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Abstract

This paper deals with the non-quadratic stabilization of Takagi-Sugeno (T-

S) models with D-stability constraints. Based on a recently proposed Non-

Quadratic Lyapunov Function (NQLF), which involves the mean values of the

membership functions (MFs) over a given time interval, three theorems are

proposed for the design of non-Parallel Distributed Compensation (non-PDC)

controllers satisfying closed-loop D-stability specifications. Despite previous

non-quadratic approaches and thanks to the nature of the considered NQLF, it

is highlighted that the proposed LMI-based procedures not only apply for the

global non-quadratic D-stabilization of T-S models, but also for a larger class

of T-S models with piecewise membership functions (i.e. a class of switching

nonlinear systems), since no requirement is needed regarding to the bounds of

the MFs derivatives. The effectiveness of the proposed LMI-based conditions

and their relative degrees of conservatism, compared with previous quadratic

D-stabilization results, are illustrated through an academic example involving

piecewise membership functions.
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1. Introduction

Since the pioneer work of Takagi and Sugeno [1], dealing with the identifi-

cation of nonlinear systems through the fuzzy formalism, Takagi-Sugeno (T-S)

fuzzy model-based approaches have caught the attention of the control commu-

nity. Indeed, thanks to their convex characters, these approaches may facilitate5

the analysis and control design for some classes of nonlinear systems by extend-

ing some linear results to the nonlinear framework [2].

A T-S model is a set of linear models aggregated by convex Membership

Functions (MFs). It may accurately match a nonlinear system in a compact set

of its state space by using sector nonlinearity transformations [2]. Their stability10

and stabilization are usually investigated via the well known direct Lyapunov

methodology, aiming to obtain Linear Matrix Inequality (LMI) conditions [3, 4,

5, 6, 7]. Indeed, LMI conditions may be solved efficiently via convex optimization

tools [8].

Controller design conditions for the stabilization of T-S models were firstly15

considered with common Quadratic Lyapunov Functions (QLF) and a Parallel

Distributed Compensation (PDC) control scheme [2, 3]. However, they require

to find common decision variables, solution of a set of LMI, which may lead

to conservatism [9]. To reduce the conservatism, piecewise, switched or non-

quadratic Lyapunov functions (NQLF) have been proposed with limitations20

[10, 4, 11, 12, 13, 14, 15]. Indeed, because of the MFs overlapping, piecewise

or switched Lyapunov functions are inadequate for T-S models obtained from

sector nonlinearity approaches. Moreover, when considering usual fuzzy NQLF

in the continuous time case [4], the appearance of the MFs time derivatives in

the stability conditions leads to local-based approaches, which require an esti-25

mation of the designed closed-loop domain of attraction [13], and makes harder

the obtention of LMIs or their practical application. In addition, since these

local non-quadratic approaches require the finite bounds of the time derivatives

of the MFs, they can’t be applied to T-S models involving piecewise MFs. Note
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that in the discrete time case [11, 14, 15], these derivatives are no longer occur-30

ring but these results are left out from the present study since it only focusses on

continuous time Takagi-Sugeno models. Thus, to circumvent these drawbacks

in the continuous time framework, another non-quadratic approach has been

proposed with the consideration of Line-Integral Lyapunov Functions (LILF)

[5]. This approach provides global stability conditions but is restricted in sta-35

bilization to second order systems to obtain convex conditions [16, 17, 18]. In

[19], a new NQLF, which involves the mean values of the MFs on the interval

[t− α, t] with α > 0, has been proposed. The major milestone of such NQLF is

that the obtained closed-loop stability conditions are free of the time derivative

of the MFs and also hold globally when there exist a solution.40

In parallel to the previous mentioned studies, the improvement of the closed-

loop transient responses of complex nonlinear systems represented by T-S mod-

els remain an important challenge. In this context, the concept of D-stability

can be considered. It is borrowed from linear systems to provide closed-loop per-

formance while keeping the control signal suitable for real world applications.45

D-stability consists on placing the distribution of the eigenvalues of the closed-

loop system in a prescribed region of the complex plane. This can be achieved

by adding constraints to the Lyapunov function [20, 21], which lead to obtain

LMI conditions that ensure both the closed-loop stability and some desired

performances. It was firstly proposed for linear systems [22], then extended to50

polytopic uncertain linear systems [23, 24]. Based on these previous works, some

quadratic D-stabilizing controller design conditions have been recently proposed

for T-S systems [25, 26, 27, 28]. Furthermore, it is to be pointed out that the less

the conservatism is, better transient performances can be achieved. Thus, to

reduce the conservatism, D-stable LMI-based conditions for non-PDC controller55

design have been proposed in the non-quadratic framework [29]. Nevertheless,

these non-quadratic conditions are only locally suitable since they suffer from

the occurrence of the time derivatives of the MFs, where the optimization of the

closed-loop domain of attraction remains a tricky challenge due to the presence

of the D-stability constraints. Alternatively, some attempts have been done to60
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propose global closed-loop D-stability conditions in the non-quadratic frame-

work via LILF [30, 31], but these results are unfortunately unsuitable as it is

detailed in Appendix A.

According to the above mentioned concerns, it appears that, from previous

literature, suitable global non-quadratic approach for the D-stabilization of T-S65

models are not available. The present study aims at filling this gap by con-

sidering a NQLF involving the mean values of the MFs instead of the LILF

considered in [30, 31]. Moreover, in this work we ought to show that, unlike

previous local non-quadratic approaches [4, 13, 29], considering a NQLF which

involves the mean values of the MFs applies globally, not only for T-S mod-70

els with smooth (continuous) MFs, but also for T-S models involving piecewise

continuous MFs. This will make the proposed LMI conditions relevant for the

global non-quadratic D-stabilization of a larger class of nonlinear systems with

piecewise continuous nonlinearities (e.g. a class of switching nonlinear systems)

which is, until now and from the authors’ knowledge, an open problem that75

hasn’t been addressed in previous literature.

The outline of this paper is given as follows: In Section 2, some preliminaries

on T-S fuzzy models with useful definitions and lemmas for their D-stabilization

are recalled. Then, the main results are presented in Section 3, where three the-

orems, summarizing the proposed non-quadratic LMI conditions for the design80

of D-stabilizing non-PDC controllers for T-S models involving piecewise MFs,

are given. Finally, the effectiveness and the relative degree of conservatism of

the different results are illustrated and compared to suitable quadratic results

through an academic example.

85

Notations. Along this paper, one denotes the subset of integers Ir = {1, ..., r},

r ≥ 1. Moreover, the symbol (∗) in a matrix denotes a transpose quantity. In

mathematical expressions, I denotes identity matrices with appropriate dimen-

sions. M > 0 (resp. < 0) means that M is a positive definite matrix (resp.

negative definite). ⊗ denotes the Kronecker product. For any matrices M with90

appropriate dimensions, one denotes H(M) = M + MT . Finally, the time t is
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omitted in the proofs of the proposed theorems when there is no ambiguity.

2. Preliminaries and problem statement

Consider the class of Takagi-Sugeno systems described by the following poly-

topic state space representation [1]:

ẋ(t) =

r∑
i=1

hi(z(t))(Aix(t) +Biu(t)) (1)

where x(t) = [x1(t) . . . xn(t)]T ∈ Rn is the state vector, u(t) = [u1(t) . . . um(t)]T ∈

Rm is the input vector, z(t) = [z1(t) . . . zp(t)] ∈ Rp is the premise vector, which95

is assumed to nonlinearly depend only on the state variables for stabilization

purpose (i.e. z(t) ≡ x(t)), r is the number of polytopes, Ai ∈ Rn×n and

Bi ∈ Rn×m are constant matrices describing the dynamics of each polytope,

hi(z(t)) ≥ 0 are the Membership Functions (MFs) with the convex sum prop-

erty
∑r
i=1 hi(z(t)) = 1.100

Inspired by the work of Marquez et al. [19], a non-quadratic Lyapunov

Function (NQLF) candidate, which involves the mean value of the MFs hi(z(t))

on the time interval [t− α, t] with α > 0, will be considered to develop the

main results proposed in the next Section. Hence, the following assumptions

are considered in the present study.105

Assumption 1. For a given scalar α > 0 and ∀t ∈ [−α, 0), hi(z(t)) = hi(z(0)).

Assumption 2. For all t ∈ [−α,+∞), each hi(t) is (at least) piecewise con-

tinuous.

According to assumptions 1 and 2, ∀t > 0 the piecewise MFs hi(z(t)) are

integrable on intervals [t− α, t]. Hence, we can define their mean values on these

intervals as:

vi(z(t)) = α−1

∫ t

t−α
hi(z(τ))dτ, ∀i ∈ Ir (2)

As shown in [19], ∀t > 0 and ∀i ∈ Ir, the mean values (2) exhibit the convex

sum properties. Indeed, since hi(z(t)) ≥ 0 and
∑r
i=1 hi(z(t)) = 1, it is obvious
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that vi(z(t)) ≥ 0 and:

m∑
i=1

vi(z(t)) =

m∑
i=1

α−1

∫ t

t−α
hi(z(τ))dτ

= α−1

∫ t

t−α

m∑
i=1

hi(z(τ))dτ

= α−1

∫ t

t−α
1dτ

= 1

(3)

Note that, if the membership functions hi(z(t)) are piecewise continuous,

their derivatives ḣi(z(t)) are unbounded and previous classical and local non-

quadratic approaches (see e.g. [4, 13, 29]) can’t apply, whereas:

v̇i(z(t)) = α−1 (hi(z(t))− hi(z(t− α))) , ∀i ∈ Ir (4)

are always finite and bounded for all t ∈ [−α,+∞).

Moreover, it is to be noticed that if α → 0, then v̇i(z(t)) → ḣi(z(t)). As a110

consequence, for small finite and strictly positive values of α, vi(z(t)) is contin-

uous and can be view as a smoothed approximation of hi(z(t)) (see for example

Figure 4 in section 4).

Summarizing, the mean values vi(z(t)) being continuous with bounded deriva-

tives make them relevant (instead of hi(z(t))) as weighting functions for a NQLF115

candidate, presented in the next section, for the global stabilization of T-S sys-

tems (1) with piecewise MFs.

Remark 1. In [19], the focus was only put on the stabilization of T-S models

with strictely continuous MFs and no mention was made on the applicability of

the results with piecewise continuous MFs. If the authors of [19] miss this fact,120

the present study enable this oversight to be highlighted.

In the sequel, to lighten the mathematical expressions, for any sets of real

matrix Mi, i ∈ Ir, we will denote:

Mh =

r∑
i=1

hi(z(t))Mi, Mh̃ =

r∑
i=1

hi(z(t− α))Mi, Mv =

r∑
i=1

vi(z(t))Mi (5)
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or for any other convex combinations (multiple fuzzy sums):

Mhhh̃v =

r∑
i=1

r∑
j=1

r∑
k=1

r∑
l=1

hi(z(t))hj(z(t))hk(z(t− α))vl(z(t))Mijkl (6)

Moreover, from (4) and the above defined notations, we have:

Ṁv =

r∑
i=1

v̇i(z(t))Mi = α−1
(
Mh −Mh̃

)
(7)

To stabilize (1), let us now consider the following non-PDC control law

adapted from [32] and [19]:

u(t) = Khh̃vH
−1
(.) x(t) (8)

where Khh̃v ∈ Rm×n and H(.) ∈ Rn×n (to be further detailed) are gain sched-

uled matrices to be synthesized.

Substituting (8) in (1), the closed-loop dynamics is expressed by:

ẋ(t) =
(
Ah +BhKhh̃vH

−1
(.)

)
x(t) (9)

Problem statement. Providing that only few local non-quadratic approaches125

for the D-stabilization of T-S models involving continuous MFs are available

from previous literature ( see e.g. [27, 29]), the goal of this paper is to propose

new non-quadratic LMI conditions for the design of the gain scheduled matrices

Khh̃v and H(.) such that (9) is globally non-quadratically D-stable; i.e such

that the non-PDC controller (8) globally non-quadratically D-stabilizes the T-S130

fuzzy model (1) with piecewise MFs.

To deal with the D-stability concept, let us now recall the following definition

of a LMI region [21].

Definition 1. [21]. A LMI region is a subset D of the complex plane, defined

by the matrices R1 = RT1 ∈ Rδ×δ and R2 ∈ Rδ×δ such that:

D = {λ ∈ C : R1 + λR2 + λ̄RT2 < 0} (10)

where δ is the LMI region order.
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Remark 2. By extension of the pioneer work [21], where the D-stability concept135

has been defined for linear systems with constant uncertainties, it is used in

the present study for nonlinear systems (i.e. the considered class of T-S fuzzy

models) in the sense that, for each instant t, the distribution of the eigenvalues

of (9) lies in a subset D of the complex plane. Moreover, because the proposed

conditions are in the LMI form (see the main results in the next section), when140

the particular subset D recovers the left half-plane, the asymptotical stability

of the nonlinear system can be concluded following similar steps as those used

in Theorem 1 in [33].

For control purpose, the LMI region depicted in Figure 1 is usually consid-

ered. It is the intersection of three elementary regions of the complex plane:145

the left half-plane defined by Re(λ) < −β, a conic sector defined by its apex at

(γ, 0) with an inner angle π/2− θ and a circle centered at (q, 0) with a radius s.

- Place Figure 1 here -

According to Definition 1, this LMI region is defined by the following ma-

trices [21]:

R1 =



2β 0 0 0 0

0 −2γ cos θ 0 0 0

0 0 −2γ cos θ 0 0

0 0 0 −s −q

0 0 0 −q −s


(11)

and

R2 =



1 0 0 0 0

0 cos θ sin θ 0 0

0 − sin θ cos θ 0 0

0 0 0 0 1

0 0 0 0 0


(12)

See e.g. [20, 21] for several LMI region examples illustrating how to set the

matrices R1 and R2.150
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With regards to the Lyapunov theory, the following definition is adapted

from [21] as basic D-stability conditions for nonlinear systems [34].

Definition 2. [34]. Given an LMI region defined by (10), a nonlinear system

ẋ = f(x)x is said to be D-stable if there exists a Lyapunov function V(x(t))

satisfying 1
2
V̇(x(t))
V (x(t)) ∈ D, i.e.:

R1 ⊗ V(x(t)) +R2 ⊗
1

2
V̇(x(t)) +RT2 ⊗

1

2
V̇(x(t)) < 0 (13)

where ⊗ denotes the Kronecker product.

Remark 3. When R1 = 0 and R2 = 1, this definition reduces to the standard

asymptotical stability conditions of the considered nonlinear system (i.e. the155

LMI region D reduces to the left half-plane, see also Remark 2).

Let us now recall some useful properties of the Kronecker product.

Property 1. [35] For any scalars η and matrices X, Y and Z with appropriate

dimensions, the following properties of the Kronecker product holds:

(X ⊗ Y )T = XT ⊗ Y T

(X + ηY )⊗ Z = (X ⊗ Z) + η(Y ⊗ Z)

X ⊗ (Y + ηZ) = (X ⊗ Y ) + η(X ⊗ Z)

In addition, to further relax the LMI conditions proposed in the next sec-

tion, the following lemma [36], usual in the context of T-S models, is adopted in

the sequel since it is wellknown as a good compromise between computational160

complexity and conservatism improvement [9].

Lemma 1. (Tuan’s lemma [36]): Let Γklij , for (i, j, k, l) ∈ I4
r , be matrices of

appropriate dimensions. Γh̃vhh < 0 is satisfied if both the following conditions

hold:

Γklii < 0, ∀(i, k, l) ∈ I3
r (14)

2

r − 1
Γklii + Γklij + Γklji < 0, ∀(i, j, k, l) ∈ I4

r / i 6= j (15)
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To conclude this preliminary section, let us recall that from Definition 2,

LMI-based quadratic D-stability conditions and relaxed quadratic ones have

been proposed in [34, 25, 26, 27, 28]. To further relax these LMI conditions, local

non-quadratic LMI-based conditions have been proposed in [29]. Nevertheless,165

these previous local non-quadratic approach suffers from the occurrence of the

time derivatives of the MFs and are not suitable when T-S systems involve

piecewise continuous MFs (since their time derivatives are unbounded). More-

over, some attemps to provide global non-quadratic D-stabilization approaches,

based on the consideration of a LILF, have been proposed in [30, 31]. Unfor-170

tunately, as detailed in Appendix A, these previous LILF-based results are not

correct. Therefore, in the next section, we aim at proposing new relaxed LMI-

based non-quadratic conditions for the design of non-PDC controllers (8), which

globally non-quadratically D-stabilizes (1), even when they involve piecewise

continuous MFs.175

3. Main results

In this section, three theorems are proposed with new non-quadratic LMI-

based conditions for the global non-quadratic D-stabilization of T-S model (1),

which may have piecewise MFs, under the non-PDC control law (8). In this

context, let us consider the following NQLF candidate [19], which involves the

mean values of the MFs (2), under assumptions 1 and 2, as scheduling variables:

V(x(t)) = xT (t)P−1
v x(t) (16)

Remark 4. Note that Assumption 1 is similarly to what is done for time-delay

systems to ensure the existence of a valued function for initial conditions, see

e.g. [37]). Moreover, Assumption 2 is the only requirement on the MFs hi for

(16) to be continuous, making it relevant for the stability analysis of T-S models180

involving piecewise MFs without needing any dwell time or switching instants

assumptions.
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The following theorem summarizes the first proposed global non-quadratic

conditions.

Theorem 1. Let R1 and R2 be two matrices defining a prescribed LMI region

D in the left half-plane of the complex plane. The T-S model (1) is globally and

non-quadratically D-stabilized by the non-PDC control law (8) if there exists a

scalar α > 0 and, for (j, k, l) ∈ I3
r , the matrices Pk = PTk > 0, Kjkl, such that

the LMI conditions (14) and (15) are verified with:

Γklij = R1 ⊗ Pl +H
(
R2 ⊗

(
AiPl +BiKjkl −

1

2α
(Pj − Pk)

))
(17)

In that case, H(.) = Pv in the non-PDC controller (8).185

Proof. Consider the NQLF (16). From the convex properties of the MFs (2),

(16) is obviously positive if Pk = PTk > 0, ∀k ∈ Ir. Moreover, from the closed-

loop dynamics (9), the time derivative of (16) can be expressed as:

V̇(x) = ẋTP−1
v x+ xTP−1

v ẋ+ xT Ṗ−1
v x

= 2xT
(
P−1
v

(
Ah +BhKhh̃vH

−1
(.)

)
+

1

2
Ṗ−1
v

)
x

(18)

Thus, from (16), (18) and according to Definition 2, the closed-loop dynamics

(9) is D-stable if:

R1 ⊗ xTP−1
v x+H

(
R2 ⊗ xT

(
P−1
v

(
Ah +BhKhh̃vH

−1
(.)

)
+

1

2
Ṗ−1
v

)
x

)
< 0

(19)

Now, according to Property 1, with x̃ = (I ⊗ x) we can rewrite (19) as:

x̃T
(
R1 ⊗ P−1

v +H
(
R2 ⊗

(
P−1
v

(
Ah +BhKhh̃vH

−1
(.)

)
+

1

2
Ṗ−1
v

)))
x̃ < 0

(20)

which holds ∀x̃ if:

R1 ⊗ P−1
v +H

(
R2 ⊗

(
P−1
v

(
Ah +BhKhh̃vH

−1
(.)

)
+

1

2
Ṗ−1
v

))
< 0 (21)

Now, multiplying (21) left and right by (I ⊗ Pv) and since PvṖ
−1
v Pv = −Ṗv,

(21) is equivalent to:

R1 ⊗ Pv +H
(
R2 ⊗

(
AhPv +BhKhh̃vH

−1
(.) Pv −

1

2
Ṗv

))
< 0 (22)

11



Moreover, from (4) yields:

R1 ⊗ P−1
v +H

(
R2 ⊗

(
AhPv +BhKhh̃vH

−1
(.) Pv −

1

2α

(
Ph − Ph̃

)))
< 0 (23)

Finally, by choosing H(.) = Pv, then applying Lemma 1, (23) is satisfied if the

LMI conditions expressed in Theorem 1 hold.

Remark 5. From Theorem 1, by taking Pj = P common and Kjkl = Kj , the

basic quadratic D-stabilizing controller design conditions proposed as Theorem

7 in [27] are recovered. Thus, the non-quadratic conditions of Theorem 1 are190

obviously less conservative than the quadratic ones (including those presented

in [26]).

To further relax the global non-quadratic conditions proposed in Theorem

1, we propose two alternatives. The first one is inspired by the way borrowed in

[23] for linear systems with polytopic uncertainties and the second one can be195

considered, in the global non-quadratic D-stabilization context of this study, as

an extension of recent stabilization results (see e.g. [38, 32, 18, 28]), obtained

via the application of the Finsler’s lemma [39].

The following theorem summarizes the first alternative.

Theorem 2. Let R1 and R2 be two matrices defining a prescribed LMI region

D in the left half-plane of the complex plane. The T-S model (1) is globally and

non-quadratically D-stabilized by the non-PDC control law (8) if there exists a

scalar α > 0 and, for (j, k, l) ∈ I3
r , the matrices Pk = PTk > 0, Kjkl, Gjkl and

Qjkl, such that the LMI conditions (14) and (15) are verified with:

Γklij =

 Φklij (∗)

R2 ⊗ (Pl −Qjkl) + I ⊗GTjklATi −I ⊗H (Gjkl)

 (24)

and:

Φklij = R1 ⊗ Pl +H
(
R2 ⊗

(
AiQjkl +BiKjkl −

1

2α
(Pj − Pk)

))
(25)

In that case, H(.) = Pv in the non-PDC controller (8).200
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Proof. If the conditions of Theorem 2 hold, from Lemma 1, they provide that: Φh̃vhh (∗)

R2 ⊗ (Pl −Qjkl) + I ⊗GTjklATi −I ⊗H (Gjkl)

 < 0 (26)

with Φh̃vhh = R1 ⊗ Pv +H
(
R2 ⊗

(
AhQhh̃v +BhKhh̃v −

1
2α

(
Ph − Ph̃

)))
.

Pre- and post-multiplying (26) respectively by
[
I I ⊗Ai

]
and its transpose,

after expending and simplifying the obtained mathematical expression, yields

the inequality (23) with H(.) = Pv. This guarantees that the closed-loop dy-

namics (9) is globally non-quadratically D-stable.205

The second alternative to relax the basic global non-quadratic conditions of

Theorem 1 is proposed by the following theorem.

Theorem 3. Let R1 and R2 be two matrices defining a prescribed LMI region

D in the left half-plane of the complex plane. The T-S model (1) is globally and

non-quadratically D-stabilized by the non-PDC control law (8) if there exists the

scalars α > 0 and ε > 0, and, for (j, k, l) ∈ I3
r , the matrices Pk = PTk > 0, Kjkl

and Hjkl, such that the conditions (14) and (15) are verified with:

Γklij =

 Ψkl
ij (∗)

R2 ⊗ (Pl −Hjkl) + εI ⊗ (HT
jklA

T
i +KT

jklB
T
i ) −εI ⊗H(Hjkl)


(27)

and:

Ψkl
ij = R1 ⊗ Pl +H

(
R2 ⊗

(
AiHjkl +BiKjkl −

1

2α
(Pj − Pk)

))
(28)

In that case, H(.) = Hhh̃v in the non-PDC controller (8).

Proof. If the conditions of Theorem 3 hold, from Lemma 1, they provide that: Ψh̃v
hh (∗)

R2 ⊗ (Pv −Hhh̃v) + εI ⊗ (HT
hh̃v

ATh +KT
hh̃v

BTh ) −εI ⊗H(Hhh̃v)

 < 0

(29)

with Ψh̃v
hh = R1 ⊗ Pv +H

(
R2 ⊗

(
AhHhh̃v +BiKhh̃v −

1
2α

(
Ph − Ph̃

)))
.

Pre- and post-multiplying (29) respectively by
[
I I ⊗

(
Az +BzKzH

−1
z

) ]
210
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and its transpose, after expending and simplifying the obtained mathematical

expression, yields the inequality (23) with H(.) = Hhh̃v. This guarantees that

the closed-loop dynamics (9) is globally non-quadratically D-stable.

Remark 6. Note that with Theorem 3, the non-PDC scheduled gain matrixHhh̃v

is not required to be symmetric. Nevertheless, its invertibility is guaranteed if215

the conditions of Theorem 3 hold since it yields from blocks (2,2) of (27) that

Hhh̃v +HT
hh̃v

> 0.

Remark 7. : Similarly to previous stabilization results without D-stability con-

traints based on the Finsler’s lemma (see e.g. [38, 32, 18]), the conditions of

Theorem 3 involve a prefixed scalar parameter ε > 0 and so are not strictly LMIs.220

Note that this scalar is an additional slack decision variable as it can be easily

shown that it results from the introduction of a null term by taking the converse

way to prove Theorem 3 from Theorem 1. As quote in [32], this parameters

is usually prefixed or optimized in practice by linear programming inside a

logarithmically spaced family of values such like ε ∈ {10−6, 10−5, . . . , 106} × ρ,225

with ρ ∈ {1, 2, . . . , 9}, in order to avoid an exhaustive linear search. Moreover, in

[38], it has been shown that the introduction of such additional parameter was

outperforming previous results in a large way for thousands of LPV models and

comparing with numerous results (classical Q approach, Finslers application,

and several other variations).230

Remark 8. Note that, from their respective proofs, it is obvious that the condi-

tions of theorems 2 and 3 are less conservative than the conditions of Theorem

1. Indeed, both these proofs show that from the LMI-based conditions of the-

orems 2 and 3, the LMI conditions of Theorem 1 can be recovered by simple

mathematical manipulation (congruences). Moreover, theorems 2 and 3 involve235

slack decisions variables, which give more degree of freedom to their respective

LMI problems than the one of Theorem 1. Therefore, Theorem 1 is a special case

of both theorems 2 and 3, which in turns are obviously less conservative than

Theorem 1. Moreover, due to the absence of the terms KT
jklB

T
i in the blocks

(2,1) of (24) and their presence in the blocks (2,1) of (27), we cannot to prove240
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that the Theorem 2 is a special case of Theorem 3. Nevertheless, we will show

through a numerical example given in the next section that we may expect less

conservative results from Theorem 3 than Theorem 2, despite Theorem 3 is not

strictly LMI (see Remark 7). We assume that the conservatism improvement

of Theorem 3 comes from the more flexibility given by the terms including the245

control gains as decision variables to relax the anti-diagonal blocks of (27).

Remark 9. Note that Ph = limα→0 Pv and Ṗh = limα→0 Ṗv. Thus, taking to

that limit and assuming |ḣk| < φk, theorems 1 and 3 lead respectively to the

local non-quadratic results proposed as theorems 1 and 2 in [27]. In addition

to being local (see also [29]), these non-quadratic D-stabilization results are not250

suitable for T-S models with piecewise continuous. Consequently, these local

non-quadratic results are left out in this paper.

4. Numerical example

In this section, an academic example is propose to show the effectiveness

of theorems 1, 2 and 3, as well as to compare their conservatism regarding to255

recently proposed quadratic results [26, 27].

Let us consider a T-S model with two vertices involving piecewise continuous

MFs and given by:

ẋ(t) =

2∑
i=1

hi(z(t))(Aix(t) +Biu(t)) (30)

with :

A1 =


−1 −10 5 a

0 1 0 1

1 1 −2 3

3 2 1 1

 , A2 =


−1 −10 −5 4

0 −1 0 1

−1 2 −4 0

3 1 2 −1

 ,

B1 =


2

2

1

1

 , B2 =


1

b

2

1

 ,
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and the piecewise continuous MFs :

h1(x) =
1− sign(cos(x4))sin(x1)

2
, h2(x) =

sign(cos(x4))sin(x1) + 1

2

Remark 10. The considered MFs are piecewise continuous (i.e. discontinuous

for all x4 = π/2 + κπ, κ ∈ Z). Assuming that the discontinuities are left limits

and right continuous, the MFs are integrable ∀x ∈ R2. Thus, the recent local

non-quadratic D-stabilizing controller design conditions, proposed in [29], are260

unsuitable since they are dependent of the bounds φk of |ḣi|, which cannot be

globally defined in this example (see also Remark 9).

In (30), the parameters a and b are dedicated to compare the conservatism

of the considered LMI-based conditions. Thus, Figure 2 shows the obtained

feasibility fields, computed using YALMIP [40] and SeDuMi [41], of theorems265

1, 2, and 3, with α = 0.1 and an LMI region defined by (11) and (12) (see also

Figure 1) with s = 21, q = −17, β = 0.5, θ = 3π/10, γ = 9. Figure 2(a) shows

a comparison between Theorem 1 and the quadratic conditions of Theorem 7 in

[27] and Theorem 2 in [26]. Figure 2(b) shows a comparison between Theorem

2 and the quadratic conditions of Theorem 1 in [28] (without parametric uncer-270

tainties). Figure 2(c) shows a comparison between Theorem 3 and the quadratic

conditions of Theorem 10 in [27]. As expected, we observe that the proposed

non-quadratic results are less conservative than their respective quadratic par-

ticular cases (see Remark 3) as well as outperforming another recent related

quadratic D-stabilization result [26]. Moreover, Figure 2(d) summarizes the fea-275

sibility fields obtained from theorems 1, 2 and 3. We observe that Theorem 2

provide slightly less conservative results than Theorem 1. Moreover, Theorem

3 provide significantly less conservative results than Theorem 2. This shows the

conservatism improvements of the global non-quadratic stabilization conditions

proposed in this paper.280

- Place Figure 2 here -

Let us now consider the particular point (a, b) = (−4, 17), where a solution

has only been found with Theorem 3. This solution is summarized by the

16



following non-PDC controller (8) gain matrices (the other decision variables,

completing the solution of Theorem 3, are left out for space reasons):

F111 =
[

−0.0319 −0.0292 −0.0236 −0.0096
]
,

F112 =
[

−0.0259 −0.0263 −0.0218 −0.0133
]
,

F121 =
[

−0.0184 −0.0231 −0.0241 −0.0098
]
,

F122 =
[

−0.0163 −0.0217 −0.0231 −0.0113
]
,

F211 =
[

−0.0272 −0.0189 −0.0127 −0.0012
]
,

F212 =
[

−0.0256 −0.0180 −0.0118 −0.0015
]
,

F221 =
[

−0.0180 −0.0170 −0.0184 −0.0040
]
,

F222 =
[

−0.0139 −0.0152 −0.0183 −0.0061
]
,

H111 =


0.0702 0.0116 −0.0340 −0.0510

0.0223 0.0110 0.0079 −0.0102

−0.0126 0.0163 0.0567 0.0240

−0.0456 −0.0011 0.0398 0.0439

 ,

H112 =


0.0694 0.0110 −0.0352 −0.0517

0.0186 0.0090 0.0062 −0.0084

−0.0219 0.0114 0.0533 0.0295

−0.0476 −0.0017 0.0401 0.0455

 ,

H121 =


0.0751 0.0148 −0.0350 −0.0601

0.0149 0.0081 0.0058 −0.0082

−0.0364 0.0056 0.0517 0.0382

−0.0565 −0.0061 0.0396 0.0533

 ,

H122 =


0.0755 0.0146 −0.0359 −0.0618

0.0143 0.0075 0.0050 −0.0084

−0.0384 0.0041 0.0502 0.0393

−0.0583 −0.0067 0.0395 0.0554

 ,

H211 =


0.1506 0.0617 −0.0003 −0.0672

0.0916 0.0586 0.0300 −0.0028

0.0386 0.0360 0.0399 0.0183

−0.0104 0.0336 0.0536 0.0768

 ,
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H212 =


0.1476 0.0598 −0.0035 −0.0671

0.0860 0.0558 0.0270 −0.0006

0.0328 0.0334 0.0384 0.0202

−0.0169 0.0330 0.0530 0.0847

 ,

H221 =


0.1268 0.0472 −0.0102 −0.0688

0.0661 0.0495 0.0386 −0.0004

0.0148 0.0367 0.0662 0.0347

−0.0323 0.0254 0.0724 0.0762

 ,

H222 =


0.1255 0.0450 −0.0118 −0.0707

0.0579 0.0454 0.0369 0.0032

0.0002 0.0317 0.0674 0.0438

−0.0410 0.0248 0.0724 0.0857

 .

Remark 11. Note that, as quote in Remark 7, the parameter ε has been searched

by linear programming in an exponential family space. To save computational

time, our LMI algorithm is stopped as soon as a solution is obtained and, for the285

particular point (a, b) = (−4, 17) we obtained ε = 0.0006. Nevertheless, let us

notice that other values of this parameter can also lead to feasible LMIs. Hence,

in the case of a more stringent D region specification, such linear programming

search on this parameter can be helpful to find a solution.

Figure 3 shows the obtained closed-loop state trajectories and the migration290

of the closed-loop eigenvalues for the initial state x(0) = π
[

2 −2 −1 1
]T

.

- Place Figure 3 here -

The time evolution of the MFs and their mean values during this simulation

are shown in Figure 4. It is clearly illustrated the piecewise character of the

MFs h1 and h2, with the red marks × (left limits) and ◦ (right continuous)295

pointing-out the discontinuities, while v1 and v2 are continuous.

- Place Figure 4 here -

Remark 12. To show the flexibility of the D-stability concept, a simulation has

been done by considering only a decay rate β = 0.5 (exponential stabilization)
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instead of the whole LMI region depicted in Figure 3(b) (with the same initial300

state). As shown in Figure 5(a), when considering only a decay rate β = 0.5,

the control signal exhibits a peak of 498.4 while it is significantly reduced to

76.8 when considering the whole LMI region (including the circle constraint).

Figure 5(b) shows the distribution of the eigenvalues when only the decay rate

is considered. Compared to Figure 3(b), we can observe that the distribution of305

the eigenvalues goes far on the left and have larger imaginary parts, increasing

the transient control cost when only a decay rate is considered.

- Place Figure 5 here -

Remark 13. Note that in [19], D-stability constraints have not been considered.

Hence, it can be easily shown that theorems 1 and 2 in [19] are respectively310

special cases of theorems 1 and 2 by setting the left half-plane as D region (see

remarks 2 and 3). Thus, in this case, checking their respective conservatism leads

to obtain the same feasability regions (plots are left out since it is straightfor-

ward). However, there is no theorem in [19] which is a special case of Theorem

3 and, since it has been shown below that it improves the results obtained with315

theorems 2 and 3, we can expect less conservative results regarding to the results

from both theorems 1 and 2 in [19].

To conclude this numerical example, let us recall that, for this example, no

quadratic conditions exist with (a, b) = (−4, 17) from the previous results [27,

28]. Moreover, due to the piecewise character of the membership functions, the320

previous non-quadratic D-stabilization approaches are unsuitable [29]. More-

over, when only the standard stabilization is considered (left half-plane set as

LMI region), Theorem 3 has been shown less conservative than the results in

[19]. Hence, this clearly shows the interest of the theoretical procedure proposed

in this paper since it is not only improving the conservatism but also enlarging325

the considered class of T-S systems, which may now involve piecewise MFs.
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5. Conclusion

In this paper, the problem of the global non-quadratic D-stabilization of T-S

systems with piecewise continuous membership functions has been considered.

First, usual definitions of the D-stability concept have been recalled. Then, from330

the choice of a non-quadratic Lyapunov function involving the mean values of

the membership functions over a time interval [t− α, t] with α > 0, three LMI-

based theorems have been proposed for the design of non-PDC controllers for

the D-stabilization of T-S systems. It is highlighted that, thanks to the choice

of such a Lyapunov function candidate, the non-quadratic design conditions are335

no longer depending on the time derivative of the membership functions, yield-

ing to global asymptotical stabilization, also suitable for T-S models involving

piecewise membership functions (i.e. for a class of switched nonlinear systems).

This has been confirmed through a numerical example, where the conservatism

improvements regarding to quadratic approaches have been illustrated.340

The main advantages of the proposed global non-quadratic D-stabilization

approaches for T-S models are multiple regarding to previous tools. First, they

allow to provide less conservative conditions than quadratic ones (see e.g. [25,

26, 27, 28]), which are also global. Secondly, most of the previous non-quadratic

approaches were only local ones. Indeed, they require the estimation of the345

closed-loop Domain of Attraction (DA), which can be challenging when con-

sidering performance specifications such like D-stability constraints (leading to

small DA), but also can’t guarantee the closed-loop stability in the whole state

space (initial conditions outside the DA can diverge), e.g. [29]. Then, note that

these local non-quadratic approaches are unsuitable for T-S models with piece-350

wise MFs. Finally, let us also recall that some other previous attempts have

been done to provide global non-quadratic D-stabilization approaches with the

use of LILF [30, 31]. But, as detailed in Appendix A, these results are incor-

rect and the use of a LILF candidate doesn’t appear suitable to obtain convex

conditions (LMI) with D-stability conditions. Hence, the conditions proposed in355

this paper provide a convenient solution to the problem of global non-quadratic
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D-stabilization of T-S models, and so a suitable alternative to [30, 31].

Several perspectives of this study are foreseen. First, since the D-stabiliza-

tion allows to improve the closed-loop performances while keeping the energetic

control cost to reasonable values (i.e. avoiding the distribution of the eigenvalues360

to goes far left in the complex plane), a study showing the links with optimal

control design would be interesting. In the same way, analyzing the effects of

associating input constraints such like anti-windup techniques with D-stability

constraints can be appealing for practical applications. Finally, since the con-

sidered mean values of the MFs hold filter properties, employing them as PDC365

gain scheduling variables may help to smoother the control signal and to han-

dle external disturbances attenuation. Therefore, our future prospect will be to

propose a rigorous robustness analysis of such control plant design with regards

to H∞ performances.

Appendix A.370

In recent studies [30, 31], some attempts have been done to propose new

global non-quadratic LMI conditions for the design of PDC controllers with

D-stability constraints for T-S models via LILF, following the pioneer work of

Rhee and Won [5]. Such LILF is given by:

V(x(t)) = 2

∫
Γ(0,x(t))

fT (ψ).dψ (A.1)

where Γ(0, x(t)) is the path from the origin 0 to the current state x(t), (.) stands

for the inner product of vectors, ψ ∈ Rn is a dummy vector for the integral

and dψ is an infinitesimal displacement. Note that such approach requires the

following structure of f(x(t)) to guarantee the path-independency of the LILF

(A.1) [5, 16]:

f(x(t)) =

(
P0 +

r∑
i=1

hi(x(t))Pi

)
x(t) (A.2)
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with P0 =


0 p1,2 . . . p1,n

p1,2 0
. . .

...
...

. . .
. . . pn−1,n

p1,n . . . pn−1,n 0

, Pi =


pαil

1,1 0 . . . 0

0 pαil
2,2

. . .
...

...
. . .

. . . 0

0 . . . 0 pαil
n,n


and where αil specifies which θl-based fuzzy set is used in the ith fuzzy rule, rl

is the number of θl-based fuzzy sets, i.e. r =

p∏
l=1

rl. For example, if αil = κ

then it means that the κth fuzzy set among θl-based fuzzy sets is used in the

ith fuzzy rule, then 1 6 αil 6 rl for any i.375

Note that from the LILF (A.1), the stability conditions are free of the time

derivatives of the MFs. However in [30, 31], to apply the D-stability conditions

given as Definition 2, it has been assumed that the LILF (A.1) can be rewritten

as:

V(x(t)) = xT (t)

(
P0 +

r∑
i=1

hi(x(t))Pi

)
x(t) (A.3)

Unfortunately, such way of doing is not correct since it is obvious that (A.1)

cannot be rewritten as (A.3) to cope with global asymptotical stabilization.

Moreover, let us highlight that in the LILF framework, from Definition 2 and

considering (A.1) instead of (A.3), the D-stability condition (13) becomes:

R1 ⊗ 2

∫
Γ(0,x(t))

fT (ψ).dψ + 2R2 ⊗ xT (t)

(
P0 +

r∑
i=1

hi(x(t))Pi

)
ẋ(t) < 0

(A.4)

which convexification remains an open and strong problem due to the presence

of the line-integral term.

These concerns make unsuitable the LMI-based design for global non-quadratic

D-stabilization of T-S models proposed in [30, 31], while the procedures pro-

posed above as Theorem 1, 2 and 3 provide alternative solutions.380
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pôles robuste en D-stabilité, Ph.D. thesis, Institut national des sciences

appliquées de Toulouse, France (1998).

[21] M. Chilali, P. Gahinet, P. Apkarian, Robust pole placement in LMI regions,

IEEE Transactions on Automatic Control 44 (12) (1999) 2257–2270.445

[22] M. Chilali, P. Gahinet, H∞ design with pole placement constraints: an LMI

approach, IEEE Transactions on Automatic Control 41 (3) (1996) 358–367.

[23] D. Peaucelle, D. Arzelier, O. Bachelier, J. Bernussou, A new robust D-

stability condition for real convex polytopic uncertainty, Systems & Control

Letters 40 (1) (2000) 21–30.450

[24] V. J. S. Leite, P. L. D. Peres, An improved LMI condition for robust D-

stability of uncertain polytopic systems, IEEE Transactions on Automatic

Control 48 (3) (2003) 500–504.

[25] P.-F. Toulotte, S. Delprat, T.-M. Guerra, J. Boonaert, Vehicle spacing

control using robust fuzzy control with pole placement in LMI region, En-455

gineering Applications of Artificial Intelligence 21 (5) (2008) 756–768.

[26] W. Assawinchaichote, Further results on robust fuzzy dynamic systems

with LMI D-stability constraints, International Journal of Applied Mathe-

matics and Computer Science 24 (4) (2014) 785–794.

[27] A. Cherifi, K. Guelton, L. Arcese, Quadratic design of D-stabilizing non-460

PDC controllers for quasi-LPV/T-S models, in: IFAC-PapersOnLine,

Vol. 48, Elsevier, 2015, pp. 164–169.

[28] A. Cherifi, K. Guelton, L. Arcese, Uncertain TS model-based robust con-

troller design with D-stability constraints—A simulation study of quadrotor

25



attitude stabilization, Engineering Applications of Artificial Intelligence 67465

(2018) 419–429.

[29] A. Cherifi, K. Guelton, L. Arcese, Local D-stabilization of uncertain TS

fuzzy models via fuzzy Luapunov functions, in: 2017 IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE), 2017, pp. 1–6.

[30] J. Bai, R. Lu, X. Liu, A. Xue, Z. Shi, Fuzzy regional pole placement based470

on fuzzy Lyapunov functions, Neurocomputing 167 (2015) 467–473.

[31] R. Lu, M. Wang, J. Bai, A. Xue, H. Zou, Pole placement with LMI con-

straint of fuzzy descriptor system, Journal of the Franklin Institute 352 (7)

(2015) 2665–2678.

[32] A. Jaadari, T.-M. Guerra, A. Sala, M. Bernal, K. Guelton, New controllers475

and new designs for continuous-time Takagi-Sugeno models, in: IEEE In-

ternational Conference on Fuzzy Systems, Brisbane, Australia, 2012, pp.

1–7.

[33] J. Daafouz, J. Bernussou, Parameter dependent lyapunov functions for

discrete-time systems with time-varying parametric uncertainties, Systems480

& Control Letters 43 (2001) 355–359.

[34] S. K. Nguang, P. Shi, Robust H∞ output feedback control design for fuzzy

dynamic systems with quadratic D-stability constraints: An LMI approach,

Information Sciences 176 (15) (2006) 2161–2191.

[35] J. W. Brewer, Kronecker products and matrix calculus in system theory,485

IEEE Transactions on Circuits and Systems 25 (9) (1978) 772–781.

[36] H. D. Tuan, P. Apkarian, T. Narikiyo, Y. Yamamoto, Parameterized linear

matrix inequality techniques in fuzzy control system design, IEEE Trans-

actions on Fuzzy Systems 9 (2) (2001) 324–332.

[37] F. Bourahala, K. Guelton, N. Manamanni, F. Khaber, Relaxed controller490

design conditions for takagi–sugeno systems with state time-varying delays,

International Journal of Fuzzy Systems 19 (5) (2017) 1406–1416.

26



[38] R. C. C. F. Oliveira, M. C. D. Oliveira, P. L. D. Peres, Robust state feed-

back LMI methods for continuous-time linear systems: Discussions, exten-

sions and numerical comparisons, in: IEEE Multi-Conference on Systems495

and Control, Denver, USA, 2011, pp. 1038–1043.

[39] R. E. Skelton, T. Iwasaki, K. M. Grigoriadis, A Unified Algebraic Approach

to Linear Control Design, Taylor and Francis, London, 1998.
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Figures:505

Figure 1: Usual LMI region for control purpose.
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Figure 2: Comparison of the feasibility fields on parameter space a× b.
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Figure 3: Closed-loop state responses and distribution of the closed-loop eigenvalues.
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