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ABSTRACT

Scientific and ecological data collection in today’s world is
primarily driven by citizen-based observation networks to
gather information on a diverse array of species and natural
processes. Such efforts leverage the contributions of a broad
recruitment of human observers to collect data and use Ma-
chine Learning algorithms to process the collected data lead-
ing to a computational power that far exceeds the sum of
the individual parts. Instead of organic group formation
and collaboration, our vision is the need to formalize collab-
oration and rethink the components of a data management
system to ensure its sustainability in such human-intensive
applications. The enabler of collaboration is the notion of a
user group that implies different behaviors and interactions
between its members. We advocate the design of new com-
ponents of a data management system that deliberately ac-
knowledge the uncertainty and dynamicity of human behav-
ior by capturing the human factors that characterize group
members. We describe ECCO, a framework that contains two
generic components: adaptive collaborative human factors
learning and adaptive human-centric optimization. Those
are the core components that support the fundamental func-
tionalities of a wide range of human-intensive applications.
ECCO components rely on two optimization engines, namely
task assignment and human data management engine. An
additional challenge in designing the components of ECCO is
the need to support adaptive and incremental computation.
We discuss the modeling, learning, and computational chal-
lenges of designing the components of ECCO and propose a
roadmap of future directions of this vision.

1. INTRODUCTION
Achieving insight about ecological patterns often requires

the study of natural systems at large scales. An emerging
focus therefore is to build an infrastructure for data syn-
thesis and analysis that allows data collection and organi-
zation across the continent and perform large scale analyses
over it. While new technologies are gradually emerging to
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Figure 1: High Level Design of ECCO

leverage autonomous sensor networks for such data collec-
tion, the state of the art techniques still can not identify
organisms to species, they serve to gather information on
the variables that influence species occurrence. Therefore,
most data on species-level occurrence still must be gathered
by humans [10], necessitating innovative programs for wide-
scale data collection and analysis. In particular, the ultimate
objective of such effort is to build a hybrid human machine
computational power to solve complex problems. We advo-
cate the design of a new framework ECCO to that end with
the vision to formalize collaboration and rethink the com-
ponents of a data management system to ensure quality and
sustainability in such human-intensive applications.

Applications: Several leading efforts of citizen science
are being carried out nationally and internationally. For
example, the US National Phenology Network1 conducts
Project Budburst, a citizen-based effort to report pheno-
logical events such as first leafing, first flowering, and first
fruit ripening for a variety of plant species in order to bet-
ter understand the broad scale effects of climate change.
The Galaxy Zoo 2 project provides access to almost 250,000
images of galaxies and engages volunteers to classify them
into shapes in order to better understand how galaxies are
formed. In FoldIt 3 project, researchers attempt to predict

1http://www.usanpn.org/
2http://www.galaxyzoo.org/
3http://fold.it/portal/
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the structure of a protein by taking advantage of puzzle solv-
ing abilities of the human. Another popular example is the
e-Bird project [11, 4], which engages a vast network of hu-
man observers (citizen-scientists) to report bird observations
using standardized protocols.

Objective: The ultimate objective of such efforts is to
employ a hybrid human and mechanical computation power
to solve complex problems through active learning and feed-
back. The contributed large scale data is processed with
Machine Learning algorithms for correlating species distri-
butions with environmental covariates to identify the unla-
beled points that when labeled would most rapidly decrease
uncertainty in the model being deployed, or contain the
highest amount of surprise versus expectation, or most likely
result in a different model being proposed. To seamlessly
enable such capabilities to the domain scientists, therefore,
the challenge is to develop the appropriate data management
and optimization framework that will allow effective group
formation and large scale analyses on the collected data.

Current Practices and Shortcomings: Current citi-
zen science practices primarily rely on passive form of crowd-
sourcing, i.e., forming human networks in a rather organic
way. Naturally, this form of passive crowdsourcing leads
to high latency, inaccuracy, with the potential of substan-
tial noise in the overall outcome. We, on the other hand,
propose ECCO to enable active crowdsourcing for such scien-
tific data collection, where group formation is optimization
guided and the framework constantly learns about the work-
ers from the tasks they undertake and reuse this learning.
We provide one such specific scenario next in the context of
ecological data collection.

Example 1. Scientific Data Collection and Analy-
ses - A Citizen Science application: Typical citizen sci-
ence efforts take place in groups to reduce errors in observa-
tion, or even keep the citizen scientists vested and motivated
in the task. Imagine a citizen scientist application needs to
be designed to collect data that enables building accurate pre-
dictive models by correlating environmental covariates (e.g.,
elevation, soil type, and average precipitation) with the pres-
ence of a species. To formulate the predictive model, the
following tasks are to be performed:

• Confirmed Absence of Species (subtask-1): Another group
(sub-group 1) needs to be formed to confirm the absence
of a species. This step is considered difficult and ex-
pert workers are required to be involved to carry out
this step successfully.

• Confirmed Presence of Species (subtask-2): A third
worker group (sub-group 2) is to be created to confirm
the presence of a species.

• Co-variate Validation (subtask-3): A fourth group of
workers (sub-group 3) is created to validate the model
covariates (e.g., is the elevation really 100 m at this
location like the current covariate dataset indicates?).

• Model Validation (subtask-4): A final group of work-
ers (sub-group 4) is tasked to validate the model itself
(e.g., the system recommends a particular location for
sampling a species presence/absence and the group of
workers are dedicated to validate that).

• This iterative process terminates when the resultant
data has surpassed a certain benchmark in quality (for

example, the built statistical model needs to reach 90%
accuracy and 85% precision). The objective is to achieve
the quality as quickly as possible, by spending the small-
est cost.

Group Interactions:

• Intra-group: Workers in the same sub-group need to
interact with each other to ensure that the collected
observations are correct and consistent.

• Inter-group: The users in sub-groups 1 and 2 are re-
quired to interact with each other to confirm the ab-
sence and presence of the species.

Workers’ Skills: Volunteers are likely to have multiple
skills, e.g., skills in ecological assessment, field training, etc.

We attempt to abstract the processes that are likely to
take place in such active crowdsourcing application and for-
malize them and propose ECCO to achieve the desired out-
come. We identify the following core aspects to support such
ecological applications.

• Complex Tasks: A citizen science application such as
the one above is an example of a complex task that is
composed of sub-tasks. For example, each of the data
collection step described above is a sub-task and the
overall task is a composition of these steps in an ap-
propriate sequence. The current practice is to identify
these sub-tasks manually [6, 12]. Interestingly, while
the overall goal of a complex task may be to surpass the
quality benchmarks as quickly as possible, as stated in
the example, each sub-task may have different goal(s).
The overall execution flow is presented in Figure 2.

• Groups: Central to such collaborative human-intensive
application is the notion of “group”which may further
be decomposed into sub-groups, where a set of workers
collaborate with each other to complete tasks. Exam-
ple 1 requires 4 such sub-groups.

• Human Factors: A variety of individual and group
based human characteristics are to be understood [8,
9]. For example, skill of the workers to identify ex-
perts, their incentives, motivation, or ability to collab-
orate with each other. Some relevant skills pertinent
to the running example may be ecological assessment
skill, field training, and so on.

• Primary Functionalities: (a) given a complex task and
a worker pool, form group of sub-groups to assign to
the sub-tasks; depending on the nature of the appli-
cations, a sub-group may undertake one or more sub-
tasks, collaborate or compete with other sub-groups.
(b) learn skills and other human factors of the workers
that are either individual or group based.

• Scale: We envision the necessity for a generic system
that can handle a wide variety of such applications.
In such a system, hundreds and thousands of citizen
science workers and tasks needs to be processed and
assigned. Scalable solution design becomes the first
class citizen in such settings.
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Desirable characteristics of ECCO: Several key aspects
are to be appropriately unfolded: (1) uncertainty in hu-
man characteristics, namely human factors [8, 9] are to
be understood. More importantly, we need to identify both
individual human factors and those that impact group dy-
namism; For example, individual human factors, such as a
user skill may impact how much leadership she has in a
group; (2) designing declarative primitives which al-
low domain experts to easily accomplish the required func-
tionalities; (3) designing relevant mathematical mod-
els to capture the appropriate optimization objectives; (4)
designing appropriate algorithms and data manage-
ment techniques for effective task assignment and human
factors learning. (5) finally, developing actual systems
or platforms that can integrate the components of ECCO.

Proposed components: ECCO consists of two primary
components which are both required to be adaptive.

• Collaborative Human Factors Learning Component: This
component first formalizes human factors - some of
these characterize individuals, such as, their respective
skills in different domains, their incentives (e.g., wage),
motivation, as well as describe group characteristics,
affinity between the workers, trust, leadership, or even
application characteristics, such as, critical mass (a
socio-psychological concept that describes how large
a group can be for effective collaboration) [5]; These
factors are then leveraged within this component to ac-
complish different learning, as described in Section 2.
This module also exploits a “feedback” loop to enrich
its learning by ingesting data coming from the deploy-
ment platform. This very aspect of users evaluating
other users is a clear departure of ECCO from any ex-
isting system.

• Human-Centric Optimization Component: This com-
ponent consists of two different optimization engines
and heavily interacts with the human factors learning
module to appropriately incorporate human factors in
the design. (a) Adaptive Task-Assignment Engine is
in charge of building a set of homophilous, diverse,
or complementary groups by enabling different inter-
action patterns among group members and accounting
for appropriate human factors to optimize certain out-
comes of a given task. Furthermore, as stated in the
running example, different groups may have different
interaction pattern with each other. (b) Human Data
Management Engine, on the other hand, manages the
data learned from human factors learning component,
as well as the data generated by the task assignment
engine. The overall objective of this engine is to store,
index, and effectively retrieve the collected data over
the time. (c) Last, but not least, we wish to sup-
port adaptivity and incremental computation in both
those engines, as human factors change over time. Fig-
ure 1 describes a high level architecture and interac-
tivity among the different components inside ECCO.

Team formation [1] in online social networks has been the
subject of some recent works which bears resemblance to
the task-assignment problem. What differentiates us, is
the time-variance property and significant interoperability
between different components, by deliberately acknowledging
a wide variety of human factors. Obviously, no attempt has

been made to incorporate human factors learning for collab-
orative applications, or to effectively manage data generated
by human workers.

Sections 2 and 3 contain further details. Our goal is to
ensure scalability, as well as allow incremental and adaptive
learning and computation. In addition to benefiting ecolog-
ical and environmental science, we envision that ECCO will
transpire many data management, index design, algorith-
mic, machine learning, and social science research problems
and foster synergy across these disciplines.

2. ECCO
Individual users and applications which consist of tasks

are integral part of ECCO. ECCO works in conjunction with an
evaluation environment where tasks get evaluated by a hu-
man machine computation model. ECCO’s components are:

2.1 Collaborative Human Factors Learning
Different collaborative applications rely on capturing and

including individual human factors such as skill, motiva-
tion, acceptance ratio (describing how likely an individual
will contribute) [9], or expected wage. Similarly, group hu-
man factors, such as, affinity, leadership, influence, group
size (referred to as critical mass [5]) are also to be factored
in. Moreover, while new users may join, existing ones may
leave. Interestingly, human factors are dynamic - i.e, they
change over time, and depend on the context. Human fac-
tors are also correlated (e.g., a highly skilled individual may
be more influential, or higher rewards lead to higher accep-
tance ratio), and sometimes probabilistic (e.g., acceptance
ratio).

While prior work [9] has acknowledged human factors,
no further attempt has been made to learn and incorpo-
rate them in human-intensive applications in a principled
manner. On the contrary, the collaborative human factors
learning component is considered as one of the most funda-
mental contributions of ECCO, designed with the overall ob-
jective to learn the collaborative human factors [8, 9] adap-
tively. It proposes a set of declarative primitives to learn
the (1) individual human factors, (2) group based human
factors, (3) correlation among different human-factors, (4)
most importantly adaptive and incremental learning of these
factors, considering the achieved quality of the group based
tasks. Recall the feedback loop in Figure 1 that comes from
external evaluation to this component. For our citizen sci-
ence example, the evaluation is performed with a hybrid
human and machine intelligence. In particular, the evalua-
tion of the completed tasks could be precision, recall, accu-
racy, sensitivity, etc. The corresponding vector in evalma-
trix may look like, precision = 0.8, recall = 0.6, accuracy =
0.5, specificity = 0.5. Function relearn is designed to re-
learn how to obtain the skills of the workers (ecological as-
sessment knowledge, field training, etc) from these evalua-
tion values. Some example primitives are provided in Ta-
ble 1.

2.2 Human-Centric Optimization
This component consists of two optimization engines.

Adaptive Task-Assignment Engine: Inputs to this en-
gine are the user population and the tasks (or a set of sub-
tasks), and the output are the groups that are best suited to
undertake the tasks. Primitive Form-Grp(t,U) is designed
for this purpose, which is further explained in Table 1. No-
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Primitive Description
human-factor-ind(u) output the individual human factors of user u.
human-factor-grp(g) output the group based human factors of g.
cor-human-factor({X}, k) output the correlation among the human factors in set {X}.
relearn({X}0, T, evalmatrix) relearn the human factors in the set {X}0, considering T tasks and the evalmatrix.
Form-Grp(t,U) output the assignment of a set of workers from the available worker pool U to task t.
Form-group(L, clique, th,U) output a clique of L workers whose aggregated all-pair affinity is th or beyond.
add-worker(u), delete-worker(u) adds and deletes worker u to/from the available tasks.
find-worker(human-factor) find worker with a given human factor.
find-top-worker(s) Find highest skilled worker for skill s.
find-top-worker(s,k,time-period) Find k highest skilled worker for skill s for a given time period.

add-eval(g, t1) add evaluation score of subtask-1 of task t completed by group g.

Table 1: Example Primitives Descriptions Supported by ECCO.

tice that, the group formation problem for us, is optimization
mediated, instead of organic. Needless to say that each user
is described by a set of human factors that are learned from
the collaborative human factors learning component. The
criteria of the best outcome (i.e., optimization objectives) is
domain-specific to say the least, and to be left for the domain
experts to decide. We, however, provide the mechanism to
incorporate these criteria into a set of well formulated opti-
mization models.

As a simple example, given a sub-task, such as finding
the workers group that can collect initial data to build the
statistical model (subtask-1), the group should be formed
such that the users collectively have the expertise to collect
both positive and negative labels for the statistical model,
their wages do not surpass the cost budget of the task, and
group should be designed such that it brings forth the max-
imum collaborative synergy. On the contrary, given a com-
plex task with a set of sub-tasks (such as one described in
the running example) and described in Figure 2, we need
to form a group of groups, where workers inside the same
sub-group must be highly collaborative, and workers across
some sub-groups need to interact with each other as well (for
example, sub-group-1 and sub-group-2 in the running exam-
ple). This engine is responsible to analyze the desiderata
of task-assignment and form groups to enable the desirable
outcome.

Naturally, even the simplest settings for such problems
give rise to complex mathematical formulations having multiple-
objectives to optimize. Then, the interaction pattern gives
rise to constructing graphs involving the workers, where the
topology of the graph should conform a specific interaction
pattern, as described by the domain experts. For the exam-
ple task stated in the running example, each group interac-
tion translates to forming a clique to execute a sub-task and
the interaction between the sub-groups give rise to forming a
connected topology among the cliques with highest affinity,
as described by Figure 2.

Finally, how big a subgroup should be is application-specific
many times. We envision that ECCO would support a variety
of such applications, where the group formation is premedi-
tated and guided by a well-defined optimization objective.

Human Data Management Engine: The human fac-
tors learning component constantly generates data involv-
ing individual human workers and group of workers over
the time that the task assignment engine needs to tap into
to enable effective assignment of worker groups to the sub-
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Figure 2: A Complex Task with Sub-tasks Using Example 1.

tasks. Not only that, the evaluation component generates
the evaluation of the completed tasks. Interestingly, this
data is temporal [3] and is associated with time stamps.
Human Data Management engine provides effective man-
agement over this dataset to enable effective storage and
retrieval over the time. We explain some of such functional-
ities next.

This engine will be enabled with the traditional database
primitives, such as, add, delete, or find a user with a given
human factor value, as explained in Table 1. Additionally,
the domain experts or the data analysts may be interested
to perform simple statistical analyses on this collected data,
for example, finding the highest skill worker for a given skill
s, or finding the top-k highest skilled workers, and so on.
The corresponding primitives are described in Table 1. In
an earlier work, we have proposed an effective indexing tech-
nique to cluster the workers based on skills and wages [9].

Recall Example 1 and notice that the complex tasks con-
sists of a set of sub-tasks. We propose primitives to add
evaluation score of a completed task (e.g., sub-task-1 in Ex-
ample 1), completed by a group. Similarly, for efficient task
assignment, ECCO will leverage this engine to quickly find a
group of workers who are most skilled to undertake a given
task (e.g., finding the best set of workers for each of the
sub-tasks in Example 1). In an recent work, we propose
the notion of virtual worker, an effective indexing tech-
nique to cluster the workers based on skills and wages for
effective worker to task assignment [9]. Additionally, our
proposed human data management engine is empowered to
retrieve worker groups that will optimize a particular inter-
action pattern. For example, we will design primitives to
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retrieve a clique of L workers with affinity more than some
threshold th. We refer back to the Table 1 again for the
exact definition of the primitives.

3. CHALLENGES & DIRECTIONS
We describe some of the major challenges in realizing ECCO

and our proposed directions.

(a) Identifying Relevant Factors: One significant chal-
lenge is to identify a wide variety of human factors and
other necessary semantics that are needed in such appli-
cations. We consider a platform with a set of n workers,
U = {u1, u2, . . . , un}

4 and l tasks, T = {t1, t2, . . . , tl}. A
task may be indivisible or may be decomposed to a set of
sub-tasks. A task requires multiple skills over m different
domains, S = {s1, s2, . . . , sm}.
(1) Human Factors: Our initial effort has identified the
following factors that potentially have a dramatic impact on
the ecosystem. (a) Skills: The skill of a worker u is ex-
pressed as a vector s1u, s

2

u, . . . , s
m
u over S, where each skill is

quantified in a continuous scale between [0, 1], where a value
of 0 reflects no expertise for that skill. (b) Wage/Cost: For
many collaborative tasks, explicit monetary remuneration
may need to be offered to the workers. wu represents the
amount of money a worker u is willing to accept to complete
a task. (c) Acceptance Ratio: Acceptance ratio pu ∈ [0, 1]
of a worker u is the probability at which u accepts a task.
(d) Worker affinity: A key to successful collaboration is the
affinity among the individuals. At the atomic level, affin-
ity is defined between a pair of workers u, u0, i.e., Aff(u, u0)
denotes how well these pair of workers work with each other.
(2) Task Quality Metrics: A task t may consist of a set
Q = {Q1, Q2, . . . , Qr} of quality metrics (as described in the
running example, such as precision, recall, etc). We envision
that the relevant metrics to estimate the task quality would
be domain specific and the value of a quality metric may be
an additive, multiplicative, or a more complex function of
individual worker’s skills or other human factors.
(3) Constraints in Collaborative Tasks : A task t may
have a budget (cost) threshold of Ct. To be considered suc-
cessful, it may also have a set of quality metrics threshold Qi

t

(i ∈ {1 . . . r}) with the total expenses less than Ct. Global
constraints should also be considered. For example, each
workers should neither be under nor be over-utilized, by as-
signing a lower (Xl) and an upper (Xh) limit on the number
of tasks she can be assigned to.

(b) Modeling: Appropriate incorporation of the hu-
man factors is one of the foundational steps in the success-
ful development of the Collaborative Human Factors Learn-
ing Component. Similarly, the Human-Centric Optimization
Component have to formalize complex optimization prob-
lems with multiple objectives and constraints. In our initial
direction, we realize that it is only realistic to collaborate
with the domain experts to understand and appropriately
incorporate the application specific human factors. As an
example, for the species data collection task described in
the running example, human factors could be ecological as-
sessment ability, field training, workers’ affinity with each
other, explicit monetary incentives, etc. After that, a math-

4Although new workers could join and existing ones could leave
any time.

ematical model is to be formalized that incorporates those
factors appropriately, where it would maximize some of the
factors, and use the rest as constraints. A simple mathemat-
ical model may intend to form a group G which maximizes
the aggregated expertise Σudi of the users as well as their
collaboration affinity ΣAff(ui, uj), while keeping the total
cost under a certain threshold Σwu ≤ C, such as:

Maximize Σ8ui,uj∈G
Aff(ui, uj)+

Σ8ui∈G
udi ,Σ8u∈G

wu ≤ C

On the contrary, if the task-assignment optimization is per-
formed globally, we also need to add the load balancing con-
straints. However, the question remains, how to acknowl-
edge in the modeling that not all users will perform accord-
ing to their expertise, or a group may have to be partitioned
into sub-groups if it violates the critical mass constraint.
Similarly, task creation engine is also designed to optimize
outcomes (such as minimizing latency), while satisfying the
constraints provided by the domain experts.

(c) Learning: The collaborative human factor learning
component hinges on automated learning techniques to un-
cover the correlation among the human factors. Several in-
teresting and challenging problems surface that involve de-
signing learning algorithms. For example, what makes indi-
viduals or a group remain motivated, or how to learn worker
skills for collaborative tasks? Such problems are likely to
give rise to novel supervised or unsupervised machine learn-
ing solutions.

Let us consider a simple illustration of the function
relearn({X}0, T, evalmatrix) in Section 2.1, where we are
given a matrix evalmatrix that provides how each task ti
is evaluated based on various task quality metrics. Learn-
ing worker skills could be posed as a matrix tri-factorization
problem, where evalmatrix is factorized as, - i.e. evalmatrix ≈
FX 0GT where the approximation accuracy is measured based
on the norm ||evalmatrix−FX 0GT ||. Matrix F is a Boolean
matrix and has the assignment of workers to groups in dif-
ferent tasks. X 0 denotes the worker to human factor matrix.
The final matrix G measures the impact of human factors
to task quality metrics, specifying that metric Gi as a linear
combination of human factors. This tri-factorization [7] is
heavily constrained using non-negativity, sparsity, row/column
stochasticity, or other marginal constraints.

(d) Adaptivity and Incrementality: Adapativity is
essential for the survival of ECCO from several perspectives
- with changing time and context, individual and group hu-
man factors, as well as their correlation will vary. This not
only requires the two of the first three challenges (i.e., mod-
eling and learning) to be time-aware, but also to be adaptive
in nature. For the Human Factors Learning component, this
means that ECCO should be able to adaptively learn the hu-
man factors, as they perform more actions in the system. For
the task assignment engine, it would mean that the system
would be able to incrementally form groups as more users
join or existing ones leave the platform. To enable adaptive
and incremental computation the human data management
engine needs to be sensitive to the footprints of a workers’
activity in a temporal fashion. Understandably, incremental
computation may introduce approximations in the results.
In a recent work of ours, we have proposed how to perform
adaptive task assignment by marginally solving the problem
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and our experimental results demonstrate that our proposed
solutions are both effective as well as efficient [9]. An in-
teresting study would be to investigate the approximation
factors of the proposed algorithms theoretically.

(e) Scalability: The task assignment problem is shown
to be NP-hard[2], even in the simplest scenarios [9] even
without considering affinity. Similarly, matrix factorization
problem is inherently NP-hard [7]. Therefore, all the com-
ponents of ECCO must ensure efficient algorithms for human
factors learning or task assignment. Proposed human data
management engine therefore needs to be appropriately de-
signed to ensure efficient computations. When affinity is
considered in the modeling, the very simple task assignment
formulation described itself gives rise to complex graph par-
titioning formulation. At the same time, we intend to stay
as principled as possible. Traditional modeling and learning
algorithms that are typically inefficient may come largely
inappropriate in our settings, thereby requiring to generate
new theory and techniques. We foresee that the scalabil-
ity challenges of ECCO will nurture engagement and collab-
oration across the theory, database, and machine learning
community. Efficient approximation algorithms with theo-
retical guarantees will be proposed, or we expect to see inno-
vative pre-computation or index design solutions to enable
real time response. A very few existing research efforts [9,
1] superficially investigates some of these scalability issues
for the task assignment problem. How to design the human
data management engine effectively to enable efficient task
assignment and human factors learning remains to be an
open problem.

(f) Platform Design: ECCO would not be possible with-
out the ability to conduct comprehensive experiments and
validate the outcomes. Note that, finding appropriate datasets
that represent the real world is one of the toughest barri-
ers that we yet have to surpass. Most of the existing plat-
forms, commercial or academic, such as Amazon Mechanical
Turk (www.mturk.com), CrowdDB, Qurk, Deco, do not nat-
urally support collaborative tasks. To go beyond theoreti-
cal analyses, the community needs to have access to one or
more platforms that support collaboration and group forma-
tion, where the experiments and analyses can be conducted
systematically. We expect that ECCO will transpire enough
system research to build platforms and propose declarative
languages to support collaborative human-intensive appli-
cations. Without appropriate evaluation strategies, indeed,
the effectiveness of ECCO will only be partially explored.

4. CONCLUSION
We propose the vision of ECCO, a framework that supports

data management and analyses for ecological data by lever-
aging the innate characteristics of individuals. We outline
the two core components of ECCO - 1) Collaborative Human
Factors Learning Component, 2) Human-Centric Optimiza-
tion Component. The first component is designed to learn
and characterize individual and group behaviors over time,
their interdependence, which is designed to closely work with
the evaluation or the deployment environment. The latter
is an optimization component which interacts with the for-
mer to leverage human factors in the modeling and com-
putations. This component is intended to automate worker
to task assignment which are largely manual (or self medi-
tated) and painfully slow till date. ECCO warrants adaptivity

and scalability - to support that we propose the necessity to
design an appropriate human data management engine that
will collect and manage data coming from the human fac-
tors learning component and use that in task assignment.
We intend to design principled solutions that are effective
as well as efficient. We summarize the challenges of ECCO

and propose initial directions.
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