

Pr(worker preference i|parent task factors of i)

×
m∏
j=1

Pr(task factor j)

(1)

There are two primary computational difficulties when
building F : learning the structure of the graph and estimating
parameters to obtain a probability distribution at each node.
The overall objective is to minimize reconstruction error. Once
the model is built, we use it for inference, i.e., it will infer the
probability distribution over a worker’s preference, given the
values of task factors and task outcomes.

The proposed non-linear model is prohibitively expensive
to compute. The structure learning part is known to be NP-
hard [12] while the parameters could be estimated through
methods such as Expectation Maximization, also computation-
ally expensive. The known efficient algorithms that propose a
workaround are primarily heuristics [18] without approxima-
tion guarantees.

Therefore, we suggest to simplify our model under the
assumption that the preference of a worker for a task factor
is a weight and the Worker Model is a linear combination
of a given set of task factors. As a result, the Worker Model
can be expressed as a linear regression function. A one-to-one
correspondence between task factors and worker preferences
(# task factors = length of ~wf , i.e., p = m) would treat worker
preferences as weights that are to be estimated. The model
takes the form,

T O = ~wf × T f

Given the task factor matrix T f and the observed task outcome
vector T O, the objective is to estimate ~wf , such that the
reconstruction error is minimized, i.e.,

argmin
~wf∈Rm

||T O − ~wf × T f ||2 (2)

Algorithm for Worker Model. As long as the task factor
matrix T f is invertible, or could be inverted by adding
an additional term [19], the objective function expressed in
Equation 2 has an equivalent and alternative representation
of the form (T fTT f)

−1
T fTT O, where (T fTT f)

−1
T fT is

known as the Moore-Penrose pseudo-inverse matrix of T f .
The proof could be found in [20].

We design an ordinary least squares (OLS) [21] solution to
estimate the regression coefficient or worker preferences ~wf .

Task%Factors%

Worker%%
Preferences%

Task%Outcome%

4444444444444444444%

%%%%%444444444444%

Fig. 2. Worker Model

It first transforms the objective function in Equation 2 to a
Moore-Penrose pseudo-inverse matrix of T f . This equivalent
representation is proved to have a global minimum, hence
the obtained OLS estimator is optimal. The overall running
time of OLS is dictated by matrix multiplication (multiplying
(T fTT f), Matrix inversion (inverting T fTT f)

−1
, followed

by matrix multiplication (to obtain (T fTT f)
−1
T fT), and a

final matrix multiplication (to obtain (T fTT f)
−1
T fT). The

asymptotic complexity is O(m2n+m3).
Bootstrapping the Worker Model. Unfortunately, the

Worker Model can not be built for a brand new worker,
who has not completed any task before in the platform. For
such workers, we propose to bootstrap the Worker Model.
Bootstrapping is a common practice in recommender systems
and is adopted by largely used platforms such as Netflix and
MovieLens.4. The objective in our case is to select the set
of tasks B and learn the Worker Model F that minimizes the
expected reconstruction error over the remaining T −B tasks.
For a selected set of b tasks, we compute a set of 2b Worker
Models, where each model is learned by encoding one of the
2b possible combinations of the task outcomes, and capturing
the reconstruction error over the remaining set of T − B
based on the learned model. This gives rise to a bootstrapping
tree with 2b branches, as the one shown in Figure 3. Each
branch is associated with a probability value that represents
the probability of that combination of b task outcomes. As an
example, in Figure 3, the leftmost branch captures the model
where all three tasks would have a successful completion, the
branch represents that probability, and the corresponding leaf
represents the reconstruction error.

Generic and Simplified Probability Model for Boot-
strapping. To capture the probability of a branch in the
bootstrap tree, we need to calculate the probability of success-
ful/unsuccessful outcome of each task by the “cold” worker.
Technically, we are interested to compute Pr(t0 = 1|~tf , w)
(probability of successful completion) and Pr(t0 = 0|~tf , w)
(probability of unsuccessful completion). In a real crowd-
sourcing platform, however, there is little to no information
available about a new worker that could be potentially used to
capture similarity between her and other existing workers in

4https://www.netflix.com/,https://movielens.org/

the system. Thus, the only way to obtain this information is to
see if there are past tasks with similar characteristics (although
undertaken by different workers) and analyze the outcome of
those tasks. Therefore, these values should rather rely only
on task factors, Pr(t0 = 1|~tf) and Pr(t0 = 0|~tf) should
be computed as the joint distribution of the task factors and
outcomes. Using Example 1, if we assume that the task factors,
such as, duration, payoff, and the task types are correlated
with each other, then the outcome of a task relies on the joint
distribution over these factors.

The optimal solution of this problem could be obtained by
computing the joint distribution using a structure similar to
a contingency table where each cell represents a possible set
of values for each of the m task factors and the value of
that cell represents the probability of successful completion.
Classical algorithms such as iterative proportional fitting (or
IPF) [22], could be used for estimating this joint distribution.
Unfortunately, these algorithms do not scale when the number
of factors and their possible values are large [23].

Given a task t, Pr(t0 = 1|~tf) (probability of successful
completion) and Pr(t0 = 0|~tf) (probability of unsuccessful
completion), s the joint distribution over the task factors and
outcomes is very expensive, as this will require us to compute
a joint distribution over a vm space, if each of the m task factor
variables takes v possible values. A more realistic probability
model relies on a conditional independence assumption. It
assumes that the task factors are themselves independent but
the task outcome is conditionally dependent on each of the
task factors. This Bayesian assumption is not an overstretch.
Using Example 1, one can see that the different task types,
annotation, ranking, or sentiment analysis are independent
from each other, as is duration, but the task outcome is
conditionally dependent on each of these factors. In practice,
some dependence may exist between factors, e.g., task duration
and payment may be correlated. However, that is not the case
in general as tasks are posted by different requesters and in
different countries. Therefore, we can confidently claim that a
conditionally independent probability model captures a large
number of cases in practice.

Under the conditional independence assumption, we have

Pr(t0 = 1|~tf) =
∏

i∈~(t)f

Pr(t0 = 1|t(i)) (3)

Using Bayes’ Theorem, this could be rewritten as

Pr(t0 = 1|~tf) =
∏

i∈~(t)f

Pr((t0 = 1)|t(i))× Pr(t0 = 1)

Pr(t(i))

Computing the probability formula requires us to know the
value of quantities such as Pr((t0 = 1)|t(i)), Pr(t0 = 1), and
Pr(t(i)). However, singleton and pairwise probabilities can be
computed in a pre-processing step considering other tasks and
workers. For example, Pr((t0 = 1)|t(i)) can be estimated
as the fraction of previous tasks with successful outcomes
that also have the i-th factor as t(i) and Pr(t0 = 1) can be
estimated as the fraction of tasks with successful outcomes,
whereas, Pr(t(i)) is the fraction of tasks that have t(i) as the

https://www.netflix.com/, https://movielens.org/

!!!!!ta!

!tb! !tb!

!td! !td! !td! !td!

!!!!!toa=1! !!!!!toa=0!

!!!!!tob=1!

!!!!!tod=1!

!!!!!tob=0!

!!!!!tod=0!

!!!!!tob=0! !!!!!tob=1!

!!!!!tod=1!!!!!!tod=0! !!!!!tod=1!!!!!!tod=0!
!!!!!tod=0!!!!tod=1!

!! ε(FT ') ε(FT ') ε(FT ') ε(FT ') ε(FT ') ε(FT ') ε(FT ') ε(FT ')

Fig. 3. Bootstrapped tree of three chosen tasks {ta, tb, td}

i-th factor. Each of these calculations are efficient and could
be done in a pre-processing phase.

Assuming independence among tasks, the probability of
a combination of outcomes of b tasks is then obtained by
multiplying the probabilities of the individual task outcomes.
Considering Figure 3, the probability of the left most branch
is Pr(ta0 = 1|~tf)× Pr(tb0 = 1|~tf)× Pr(td0 = 1|~tf)

Bootstrapping Algorithm. Given a budget of b tasks, these
tasks are chosen a priori, therefore, one has to explore all
possible

(
n
b

)
tasks, and for each task, compute its two possible

outcomes probabilistically. This gives rise to an exponential
search space of

(
n
b

)
possible choices. Even when the best set of

b tasks are chosen, each task has one of two possible outcomes,
which gives rise to a bootstrap tree with 2b branches [24],
as shown in the Figure 3. Each branch from the root to the
leaf corresponds to a set of b tasks and their outcomes, and
each leaf is associated with a reconstruction error. The recon-
struction error of the branch is the product of the respective
probabilities of the outcomes and the reconstruction error of
the model F thereof. The expected reconstruction error is
the sum of the errors over all 2b branches. The objective, as
mentioned in Section II-C, is to design the tree that improves
the expected reconstruction error the most.

Theorem 1: Bootstrapping the Worker Model is NP-hard.
Proof: (Sketch:) If the underlying model is a graph

whose structure computation is NP-hard [12], naturally the
bootstrapping becomes NP-hard, as it has to invoke that model
as a subroutine. Even for an arbitrarily simple model that is
polynomial time computable, the NP-hardness could be proved
using a reduction from the Set Cover Problem, even when each
factor is only binary [25].

We now design an algorithm that is greedy in nature and
avoids searching the

(
n
b

)
space to select the b tasks. It runs in

b iterations and in the i-iteration selects the task out of the re-
maining set of tasks that has the highest marginal improvement
over the objective function. However, even when the b tasks
are selected, computing the bootstrap tree is exponential in b
(recall Figure 3). This algorithm makes O(n×b) comparisons
to select the best set of b tasks. However, while the greedy
selection is in progress, given an already selected b′ tasks,
it still has to build the bootstrap tree with 2b

′
branches. The

worst case asymptotic complexity is therefore, O(n× b× 2b).
Running Example: Using Example 1, tasks {t1, t3, t6} are

chosen for bootstrapping. Once F is developed, it assigns the
following weights to the task factors. tagging=0.4, ranking=

0.69, sentiment=0.1, payoff=0.4, duration =0.42. This is intu-
itively explainable, as the tasks that the worker complete suc-
cessfully are tagging and ranking (hence gets higher weights),
but the sentiment analysis task is not completed successfully
(thus, gets a lower preference value).

B. Question Selector

The objective is to select k questions (task factors) eliminat-
ing which would maximize the reconstruction error reduction
of the model F . Ideally, out of m task factors (a set Q of
questions), k factors should be chosen as a set. This gives rise
to an exponential search space that could be modeled using a
decision tree like structure with [24],

(
m
k

)
possible branches.

Each branch from the root to the leaf corresponds to a set of
k questions, and the leaf is associated with a reconstruction
error. The objective, as mentioned in Section II-C, is to design
that tree that improves the reconstruction error the most.

Theorem 2: Optimally selecting k questions to elicit pref-
erences is NP-hard.

Proof: (Sketch:) A careful review of the objective func-
tion (refer to Section II-C) shows that since E is a constant at
a given point - thus, maximizing (E − Êm−Qs) : {Qs ∈ Q :
|Qs| = k} is same as minimizing the reconstruction error of
Êm−Qs , i.e., retaining the best m−k factors (thus eliminating
the worst k factors) that has the smallest reconstruction error of
F . The problem thus becomes selecting the best m−k factors
that have the smallest reconstruction error. The remaining k
factors would therefore be chosen as the explicit questions for
preference elicitation.

The reduction is done using the Set Cover problem. We
omit the details for brevity, but elaborate later on that the
problem remains NP-hard even when we consider a simple
Worker Model.

Efficient Solution for Question Selector. Since E is a con-
stant at a given point, maximizing (E − Êm−Qs) : {Qs ∈ Q :
|Qs| = k} is same as minimizing the reconstruction error of
Êm−Qs , i.e., retaining the best m−k factors (thus eliminating
the worst k factors) that has the smallest reconstruction error of
F . The problem thus becomes selecting the best m−k factors
that have the smallest reconstruction error. The remaining k
factors would therefore be chosen as the explicit questions for
preference elicitation.

Theorem 3: Optimally selecting k questions for explicit
worker preference is NP-hard even when the Worker Model
is linear.

Proof: (Sketch): When a linear model such as the one in
Equation 2 is assumed, as described above, the objective func-
tion is equivalent to minimizing (T fTT f)

−1
T fTT O, where

(T fTT f)
−1
T fT is known as the Moore-Penrose pseudo-

inverse matrix of T f .
Therefore, the problem of identifying and removing the k

worst factors, i.e., retaining the best m− k factors, is akin to
selecting a subset of m−k columns from the task factor matrix
T f such that the pseudo-inverse of this sub-matrix has the
smallest norm. Under the Frobenius or L2 norms this problem
is proved to be NP-hard [19].

Using the NP-hardness proof described in [19], our reduc-
tion is rather simple. Given an instance of that problem, we set
k (the k worst factors to remove) as the difference between
the total number of columns and k′ (k′= the best set of k′

columns giving rise to the submatrix whose pseudo-inverse
has the smallest norm). The rest of the proof is trivial and
omitted for brevity.

Greedy Algorithm for Question Selector. Under the linear
model such as the one described in Equation 2 and its
equivalent representation using a pseudo-inverse matrix, the
objective of identifying the set Qs of k selected questions
(thereby identifying m− k best factors) out of a set Q of m
questions (a task factor is a question) is equivalent to retaining
the task factor submatrix with m − k columns that is of the
following form [26]:

argmin
Qs⊂Q,|Qs|=k

Trace(T fT

Q\Qs
T f
Q\Qs

)−1 (4)

Algorithm 1 Algorithm k-ExFactor: Greedy Question
Selector for a Linear Model
Require: Task factor matrix T f , set of questions Q
Ensure: Qs with k factors

1: TQ ← T f

2: Qs ← Q
3: for j ← 1 to k do
4: qj ← argminq∈Q Trace(TQT

Q\qTQ\q)
−1

5: TQ ← TQ\j
6: Qs ← Q \ qj
7: end for
8: Return Q−Qs

We now describe a greedy algorithm k-ExFactor to
identify k worst task factors (thus retaining m−k best factors).
Our algorithm makes use of Equation 4 and has a provable
approximation guarantee. It works in a backward greedy
manner and eliminates the factors iteratively. It works in k
iterations, and in the i-th iteration, from the not yet selected
set of factors, it selects a question qj and eliminates it which
marginally minimizes Trace(T fT

Q\fjT
f
Q\fj)

−1. Once the kth

iteration completes the eliminated k questions are the selected
k-factors for explicit elicitation. The pseudo code of the
algorithm is presented in Algorithm 1. Line 4 in Algorithm 1
requires a O(m2n +m3) time for matrix multiplication and
inversion for the question under consideration. Therefore, the
overall complexity is O(km2n2+m3nk). Notice that most of
the complexity is actually in the process of recomputing the
model error and the actual question selection is rather efficient.

Theorem 4: Algorithm k-ExFactor has an approxima-
tion factor of m

m−k .
Proof: (sketch): The proof adapts from an existing re-

sult [27], [28] that uses backward greedy algorithm for subset
selection for matrices and retains a given smaller number of
columns such that the pseudo-inverse of the smaller sub-matrix
has as smallest norm as possible. This is akin to removing k

worst task factors and retaining the best m − k factors and
the proof is a simple adaptation of [27], [28]. Exploration of
a better approximation factor is deferred to future work.

Running Example: Using Example 1, if k = 3,
{sentiment, Payoff, Duration} are the three task factors for
which worker feedback is solicited.

C. Preference Aggregator

The second technical problem is to update F with the
worker’s preferences. Given a set of k task factors, worker
w provides an absolute order on these factors. We design an
algorithm that updates F using the same optimization function
as the one used to build it initially, modified by adding the set
of constraints that represent obtained preferences.

The worker provides a full order among the selected ques-
tions (task factors) in the form i > j > r > l. We express this
full order using a set of pairwise constraints of the form i > j.
If the preferences contain a full order among k constraints, this
gives rise to a total of k(k − 1) linear pairwise constraints.

Updating a Bayesian Network with constraints has been
studied in the past [29]. The idea is to add additional
dummy variables that encode the constraints aptly. To satisfy
k(k−1)/2 pairwise constraints, we will have to add that many
number of dummy variables which considerably blows the size
of the network. Unfortunately, such algorithms are expensive
and unlikely to scale.

Efficient Solution for Preference Aggregator. For the sim-
plified Worker Model, with the linear constraints added to our
objective function in Equation 2, the preference aggregation
problem becomes a constrained least squares problem.

Specifically, our problem corresponds to a box-constrained
least squares one as the solution vector must fall between
known lower and upper bounds. The solution to this problem
can be categorized into active-set or interior-point [30]. The
active-set based methods construct a feasible region, compute
the corresponding active-set, and use the variables in the
active constraints to form an alternate formulation of a least
squares optimization with equality constraints [31]. We use the
interior-point method that is more scalable and encodes the
convex set (of solutions) as a barrier function. It uses primal
Newton Barrier method to ensure the KKT equality conditions
to optimize the objective function [30]. The primal Newton
Barrier interior-point is iterative and the exact complexity
depends on the barrier parameter and the number of iterations,
but the algorithm is shown to be polynomial [31].

Running Example: Using Example 1 again, if the
worker says that she prefers Duration > Sentiment
> Payoff, then the new weights that the preference ag-
gregator estimates for F are, tagging=0.1, ranking= 0.1,
sentiment=0.12, payoff=0.11, duration=0.97. Notice that the
order of the task factors provided by the worker is satisfied in
the updated model.

IV. EXPERIMENTAL EVALUATIONS

We describe our experimental setup, steps, and findings in
this section. All the algorithms are implemented in Python
3.5.1. The experiments are conducted on a machine with

Intel Core i7 4GHz CPU and 16GB of memory with Linux
operating system. All the numbers are presented as an average
of 10 runs. We run both quality and scalability experiments
and implement several baselines.

A. Dataset Description

We use 165, 168 CrowdFlower micro-tasks. A task belongs
to one of the 22 different categories, such as, tweet classifi-
cation, searching information on the web, audio transcription,
image tagging, sentiment analysis, entity resolution, or extract-
ing information from news. Each task type is assigned a set of
keywords that best describe its content and a payment, ranging
between $0.01 and $0.12. Our tasks are micro-tasks that take
less than a minute to complete.

Initially, we group a subset of micro-tasks into 240 HITs
and publish them on Amazon Mechanical Turk. Each HIT
contains 20 tasks and has a duration of 30 minutes. When a
worker accepts a HIT, he is redirected to our platform where
he completes the tasks. A worker may complete several HITs
in a work session. Workers get paid for every micro-task
completed.

To qualify for our experiment, we require the workers to
have previously completed at least 100 HITs that are approved,
and to have an approval rate above 80%. Overall, 58 different
workers complete tasks. When a worker is hired for the first
time, she is asked to select a set of keywords from a given list
of keywords that capture her preferences.

The task types along with other factors, such as, payment
and duration, form the task factors. Our original data has 41
task factors that are categorical or binary; after binarization
of all the categorical factors, we obtain a total of 100 factors.
The length of any worker preference vector is therefore 100.
Of course, our proposed framework adapts even when the task
factors are continuous.

Ground Truth. Each micro-task has a known ground-truth.
If a task, undertaken by a worker is completed successfully
(i.e., the outcome matches the ground-truth), it is marked
successful (value 1). Otherwise, if the task is accepted but
either not finished or not completed correctly, its label is
unsuccessful (value 0). This information is used as the ground-
truth for the Worker Model.

Iteration. We define an iteration as the completion of a
HIT. When a worker finishes a HIT, we compute the error in
the Worker Model. We update the Worker Model, when there
is a non-zero error and start another iteration.

B. Implemented Algorithms

We now describe the algorithms that are implemented and
compared for evaluation purposes.

1) Worker Model & Bootstrapping: The linear model in
Section III-A is implemented with a regularization parameter
α. When implementing statistical models, this is a standard
practice to avoid overfitting of the model. The overall objective
function thus becomes,

min
~wf∈Rm

∥∥T O − ~wf × T f
∥∥
2
+ α

∥∥~wf
∥∥2
2

(5)

The best value of α is chosen by generalized cross valida-
tion [30].

Additionally, there are three algorithms that are imple-
mented for bootstrapping the Worker Model.

Random Bootstrapping. RandomBoot selects a random
subset B of data as the initial tasks to present to the worker
and records their outcome to estimate the Worker Model.

Uniform Bootstrapping. UniformBoot does not learn
anything to build the Worker Model but bootstraps the model
by assigning uniform weights to the worker preference vector.

Optimization-Aware Bootstrapping. OptBoot imple-
ments our algorithm given in Section III-A.

2) Explicit Feedback: This has two important components
- one is the Question Selector that selects the task factors
for explicit preference elicitation, the other is Preference
Aggregator that updates the Worker Model using elicited
preferences.
Optimization-Aware Question Selector. k-ExFactor is
our proposed algorithm described in Section III-B.
k-random Question Selector. k-Random is a simple baseline
that randomly selects k-task factors for preference elicitation.
Preference Aggregator: This is our implemented solution for
preference aggregation, as described in Section III-C.

3) Implicit Feedback: We also implement implicit feedback
computation to serve as a comparison alternative to explicit
feedback approaches. Algorithm Implicit-1 is an adaption
of a recent related work [13] that investigates how to implicitly
capture worker motivation and use that for task assignment.
While we do not necessarily focus on motivation as a factor
in this work, we adapt the algorithm in [13] to estimate
and update the worker preference vector over time. Since
our focus is not on task assignment, once we estimate the
worker preference vector using Implicit-1, we use that in
conjunction with our Worker Model to predict a task outcome.
Algorithm Implicit-2 is a further simplification. It relearns
the Worker Model at the end of every iteration as the worker
completes tasks and does not factor in the preference of the
worker in the Worker Model.

C. Summary of Results
There are two primary takeaways:

1. Our proposed explicit preference elicitation framework
outperforms existing implicit ones with statistical
significance. We compare our approach k-ExFactor
for question selection with another explicit baseline
k-Random and two implicit preference computation
algorithms Implicit-1 [13] and Implicit-2. For
qualitative evaluation, we present error (mean square error
or MSE) with statistical significance test and find that
k-ExFactor convincingly and significantly outperforms the
other three baselines under varying parameters: # iterations,
task factors, k. For bootstrapping, we compare our
solution OptBoot with two baselines UniformBoot and
RandomBoot. Again, our observation here is OptBoot is
superior qualitatively.
2. Our proposed solution is scalable. In our scalability
study, we vary # tasks, # task factors, k, and bootstrap sample

size. While k-ExFactor is slower than the other three
algorithms, as it performs a significantly higher number of
computations, it still scales very well. Unsurprisingly, our
bootstrapping algorithm OptBoot is slower than the two
other baselines. Despite that, it scales reasonably well. These
results demonstrate the effectiveness of eliciting explicit
preferences making our framework usable in practice.

D. Quality Experiments

The objective of these experiments is to capture the effec-
tiveness of our explicit feedback elicitation framework and
compare it with appropriate baselines. Unless otherwise stated,
we capture effectiveness as reconstruction error, according to
the objective function in Section II-C using Mean Square Error
or MSE.

Invocation of the Framework. For quality experiments, the
proposed framework is invoked iteratively as follows: in the
beginning, we filter out the tasks and task completion history
by worker id since the framework is personalized per worker.
On average, a worker undertakes 100 tasks. We randomly
sample 70% of each worker’s data for training and the rest
as the holdout set.

For bootstrapping, the Worker Model is initially built by
selecting a subset B of b tasks from the training data and
MSE is computed over the holdout set. After that, in an
iteration, we select a set x of 25 tasks (unless otherwise
stated), randomly from the holdout set and we calculate the
score over the remaining set of tasks in the holdout set.
Next, we will check if there is an error in the prediction of
Worker Model for set x. If yes, then we invoke the Question
Selector that seeks explicit feedback from the same worker.
Upon receiving worker feedback, the Worker Model is updated
using the Preference Aggregator. All these steps construe a
single iteration of the framework. We periodically perform
the aforementioned steps to get multiple iterations of the
framework.

Parameter Setting. For a given worker, there are three
parameters to vary: # task factors, k, and # iterations. For boot-
strapping, we additionally vary the budget b. Unless otherwise
stated, defaults values are 90, 4, and 7, respectively. The best
90 features are retained by performing feature selection using
Chi-squared test[32]. We also notice that the error does not
reduce significantly beyond k = 4 questions and 7 iterations.
By default, we always maintain the full history of worker
preference while updating the Worker Model under varying
iterations and the default size of the bootstrapping set is 15.

1) Explicit vs. Implicit Feedback: Figure 4 presents a com-
parative study between explicit, implicit, and no preference
elicitation. We compare two explicit solutions with two im-
plicit ones. We vary # iterations, # task factors, and x (# tasks
assigned to a worker after which the framework is invoked).
Figure4(a) presents the error of each of the four algorithms
by varying the number of iterations, where we compare two
explicit algorithms ((k-ExFactor and k-Random) with
implicit ones Implicit-1 [13] and Implicit-2. Our
method k-ExFactor significantly outperforms the other

three. After 7 iterations its error drops from 41% to 15%
almost 10% lower than other methods. A similar observation
holds for k-ExFactor when we vary # task factors (Fig-
ure 4(b)), and # tasks (Figure 4(c)). Our proposed solution
convincingly and significantly outperforms k-Random and
implicit preference computation.

2) Explicit Feedback: Figure 5 presents the error of the
two explicit preference elicitation methods as a function of the
number of questions k. Notice that the two implicit preference
algorithms do not have an input parameter k but for the sake of
comparison we have include their results in Figure 5. Overall,
our method, k-ExFactor, clearly outperforms k-Random
and the other two implicit methods. More importantly, increas-
ing the number of questions does not necessarily yield better
results as it is shown in Figure 5. This could be justified by the
fact that adding more constraints to the model will result in
poor optimization results. That indicates that a small number
of questions is good enough to elicit worker preferences and
improve the Worker Model.

3) Explicit Feedback: Full History vs Partial History:
We now present a comparative study between capturing the
full history of worker preferences vs just the most recent
preferences in the preference aggregation step. The size of
history is the total number of explicit feedbacks received
from the workers from beginning until a given point in time.
As an example, if we ask 4 explicit questions to a worker
in each iteration, after the second iteration, her full history
size is 8, whereas, her most recent history size is 4; i.e.,
the recent history represents the number of feedbacks in the
current iterations. Figure 6 demonstrates the results by varying
iterations. Clearly, the rate of error reduction for the model
with a full history is higher and the error of the model in
the end is slightly smaller than the model with just the most
recent history. Taking into account the evolution of worker
preferences in the whole session is therefore a better option.

4) Bootstrapping: Figure 7 presents the error of the three
bootstrapping algorithms. For RandomBoot and OptBoot
we set b = 15 tasks, whereas, UniformBoot just sets
uniform weights to the worker preference vector. We continue
to add an additional number of b = 15 tasks from the training
set and measure MSE. Initially, OptBoot has the best error
which signals the effectiveness of our method to pick the best
set of tasks that gives us the smallest error. In the preceding
iterations, OptBoot converges to a lower error faster than the
other two methods. The rate of decrease in error is the same
after the fourth iteration which shows that the Worker Model
is stable and performs well.

5) Worker Model: We profiled three workers randomly
from our database and analyzed their models in conjunction
with the keywords they have initially chosen. Table II presents
the 6 keywords chosen by the workers and the top-2 worker
preferences. It is easy to notice that they are highly correlated,
which shows that our proposed model successfully captures
worker preference.

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5

1 2 3 4 5 6 7

Er
ro
r

#	Iterations

k-ExFactor

k-Random

Implicit-1

Implicit-2

(a) Error - varying iterations

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5

20 40 60 80 100

Er
ro
r

#	of	Factors

k-ExFactor

k-Random

Implicit-1

Implicit-2

(b) Error - varying task factors

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5

5 10 15 20 25

Er
ro
r

#	Tasks	

k-ExFactor

k-Random

Implicit-1

Implicit-2

(c) Error - varying x

Fig. 4. Comparison between Explicit and Implicit Preferences with Statistical Significance Test (standard error)

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5

3 4 5 7 10

Er
ro
r

Varying	k

k-ExFactor

k-Random

Implicit-1

Implicit-2

Fig. 5. Error varying k with Statistical Significance Test (standard error)

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5

0 1 2 3 4 5 6 7

Er
ro
r

#	Iterations

Full	History
Recent	History

Fig. 6. Comparison between full and recent history

Worker no Worker Keywords Top-2 preference
1 dress,google street view,

airlines, classification,
wheelchair accessibility,
scene

dress, scene

2 business, body parts,
google street view, health,
new year resolution,
classification

classification, google
street view

3 image, south Asia, dis-
ease, animals, text

image, text

TABLE II
WORKER KEYWORDS AND WORKER MODEL

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5

15 30 45 60 75 90
Er
ro
r

Bootstrap	size

OptBoot

RandomBoot

UniformBoot

Fig. 7. Evaluation of bootstrapping algorithms

E. Scalability Experiments

We conduct an in-depth scalability study of our solutions
and their competitors. Unless otherwise stated, we always
report running time in seconds.

Parameter Setting. Our dataset contains 165, 168 tasks and
100 task factors obtained from 58 workers. In this experiment,
we vary the following parameters: # tasks, # task factors, k,
and the bootstrapping budget b. Unless otherwise stated, all
the numbers present the average running time of a single
iteration over all the 58 workers. The default values are set
as # tasks = 50, 000, # task factors = 50, k = 3, and b = 25.
Unless otherwise stated, all four algorithms are compared with
each other. For bootstrapping comparison, only the appropriate
three methods are compared.

Figure 8 presents the results. Figure 8(a) presents the
running time of the four algorithms with varying number of
tasks. Of course, our proposed solution k-ExFactor makes
a lot more computation to ensure optimization and hence has
the highest running time. However, it is easy to notice that
with an increasing number of tasks, it scales well and the
running time is comparable to the other competing algorithms.
A similar observation holds when we vary the number of task
factors, as shown in Figure 8(b). k-ExFactor scales well
and never takes more than 86 seconds. Figure 8(c) represents
the running times by varying k, the number of task factors

chosen for preference elicitation. Here only k-ExFactor
is compared with k-Random, as the other two algorithms
do not rely on explicit preference elicitation. Unsurprisingly,
k-Random is faster, but our proposed solution k-ExFactor
scales well and has a comparable running time. Finally, in
Figure 8(d), we vary the bootstrapping sample size and present
the running time of OptBoot. For efficient implementation,
we only randomly profile 10% of the branches of the bootstrap
tree which makes the algorithm scale linearly. The other two
baselines basically do not involve any computation and take
negligible time to terminate.

Profiling k-ExFactor. We further profile the individual
running time of k-ExFactor with the default settings; i.e., #
tasks = 50, 000, # task factors= 50, k = 3. It takes 28 seconds
to train the Worker Model, 35.85 seconds to solve Question
Selector that finds the best k factors, and 29.1 seconds to
run Preference Aggregation that updates the Worker Model
with the added constraints. These results demonstrate that
the individual components of the framework take comparable
time.

V. RELATED WORK

The related work can be classified into three categories:
preference elicitation from the crowd, leveraging worker
preferences in crowdsourcing processes, and worker models.

Preference Elicitation. In [33], [34], [35], the crowd was
solicited to perform max/top-k and clustering operations with
the assumption that workers may make errors. These papers
study the relationship between the number of comparisons
needed and error. Efficient algorithms are proposed with a
guarantee to achieve correct results with high probability. A
similar problem was addressed in [36] in the case of a skyline
evaluation. In that setting, it is assumed that items can only be
compared through noisy comparisons provided by the crowd
and the goal is to minimize the number of comparisons. A
recent work studies the problem of computing the all pair
distance graph [37] by relying on noisy human workers. The
authors addressed the challenge of how to aggregate those
feedback and what additional feedback to solicit from the
crowd to improve other estimated distances.

While we also rely on inputs from the crowd, the elicited
input represents each worker’s preference for different
factors (as opposed to completing actual tasks), and is
hence not assumed to be noisy or erroneous. However, as
worker preferences evolve over time, we propose an iterative
approach with the goal of improving task completion overall.

Leveraging Preferences. Worker preferences for task fac-
tors are heavily leveraged in all crowdsourcing processes.
Very few of these efforts focused on leveraging them in
task completion [6], [11], [38]. Authors of [39] investigated
13 worker motivation factors and found that workers were
interested in skill variety or task autonomy as much as task
reward. Chandler and Kapelner [6] empirically showed that
workers perceived meaningfulness of a task improved through-
put without degrading quality. Shaw et al. [38] assessed 14

incentives schemes and found that incentives based on worker-
to-worker comparisons yield better crowd work quality. Hata
et al. [10] studied worker fatigue and it affects how work
quality over extended periods of time. Other efforts focused
on gradually increasing pay during task completion to improve
worker retention [40]. Lately, adaptive task assignment were
studied with a particular focus on maximizing the quality
of crowdwork [41], [16], [15], [14], [13] but primary for
improved task assignment.

Existing work showed the importance of leveraging
implicit worker preferences for task assignment. In contrast,
we show explicit elicitation of worker preferences results
in a more accurate model that leads to better task completion.

Worker Model. Matrix factorization [42], [43] is used to
recommend tasks to workers, where both worker and task
features are latent variables in a lower dimensional space. In
our work, task factors are explicit and known since they are
provided by the crowdsourcing platform and by requesters.
Further complex models, such as Multi-Layered Networks
as the ones used in deep learning, or Bayesian model are
possible but are hard to scale - thus the two core computational
problems in our framework that have to excessively use these
models become prohibitively complex.
To the best of our knowledge, we present the first principled
solution for explicit preference elicitation and rigorously study
scalability.

VI. CONCLUSION AND FUTURE WORK

We initiate the study of investigating explicit preference
elicitation for improved task completion. Our proposed frame-
work leverages a Worker Model that is personalized and learns
from the past history of the worker and the task characteristics
to predict task outcome. Two central problems that are part of
our framework are Question Selector and Preference Aggre-
gator. The former selects the best set of questions to elicit
explicit preferences and the latter updates Worker Model with
the obtained preferences. We present principled solutions and
experimentally validate the effectiveness of explicit preference
elicitation. Next, we discuss some interesting extensions.

Combining Explicit and Implicit Preference. An inter-
esting open question is how to combine explicit preference
elicitation with implicit preference computation. Our current
understanding of the problem is, we only invoke explicit
preference when certain event triggers it: such as, the error
of the Worker Model obtained through implicit preference is
too high, the worker is not undertaking enough tasks, the
implicit preference solution is unable to discriminate worker’s
preference sufficiently. The challenge of this new problem is
to design an optimization function that will guide when to
seek explicit preference and when not to.

Handling Multiple Workers. A natural extension of our
studied framework is to build and maintain a Worker Model
not per worker, but for a set of workers. A simple approach
would cluster workers based on their preference vectors and
aggregate the individual Worker Models to build a Virtual

0

50

100

150

200

250

300

350

30K 60K 90K 120K 150K

T
im

e
 (

S
e

c
o

n
d

s
)

Tasks

k-ExFactor

k-Random

Implicit-1

Implicit-2

(a) varying # tasks

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100

T
im

e
 (

S
e

c
o

n
d

s
)

Task Factors

k-ExFactor

k-Random

Implicit-1

Implicit-2

(b) varying # task factors

0

20

40

60

80

100

120

5 10 15 20 25

T
im

e
	(
Se
co
n
d
s)

#	k

k-ExFactor

k-Random

(c) varying k

0

200

400

600

800

1000

1200

1400

10 20 30 40 50

T
im

e
 (

S
e

c
o

n
d

s
)

of Bootstrapped Samples

OptBoot

(d) varying b

Fig. 8. Scalability study

Worker Model. Such a model is likely to introduce more error
(as the model is no longer personalized per worker) but is
going to be more efficient to maintain. Such a model could
further be used to profile workers in crowdsourcing platforms
or improve crowdsourcing processes such as recruitment,
completion or assignment.

Worker Models. We present a supervised approach to
develop solutions for the Worker Model. A natural alternative
is to study this problem in an unsupervised setting where
the worker history is not available, using techniques such
as Self Organizing Maps [44].A further interesting extension
is in removing the assumption that there is an one-to-one
correspondence between task factors and explicit questions.
As long as the correspondence between the task factors
and explicit questions is defined, our proposed optimization
framework would be adapted.

REFERENCES

[1] B. B. Bederson and A. J. Quinn, “Web workers unite! addressing
challenges of online laborers,” in CHI, 2011, pp. 97–106.

[2] A. Kittur et al., “The future of crowd work,” in CSCW, 2013.
[3] S. B. Roy et al., “Crowds, not drones: Modeling human factors in

interactive crowdsourcing,” in DBCrowd, 2013.
[4] S. Amer-Yahia and S. B. Roy, “Human factors in crowdsourcing,”

Proceedings of the VLDB Endowment, 2016.
[5] N. Kaufmann, T. Schulze, and D. Veit, “More than fun and money.

worker motivation in crowdsourcing-a study on mechanical turk.” in
AMCIS, 2011.

[6] D. Chandler and A. Kapelner, “Breaking monotony with meaning:
Motivation in crowdsourcing markets,” CoRR, vol. abs/1210.0962, 2012.

[7] J. J. Horton and L. B. Chilton, “The labor economics of paid crowd-
sourcing,” in ACM EC, 2010, pp. 209–218.

[8] D. B. Martin et al., “Being a turker,” in CSCW, 2014.
[9] J. Rogstadius et al., “An assessment of intrinsic and extrinsic motivation

on task performance in crowdsourcing markets,” in ICWSM, 2011.
[10] K. Hata et al., “A glimpse far into the future: Understanding long-term

crowd worker quality,” in CSCW, 2017.
[11] P. Dai et al., “And now for something completely different: Improving

crowdsourcing workflows with micro-diversions,” in ACM CSCW, 2015.
[12] D. Koller and N. Friedman, Probabilistic graphical models: principles

and techniques. MIT press, 2009.
[13] J. Pilourdault et al., “Motivation-aware task assignment in crowdsourc-

ing,” in EDBT, 2017.
[14] Y. Zheng et al., “QASCA: A quality-aware task assignment system for

crowdsourcing applications,” in SIGMOD, 2015.
[15] C. Ho and J. W. Vaughan, “Online task assignment in crowdsourcing

markets,” in AAAI, 2012.
[16] C. Ho et al., “Adaptive task assignment for crowdsourced classification,”

in ICML, 2013.
[17] S. B. Roy et al., “Task assignment optimization in knowledge-intensive

crowdsourcing,” VLDB J., 2015.

[18] D. Margaritis and S. Thrun, “Bayesian network induction via local
neighborhoods,” in Advances in neural information processing systems,
2000.

[19] S. Biswas et al., “Combating the cold start user problem in model based
collaborative filtering,” CoRR, vol. abs/1703.00397, 2017.

[20] A. Albert, Regression and the Moore-Penrose pseudoinverse. Elsevier,
1972.

[21] C. Dismuke et al., “Ordinary least squares,” Methods and Designs for
Outcomes Research, 2006.

[22] S. E. Fienberg, “An iterative procedure for estimation in contingency
tables,” The Annals of Mathematical Statistics, 1970.

[23] S. E. Fienberg and M. M. Meyer, “Iterative proportional fitting,” Ency-
clopedia of Statistical Sciences, 1983.

[24] D. Mottin et al., “A probabilistic optimization framework for the empty-
answer problem,” Proceedings of the VLDB Endowment, 2013.

[25] M. R. Garey, “Optimal binary identification procedures,” SIAM Journal
on Applied Mathematics, vol. 23, no. 2, pp. 173–186, 1972.

[26] F. Pukelsheim, Optimal design of experiments. SIAM, 2006.
[27] F. De Hoog and R. Mattheij, “Subset selection for matrices,” Linear

Algebra and its Applications, 2007.
[28] H. Avron and C. Boutsidis, “Faster subset selection for matrices and

applications,” SIAM Journal on Matrix Analysis and Applications, 2013.
[29] R. S. Niculescu et al., “Bayesian network learning with parameter

constraints,” Journal of Machine Learning Research, 2006.
[30] J. L. Mead and R. A. Renaut, “Least squares problems with inequality

constraints as quadratic constraints,” Linear Algebra and its Applica-
tions, vol. 432, no. 8, pp. 1936–1949, 2010.

[31] P. B. Stark and R. L. Parker, “Bounded-variable least-squares: an
algorithm and applications,” Computational Statistics, 1995.

[32] G. Forman, “An extensive empirical study of feature selection metrics
for text classification,” Journal of machine learning research, vol. 3, no.
Mar, pp. 1289–1305, 2003.

[33] S. Guo et al., “So who won?: dynamic max discovery with the crowd,”
in SIGMOD, 2012.

[34] V. Polychronopoulos et al., “Human-powered top-k lists,” in WebDB,
2013, pp. 25–30.

[35] S. B. Davidson et al., “Top-k and clustering with noisy comparisons,”
ACM TODS, 2014.

[36] B. Groz and T. Milo, “Skyline queries with noisy comparisons,” in
PODS, 2015, pp. 185–198.

[37] H. Rahman et al., “A probabilistic framework for estimating pairwise
distances through crowdsourcing.” in EDBT, 2017.

[38] A. D. Shaw et al., “Designing incentives for inexpert human raters,” in
CSCW, 2011.

[39] N. Kaufmann et al., “More than fun and money. worker motivation in
crowdsourcing - A study on mechanical turk,” in AMCIS, 2011.

[40] Y. Gao et al., “Finish them!: Pricing algorithms for human computation,”
PVLDB, 2014.

[41] J. Fan et al., “icrowd: An adaptive crowdsourcing framework,” in
SIGMOD, 2015.

[42] C. H. Lin et al., “Signals in the silence: Models of implicit feedback in
a recommendation system for crowdsourcing.” in AAAI, 2014.

[43] H. Rahman et al., “Feature based task recommendation in crowdsourcing
with implicit observations,” HCOMP, 2016.

[44] T. Kohonen, “The self-organizing map,” Neurocomputing, vol. 21, no. 1,
pp. 1–6, 1998.

	I Introduction
	II Formalism and Framework
	II-A Formalism
	II-B Framework and Challenges
	II-C Problem Definitions

	III Solutions
	III-A Worker Model
	III-B Question Selector
	III-C Preference Aggregator

	IV Experimental Evaluations
	IV-A Dataset Description
	IV-B Implemented Algorithms
	IV-B1 Worker Model & Bootstrapping
	IV-B2 Explicit Feedback
	IV-B3 Implicit Feedback

	IV-C Summary of Results
	IV-D Quality Experiments
	IV-D1 Explicit vs. Implicit Feedback
	IV-D2 Explicit Feedback
	IV-D3 Explicit Feedback: Full History vs Partial History
	IV-D4 Bootstrapping
	IV-D5 Worker Model

	IV-E Scalability Experiments

	V Related Work
	VI Conclusion and Future Work
	References

