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On Wigner's D-matrix and Angular Momentum

Using the Analytic Oscillator space (Fock Bargmann space) and the generating function of Wigner's D-matrix we will determine the generating functions of spherical harmonics and the 3-j symbols of SU(2). We will find also a relation between the Gegenbauer Polynomials and Wigner's d-matrix. We drive the 3-j symbols and we find simply the expression of 3-j symbols with magnetic momentum nulls. We will find the generating function the 3 -lm symbols of SO(3) and a new relation between the 3-j symbols. We will derive also the generating function of 6-j symbols. We will apply our method for the determination of the generating function and the spherical basis of four dimensional R 4 Harmonic oscillators.

Introduction

The Harmonic oscillator and the Angular Momentum are parts of the course of quantum mechanics and has been studied since time ago by many scientists using different methods [START_REF] Messiah | Mcanique Quantique Tomes I et II[END_REF][START_REF] Moshinsky-Y | The Harmonic Oscillator in Modern Physics[END_REF]. Racah has made an important contribution to the study of coefficients of 3-j and 6-j symbols. Furthermore Wigner fined the representation matrix of rotation. Then Schwinger studied the rotation groups starting from oscillator basis and found the generating functions of 3-j and 6-j. By analogy with the Schwinger work, Bargmann used the Fock space to study the angular momentum.

We observe that many spaces of the oscillators that have wave functions are function of complex numbers and it is conjugated. We will use this property to make a new simple study of angular momentum. For example, the two-dimensional isotropic harmonic oscillator with plane polar coordinates and the R 4 wave function in terms of Euler-angles, and the angular part is the Wigner D-matrix [START_REF] Moshinsky-Y | The Harmonic Oscillator in Modern Physics[END_REF]. This work starts with the determination of the generating function of Wigner D-matrix and the exploitation of its properties which are very useful for the study of the angular momentum. Then we deduce the generating function of spherical harmonics and we find a relationship between the Gegenbauer Polynomials and Wigner's d-matrix.

Starting from the integration of the product of three Wigner D-matrix and three spherical harmonics we will find the 3-j symbols and the 3-lm symbols of SO [START_REF] Sakurai | Modern Quantum Mechanics[END_REF] [START_REF] Vilenkin | Fonctions spciales et thorie de la reprsentation des groupes[END_REF][START_REF] Hage | Angular momentum, Hydrogen-oscillator connection and the relation between hydrogen atom basis[END_REF]. We will simply calculate 3-j symbols with magnetic momentum nulls [START_REF] Schwinger | On angular Momentum[END_REF][START_REF] Rose | Elementary Theory of Angular Momentum[END_REF].

We find a new relation between the 3-j symbols and we derive also the generating function of 6-j symbols [START_REF] Schwinger | On angular Momentum[END_REF][START_REF] Bargmann | [END_REF]. Moreover, we will apply our method for the determination of the generating function and the spherical basis for four dimension R4 Harmonic oscillators [START_REF] Moshinsky-Y | The Harmonic Oscillator in Modern Physics[END_REF][START_REF] Hage | Angular momentum, Hydrogen-oscillator connection and the relation between hydrogen atom basis[END_REF].

It is important to emphasize that our method is simple and elementary. This paper is organized as follows: in section 2 the derivation of the spherical harmonics and the representation of SU(2) is illustrated. In sections 3 and 4 we will derive The generating function of Wigner's D-matrix of SU [START_REF] Greiner | Quantum Mechanics[END_REF], the generating functions of spherical harmonics and Legendre polynomials. In section 5 the relation between Gegenbauer polynomial and Wigner's D-matrix will be presented. The well known Coupling of two angular momenta and the generating function of 3-j symbols are exposed in parts six and seven. In section 8 we expose the new derivation of the 3-j with magnetic moments m i = 0. We will derive the generating functions of 3-lm in section 9. Then we present the derivation of the new relation between the 3-j symbols in section 10. In section 11 we expose the derivation of the generating function of Racah coefficients. In section 12 we will find the generating function and the spherical basis of four dimensional of harmonic oscillator.

The spherical harmonics and the representation of SU(2)

We make a summary of the determination of spherical harmonics and the representation of SU(2) using the analytic Hilbert space [START_REF] Edmonds | Angular Momentum in Quantum Mechanics[END_REF][START_REF] Bargmann | [END_REF].

The spherical harmonics

The rotation group SO(3) leaves invariant the quadratic form:

x 2 + y 2 + z 2 .
And it is well known in the theory of angular momentum [START_REF] Messiah | Mcanique Quantique Tomes I et II[END_REF]:

- → L = - → r × - → p = L x - → i + L y - → j + L z - → k (2.1) And L x = yp x -zp y , L y = zp x -xp z , L z = xp y -yp x (2.2)
Where -→ r the position is vector of the particle and -→ p is the momentum. The commutators of the generators of SO(3) are:

L x , L y = iηL z , L y , L z = iηL x , L z , L x = iηL y (2.
3)

The Casimir operator and L z . We found that

- → L 2 = L 2 x + L 2 y + L
L z Y lm (θϕ) = ηmY lm (θϕ), - → L 2 Y lm (θϕ) = η 2 l(l + 1)Y lm (θϕ) (2.4)
In Dirac notation [START_REF] Messiah | Mcanique Quantique Tomes I et II[END_REF] we write:

Y lm (θϕ) = θϕ lm (2.5)

The Analytic Hilbert space

The Analytic Oscillator space (or Fock space) defined by:

u n (z) = z n √ n! (2.6)
With scalar product is:

(u n , u n ) = zn √ n ! z n √ n! dµ(z) = δ n,n (2.7) 
And dµ(z) is the measure of integration:

dµ(z) = ( 1 π )exp[-zz]dxdy i , z = x i + iy i (2.8)
Furthermore, it is easy to check the useful relationship:

exp[αz + β z]dµ(z) = e αβ (2.9)

The representation of SU(2) in the analytic Hilbert space

By analogy with the angular momentum -→ L we define the generators of SU(2) in the analytic Hilbert space, u i , i = 1, 2, by:

J 1 = u 1 1 ∂u 2 -u 2 1 ∂u 1 , J 2 = 1 i u 1 1 ∂u 2 -u 2 1 ∂u 1 , J 3 = 1 2 u 1 1 ∂u 1 -u 2 1 ∂u 2 (2.10) And - → J 2 = N (N + 1), N = 1 2 u 1 1 ∂u 1 -u 2 1 ∂u 2 (2.11)
We find that:

- → J 2 ϕ jm (u) = j(j + 1)ϕ jm (u), J 3 ϕ jm (u) = mϕ jm (u) (2.12)
With ϕ jm (u) is the representation of SU(2) in the analytic Hilbert space with:

ϕ jm (u) = u (j+m) 1 u (j-m) 2 (j + m)!(j -m)! (2.13)
The functions ϕ jm (u) are orthonormal basis isomorphs to the Schwinger realization of SU(2) in terms of boson operators [START_REF] Schwinger | On angular Momentum[END_REF] :

|jm = (a + 1 ) j+m (a + 2 ) j-m (j + m)!(j -m)! |00 (2.14)
It is important to note that the functions u n (z)e -zz/2 are the wave functions of subspaces of the cylindrical basis of R2 of the Harmonics oscillators [START_REF] Hage | Angular momentum and the polar basis of harmonic oscillator[END_REF][START_REF] Karimi | Radial quantum number of Laguerre-Gauss modes[END_REF][START_REF] Hage | The matrices representation of division algebras, new properties, the Cartan-Weyl basis of SO(n) and the 2 n-dimensional harmonic oscillator basis[END_REF].

3 The generating function of Wigner's D-matrix of SU(2)

We will determine the Wigner's D-matrix and its generating function. We Show that the orthogonality of D-matrices is performed simply [START_REF] Edmonds | Angular Momentum in Quantum Mechanics[END_REF].

The Wigner's D-matrix

The Wigner's D-matrix of the rotation R(Ω) = e iψJz e iθJy e iϕJz is given in Dirac notations by:

D j (m ,m} (Ω) = (jm|R(Ω)|jm) = e im ψ d j (m ,m) (θ)e imϕ (3.1) 
We have [START_REF] Edmonds | Angular Momentum in Quantum Mechanics[END_REF] also

ρ 2j R(Ω)ϕ jm (u) = (z 1 u 1 + z 2 u 2 ) j+m (-z 2 u 1 + z 1 u 2 ) j-m (j + m)!(j -m)! (3.2) with z 1 = x 1 + iy 1 = ρcos θ 2 e i(ψ+ϕ)/2 , z 2 = x 2 + iy 2 = ρsin θ 2 e i(ψ-ϕ)/2 (3.3)
and

D j (m ,m} (z) = ρ 2j D j (m ,m} (Ω), Ω = (ψθϕ) (3.4)
with (ψ, θ, ϕ) are the angles of Euler and D j (m ,m} (z) is a subspace of spherical basis of R 4 Harmonic oscillators [START_REF] Moshinsky-Y | The Harmonic Oscillator in Modern Physics[END_REF][START_REF] Hage | The matrices representation of division algebras, new properties, the Cartan-Weyl basis of SO(n) and the 2 n-dimensional harmonic oscillator basis[END_REF]. For m = j we find that:

ϕ jm (u) = ρ 2j D j (m ,0} (Ω)

The generating function of Wigner's D-matrix

Multiplying (2.10) by ϕ jm (v) and summing with respect to j, m, m we find the generating function of Wigner's D-matrix

G(v, z, u) = exp v 1 v 2 z 1 z 2 -z 2 z 1 u 1 u 2 = j,m,m ϕ jm (v)D j (m ,m} (z)ϕ jm (u) (3.5)

Orthogonality of D-Matrices

The Orthogonality of D-Matrices is:

exp v 1 v 2 z 1 z 2 -z 2 z 1 u 1 u 2 + v 1 v 2 z 1 z 2 -z 2 z 1 u 1 u 2 dµ(z) = jm 2 i= ϕ ji (mi) (v i )ϕ ji (m i) (v i ) ϕ ji (mi) (v i )ϕ ji m i (v i ) D j 1 (m ,m} (z)D j 2 (m ,m} (z)dµ(z) (3.6) with dµ(z) = 2exp(-ρ 2 )ρ 3 dρdµ(Ω) and dµ(Ω) = 1 8π 2 dψsinθdθdϕ (3.7)
In addition the integration of the first member of (3.6) is:

exp [(u 2 v 2 + v 1 u 1 )(v 1 u 1 + u 2 v 2 )] (3.8)
And, the integration of the second member on the variable ρ of (3.6), using the formula:

∞ 0 ρ 2n+1 e -ρ 2 dρ = n!/2, n = j 1 + j 2 + 1 (3.9) 
After development of (3.8) and identification with (3.6) we find that:

1 8π 2 2π 0 π 0 2π 0 D l (m 1 ,m 1 ) (ψθϕ)D l (m 2 ,m 2 ) (ψθϕ)dΩ = 1 2j 1 + 1 δ m 1 ,m 2 δ m 1 ,m 2 δ j 1 ,j 2 (3.10)
4 The generating functions of spherical harmonics And Legendre polynomials

We will determine the generating function of spherical harmonics and the generating function of Legendre polynomials [START_REF] Erdelyi | Higher transcendal functions[END_REF][START_REF] Gradshteyn | table of integrals series and products[END_REF].

The generating function of spherical harmonics

The relationship between D l m ,m (ψθϕ) and Y lm (θϕ) is well known [START_REF] Moshinsky-Y | The Harmonic Oscillator in Modern Physics[END_REF][START_REF] Rose | Elementary Theory of Angular Momentum[END_REF][START_REF] Edmonds | Angular Momentum in Quantum Mechanics[END_REF]:

D l (0,m) (ψθϕ) = 4π 2l + 1 1 2
, and

D l (0,0) (Ω) = P l (cosθ) (4.1)
Y lm (θϕ) is the spherical harmonics and is Laguerre polynomial. By putting m = 0 in (3.1) we find a very useful expression for the rest of this work:

ϕ jm (v 1 , v 1 )|R(Ω)|ϕ jm (t 1 , t 2 ) /j! = D l (0,m) (ψθϕ) (4.2)
Then we find

exp v v z 1 z 2 -z 2 z 1 u 1 u 2 dµ(v) = exp ( - → a . - → r ) 2 (4.3)
After integration we find the generating function of spherical harmonics.

exp ( - → a . - → r ) 2 = lm 4π 2l + 1 1 2 ϕ lm (u)Y lm ( - → r ) (4.4) - → a = - → a (a) is a vector of length zero, - → a .
-→ a = 0 and has the components

a x = -u 2 1 + u 2 2 , a y = -i(u 2 1 + u 2 2 ), a z = 2u 1 u 2 (4.5) and - → r = (x, y, z), x = z 1 z 2 + z 2 z 1 , y = i(-z 1 z 2 + z 2 z 1 ), (4.6) 
z = z 1 z 1 -z 2 z 2 = rcosθ, with r = ρ 2 .

The generating function of Legendre polynomials

Put u 2 = u 1 in the expression (4.4) and u 1 = v 1 + iv 2 we find that:

exp 1 2 x(-u 2 1 + u 2 1 ) -iy(u 2 1 + u 2 1 ) + 2z(u 1 × u 1 ) dµ(u) = l r l P l (cosθ) (4.7) 
A-We write the first member of (4.7) in matrix form:

-2ixv 1 v 2 + (-iy + z)v 2 1 + (iy + z)v 2 1 = v 1 v 2 -i(y + iz) -ix -ix i(y -iz) v 1 v 2 (4.8) Let r = λ, we find: exp λ v 1 v 2 -i(y + iz) -ix -ix i(y -iz) v 1 v 2 d µ(u) = 1 √ 1 -2λcosθ + λ 2 ( 
4.9) B-We find the generating function of Legendre polynomials [START_REF] Erdelyi | Higher transcendal functions[END_REF][START_REF] Gradshteyn | table of integrals series and products[END_REF] after comparing the two sides of (4.7):

(1 -2λcosθ + λ 2 ) -1/2 = ∞ n=0 P n (cosθ)λ n (4.10)

The relation between Gegenbauer Polynomial and the Wigner's D-matrix

We will determine a relationship between Gegenbauer Polynomials [START_REF] Erdelyi | Higher transcendal functions[END_REF][START_REF] Gradshteyn | table of integrals series and products[END_REF] and the Wigner's D-matrix. We suppose that in (3.1) and we replace in the generating function (3.5), v 1 by u 1 , v 2 by u 2 and r = λ, we thus find:

exp u 1 u 2 z 1 z 2 -z 2 z 1 u 1 u 2 = j,m,m ϕ jm (u)D j (m ,m} (z)ϕ jm (u) (5.1)
After the integration of the expression

exp u z 1 z 2 -z 2 z 1 u dµ(u) = j,m,m λ 2j D j (m ,m} (Ω) ϕ jm (u)ϕ jm (u)dµ(u) (5.
2) Using the Gauss integral:

1 π n n i=1 du i dv i exp(-V t XV ) = (det(X)) -1 (5.3) With: V = (v 1 , v 2 , . . . , v n ), v i = x i + iy i . We find that: 1 1 -2λcos θ 2 cos( ψ+ϕ 2 ) + λ 2 = jm λ 2j D j (m,m) (Ω) (5.4)
The development of the first member using generating function formula of the Gegenbauer Polynomials C β n (t):

(1

-2tλ + λ 2 ) -β = ∞ n=0 λ n C β n (t) (5.5)
We find the following relation:

C 1 2j cos θ 2 cos (ψ + ϕ) 2 = m D j (m,m) (Ω) (5.6)
If we put (ψ + ϕ) = 0 we find also the new relation:

C 1 2j (cos θ 2 ) = m d j (m,m) (θ) (5.7)
6 The Coupling of two angular momenta

We make a simple revision of the couplings of two angular moments [START_REF] Rose | Elementary Theory of Angular Momentum[END_REF][START_REF] Edmonds | Angular Momentum in Quantum Mechanics[END_REF]. We deduce from the orthogonality of the D-Matrices the integration formulas of the product of three D-matrices and the product of three spherical harmonics.

The coupled function of two angular moments

The function of two coupled angular momentum,

- → J = - → j 1 + - → j 2
, in the Hilbert space of the analytic functions is:

Ψ (j 1 j 2 )j 3 m (u 1 , u 2 ) = m 1 m 2 j 1 m 1 , j 2 m 2 (j 1 j 2 )j 3 m 3 ϕ j 1 m 1 (u 1 )ϕ j 2 m 2 (u 2 ) (6.1) with D j 3 (m 3 ,m 3 ) (Ω) = Ψ (j 1 j 2 )j 3 m (u 1 , u 2 ), R(Ω)Ψ (j 1 j 2 )j 3 m (u 1 , u 2 ) (6.2) And (u i ) = (u i 1 , u i 2 )
The coefficient

j 1 m 1 , j 2 m 2 (j 1 j 2 )j 3 m 3 = (j 1 j 2 )j 3 m 3 j 1 m 1 , j 2 m 2
is the Clebsh-Gordan [START_REF] Schwinger | On angular Momentum[END_REF].

Conversely of (6.1) we can write:

ϕ j 1 m 1 (u 1 )ϕ j 2 m 2 (u 2 ) = m 1 m 2 j 1 m 1 , j 2 m 2 (j 1 j 2 )j 3 m 3 Ψ (j 1 j 2 )j 3 m (u 1 , u 2 ) (6.3)

The relationships of Wigner 3-j symbols and the Clebsh-Gordan coefficients

The relationships of 3-j symbols are related to the Clebsh-Gordan coefficients by [START_REF] Rose | Elementary Theory of Angular Momentum[END_REF][START_REF] Edmonds | Angular Momentum in Quantum Mechanics[END_REF]:

j 1 j 2 j 3 m 1 m 2 m 3 = (-1) j 1 -j 2 -m 2 (2j 3 + 1) -1/2 j 1 m 1 , j 2 m 2 (j 1 j 2 )j 3 -m 3 (6.4)
Wigner introduced the 3-j symbols for symmetries purpose.

The integral of the product of three D-matrices and three spherical harmonics

Using the relation (6.3) and (6.4) we find that:

D j 1 (m 1 ,m 1 ) (Ω)D j 2 (m 2 ,m 2 ) (Ω) = jmm (j 3 + 1) j 1 j 2 j 3 m 1 m 2 m 3 D j 3 (m 3 ,m 3 ) (Ω) j 1 j 2 j 3 m 1 m 2 m 3 (6.5)
We deduce from the orthogonality of matrices D (.) the relations which are very important for the calculation of the symbols of 3-j and 3 -lm.

1 8π 2 2π 0 π 0 2π 0 D j 1 (m 1 ,m 1 ) (Ω)D j 2 (m 2 ,m 2 ) (Ω)D j 3 (m 3 ,m 3 ) (Ω)dΩ = j 1 j 2 j 3 m 1 m 2 m 3 j 1 j 2 j 3 m 1 m 2 m 3 (6.6)
In posing m 1 = m, 2 = m 3 = 0 and using (6.6) we find the second relation that interests us for the determination of 3 -lm.

2π 0 π 0 [Y l 1 m 1 (θ, ϕ)Y l 2 m 2 (θ, ϕ)Y l 3 m 3 (θ, ϕ)] sinθdθdϕ = 1 4π (2l 1 + 1)(2l 2 + 1)(2l 3 + 1) 1/2 l 1 l 2 l 3 0 0 0 l 1 l 2 l 3 m 1 m 2 m 3 (6.7)
With l 1 , l 2 , and l 3 are integers, and J = l 1 + l 2 + l 3 is even.

7 The generating function of 3-j symbols

We will determine the generating function of the 3-j symbols [START_REF] Schwinger | On angular Momentum[END_REF][START_REF] Bargmann | [END_REF]. In addition we will give the generating function, G.F, of four coupling as an example of the generalization.

The generating function of 3-j symbols

We will deduct simply the G.F of 3-j symbols by using the integration of the product of three G.F of Wigner's D-matrix (6.6) and the formulas (3.9) and (3.10).

We multiply the two members of (6.6) by r 2(J+1)+1 dr, J = j 1 + j 2 + j 3 (7.1)

And we carry out the integration and then we identify the two members.

A-The integral of the first member or the product of three generating functions is:

G 3 = 3 i=1 G(u i , z i , v i ) dµ(z 1 )dµ(z 2 ) = exp v 3 , v 2 u 3 , u 2 + v 3 , v 1 u 3 , u 1 + v 1 , v 2 u 1 , u 2 (7.2)
B-The integration of the second member with the help of (2.9) and (3.9) we find:

exp[det(t, v)] × exp[det(t, u)]dµ(t) = G 3j (t, v) × G 3j (t, u)dµ(t) (7.3) 
C-The function G 3 (t, u) is the generating function of the 3-j symbols [START_REF] Schwinger | On angular Momentum[END_REF].

G 3j (t, u) = exp[det(λ, u)] = exp t 1 [u 3 , u 3 ] + t 2 [u 3 , u 1 ] + t 3 [u 1 , u 2 ] = jm ϕ j 1 m 1 (u 1 )ϕ j 2 m 2 (u 2 )ϕ j 3 m 3 (u 3 )Φ(t 1 t 2 t 3 ) j 1 j 2 j 3 m 1 m 2 m 3 (7.4) And Φ(t 1 t 2 t 3 ) = [(J + 1)!] 1/2 t J-2j 1 1 t J-2j 2 2 t J-2j 3 3 [(J -2j 1 )!(J -2j 2 )!(J -2j 3 )!] 1/2 (7.5) With u i , u j = u i 1 u j 2 -u i 2 u j 1 And (u i .u j ) = u i 1 u j 2 + u i 1 u j 2 (7.6)
We can write also:

det(t, u) = t 1 t 2 t 3 u 1 1 u 2 1 u 3 1 u 1 2 u 2 2 u 3 2 (7.7)
Note that Regge has studied the symmetries of the 3-j symbols starting from the invariance of the determinant det(t, u) [START_REF] Regge | Symmetry properties of Clebsch-Gordan's coefficients[END_REF].

Moreover, if we put in (7.4) u 3 1 = u 3 2 = 0 or j 3 = 0, j 1 = j 2 we find that:

j 1 j 1 0 m 1 -m 1 0 = (-1) j 1 -m 1 (2j 1 + 1) -1 2 (7.8)

The relation between the generating functions of the coupling and the uncoupling

Using the expression (7.1) we deduce the generating function of the couplings:

exp t 3 [u 1 , u 2 ] + t 2 (u 3 .u 1 ) + t 1 (u 3 .u 2 ) = jm (2j 3 + 1) -1/2 ϕ j 3 m 3 (u 3 )Φ(t 1 t 2 t 3 )Ψ (j 1 j 2 )j 3 m (u 1 , u 2 ) (7.9)
And it is very important to observe that [START_REF] Schwinger | On angular Momentum[END_REF]:

exp t 3 [u 1 , u 2 ] + t 2 (u 3 .u 1 ) + t 1 (u 3 .u 2 ) = exp t 3 [ ∂ v 1 , ∂ v 2 ] + t 2 u 3 . ∂ v 1 + t 1 u 3 . ∂ v 2 exp (v 1 .u 1 ) + (v 2 .u 2 ) (7.10)
So the function (7.9) is simply deduced from the generating function of the uncoupling functions. Moreover the expression (7.10) is very interesting for the couplings of the several angular moments and for the calculations of the 6-j symbols and Racah coefficients.

The generating function of four coupling

The generalization of (7.2) is simple and we are going to give the generating function of the couplings of four angular moments. Indeed

G 5 = 5 i=1 [G(u i , z i , v i )]dµ(z 1 )dµ(z 2 ) = G 5j ( - → λ , v) × G 5j (λ, v)dµ(λ) (7.11)
We follow the same method of calculations of (7.2) and we find:

G 5j (t, u) = exp 4 i=1,j<i
λ ij u i , u j (7.12)

8 A new derivation of the 3j with magnetic moments m i = 0

The coefficients 3-j with m i = 0 are frequently found in kinetic momentum calculations but the proposed methods are difficult [START_REF] Schwinger | On angular Momentum[END_REF][START_REF] Edmonds | Angular Momentum in Quantum Mechanics[END_REF]. In following section, I will determine these coefficients by a very simple method of calculation. By posing

u 1 2 = u 1 1 , u 2 2 = u 2 1
, and u 3 2 = u 3 1 in (7.4), we find that:

  t 1 t 2 t 3 u 1 1 u 2 1 u 3 1 u 1 1 u 2 1 u 3 1   = u 1 1 u 2 1 u 3 1   0 -t 3 t 2 t 3 0 -t 1 -t 2 t 1 0     u 1 1 u 2 1 u 3 1   = t (X)A(X) (8.1)
We find after integration that

exp t (X)A(X)X 3 i=1 dµ(u i ) = 1 1 + λ 2 (t 2 1 + t 2 2 + t 2 3 ) (8.2) 
And consequently:

1 1 + λ 2 (t 2 1 + t 2 2 + t 2 3 ) = j Φ(t 1 t 2 t 3 ) j 1 j 2 j 3 0 0 0 (8.3)
After development and identification of two members of (8.3) we find the 3-j symbols with magnetic moments m i = 0, i = 1, 2, 3:

j 1 j 2 j 3 0 0 0 = (-1) J/2 3 i=1 (J -2j i )! (J + 1)! 1 2 × J 2 ! 3 i=1 ( J 2 -j i )! (8.4)
If J is even.

9 The generating function of the 3 -lm symbols of SO(3)

We will determine for the first time the generating function of the 3 -lm symbols.

The generating function of Spherical Harmonics is:

exp - → a (u). - → r 2 = lm 4π 2l + 1 1 2 ϕ lm (u)(r) l Y lm (θϕ) (9.1)
Therefore we write:

exp ( - → a (u 1 ) + - → a (u 2 ) + - → a (u 3 )) . - → r 2 = lm 3 i=1 4π 2l i + 1 1 2 (r) l 1 +l 2 +l 3 × 3 i=1 (Y lim i (θ, ϕ)) ϕ l 1 m 1 (u 1 )ϕ l 1 m 1 (u 2 )ϕ l 1 m 1 (u 3 ) (9.2)
Multiplying the two members by:

1 π 3/2 exp(-r 2 )dxdydz (9.3)
We find after integration of the first member:

1 π 3/2 ∞ -∞ exp ( - → a (u 1 ) + - → a (u 2 ) + - → a (u 3 )) . - → r 2 exp(-- → r 2 )dxdydz = exp - 1 4 [u 1 , u 2 ] 2 + [u 1 , u 3 ] 2 + [u 2 , u 3 ] 2 (9.4)
And with the help of the integral:

∞ 0 x n e -x 2 dx = Γ n + 1 2 /2 (9.5)
Moreover, after the integration of the second member (9.2), using (6.7) and (9.5), we deduce the generating function of the 3 -lm symbols of SO(3):

exp - 1 4 [u 1 , u 2 ] 2 + [u 1 , u 3 ] 2 + [u 2 , u 3 ] 2 = lm 4 √ π Γ J + 3 2 l 1 l 2 l 3 0 0 0 l 1 l 2 l 3 m 1 m 2 m 3 ϕ l 1 m 1 (u)ϕ l 1 m 1 (v)ϕ l 1 m 1 (w) (9.6)
With the help of (8.4) and Gamma duplication formula:

Γ z + 1 2 Γ(z) = 2 1-2z √ π(2z) (9.7)
And the developments of the fist side of (9.6) we find the expression of 3 -lm symbols for SO (3).

10 The new relationship between 3-j symbols

We will determine a new relation between the symbols 3-j starting from the expression (9.6) and using the generating function of the symbols 3-j, (7.4).

We note that the generating function of the 3 -lm symbols (9.6) could be written as:

exp - 1 4 [u 1 , u 2 ] 2 + [u 1 , u 3 ] 2 + [u 2 , u 3 ] 2 = exp - 1 4 t 3 [u 1 , u 2 ] + t 2 [u 1 , u 3 ] + t 1 [u 2 , u 3 ] exp t 3 [u 1 , u 2 ] + t 2 [u 1 , u 3 ] + t 1 [u 2 , u 3 ] dµ(t) (10.1)
After the development of (10.1), using (7.4) and the identification of the second member of (9.6) we find the new relation:

J 2 + 1 ! m 1 ,m 2 3 i=1 [(j i + m i )!(j i -m i )!] 3 i=1 (j i + m i )!(j i -m i )![(j i + m i )!(j i -m i )!] 1/2 × l 1 2 l 2 2 l 3 2 m 1 m 2 m 3 l 1 2 l 2 2 l 3 2 m 1 m 2 m 3 = (J + 1)! 3 i=1 (J -2j i )! 1 2 l 1 l 2 l 3 m 1 m 2 m 3 (10.2)
With:

J = J/2, j i = j i /2, m i + m i = m i , i = 1, 2, 3 (10.3)
11 The generating function of 6-j symbols

We followed at the beginning the simple method proposed by Schwinger [START_REF] Schwinger | On angular Momentum[END_REF]. This method starts with the coupling of four angular moments instead of three. But we propose a new simpler method for the calculation of the G.F of 6-j symbols. We note that it is important to introduce the 6-j symbols instead of the Racah coefficients for symmetry reasons. The couplings of the four moments are:

- → J = - → J 1 + - → J 2 + - → J 3 + - → J 4 = - → J 1 + - → J 3 + - → J 2 + - → J 4 (11.1) 
Taking into account of the two coupling states and the relation (7.8), the overlap of the states is written then:

((j 1 j 2 )j (j 3 j 4 )j ) j = 0, m = 0 ((j 1 j 3 )j (j 2 j 4 )j ) j = 0, m = 0 = (-1) j +j -j 1 -j 2 [(2j + 1)(2j + 1)] 1/2 W (j 1 j 2 j 3 j 4 ; j j ) (11.2) With j 12 = j 34 = j , j 13 = j 24 = j (11.3)

But our method that we used in part three makes the calculation of the overlap elementary much easier than the Schwinger method that we will present later.

The coupling of the four angular moments

The uncoupled functions are:

Ψ(t, u) = exp (t 1 u 1 ) + (t 2 u 2 ) + (t 3 u 3 ) + (t 4 u 4 ) (11.4)
We will make the couplings

- → J 12 = - → J 1 + - → J 2 , - → J 3 4 = - → J 3 + - → J 4
with the help of (7.10)

Ψ = exp α 3 [ ∂ t 1 , ∂ t 2 ] + α 2 x. ∂ t 1 + α 1 x. ∂ t 2 × exp β 3 [ ∂ t 3 , ∂ t 4 ] + β 2 y. ∂ t 3 + β 1 y. ∂ t 3 Ψ(t, u) (11.5) 
We do the coupling again

- → J = - → J 12 + - → J 34 : exp γ 3 [ ∂ x , ∂ y ] + γ 2 z. ∂ x + γ 1 z. ∂ y Ψ (11.6)

The expression of the coupling of the four angular moments

Then we put z 1 = γ 1 = z 2 = γ 2 = 0, γ 3 = 1 and so we get the generating function of the function Ψ L () of the coupling ((j 1 j 2 )j (j 3 j 4 )j ) j = 0, m = 0 and are of the form (7.12):

G L s (t, u) = exp 4 i=1,j>i λ ij [u i , u j ] (11.7) 
with

λ 12 = α 3 λ 13 = α 2 β 2 λ 14 = α 2 β 1 λ 23 = α 1 β 2 λ 24 = α 1 β 1 λ 34 = β 4 (11.8) 
Similarly, we get Ψ R () the generating function of the coupling ((j 1 j 3 )j (j 2 j 4 )j ) j = 0, m = 0, which has the form (7.12):

G R s (t, u) = exp 4 i=1,j>i µ ij [u i , u j ] (11.9) 
With

µ 12 = α 2 β 2 µ 13 = α 1 β 1 µ 14 = β 3 µ 23 = -α 1 β 2 µ 24 = α 2 β 1 µ 34 = β 3 (11.10)
We will find the generating function of 6-j symbols by calculating the expression:

I = exp 4 i=1,j>i µ ij u i , u j exp 4 i=1,j>i λ ij u i , u j 4 i=1 dµ(u I ) = j 1 ...j
(-1) j +j -j 1 -j 2 ϕ j 1 j 2 j (α)ϕ j 3 j 4 j (β)ϕ j 1 j 3 j (α)ϕ j 2 j 4 j (β)W (j 1 j 2 j 3 j 4 ; j j ) (11.11) We will propose a simple method for calculating the first member of (11.11).

The generating function of 6-j symbols

In the first member of (11.11) we make the change of the variables u i 2 by u i 2 j = 1 . . . 8 and we denote u 1 1 u 2 1 u 3 1 u 4 1 u 5 2 u 6 2 u 7 2 u 8 2 by (X) we write then:

(A) =             0 0 0 0 0 λ 12 λ 13 λ 14 0 0 0 0 -λ 12 0 λ 23 λ 24 0 0 0 0 -λ 13 -λ 23 0 λ 34 0 0 0 0 -λ 14 -λ 24 -λ 34 0 0 -µ 12 -µ 13 -µ 14 0 0 0 0 µ 12 0 -µ 23 -µ 24 0 0 0 0 µ 13 µ 23 0 -µ 34 0 0 0 0 µ 14 µ 24 µ 34 0 0 0 0 0             (11.12)
As a result we write (11.11) in the form:

I = exp t X (A) (X) 4 i=1 dµ(u I ) (11.13)
The integration of this expression is carried out using Gauss's formula (5.3) so we find:

I = 1 - 4 i=1,j<i
λ ij µ ij + (µ 12 µ 34 + µ 13 µ 24 + µ 14 µ 23 ) × (λ 12 λ 34 + λ 13 λ 24 + λ 14 λ 23 )

-2

(11.14) By replacing λ ij , µ ij by their expressions (11.7), (11.9) and by changing the signs of α 1 and β 1 , We find the generating function of 6-j symbols [START_REF] Schwinger | On angular Momentum[END_REF]:

j 1 ..j
ϕ j 1 j 2 j (α)ϕ j 3 j 4 j (β)ϕ j 1 j 3 j (α)ϕ j 2 j 4 j (β)W (j 1 j 2 j 3 j 4 ; j j ) = (11.15)

(1 -α 3 α 2 β 2 -β 3 α 1 β 1 -α 3 α 2 β 2 -β 3 α 1 β 1 -α 1 β 2 α 1 β 2 -α 2 β 1 α 2 β 1 + α 3 β 3 α 3 β 3 ) -2 (11.16)
The development of (11.16) and its comparisons with (11.15) give the expression of the Racah coefficients [START_REF] Schwinger | On angular Momentum[END_REF][START_REF] Bargmann | [END_REF].

12 The generating function and the basis of the four dimensional spherical basis of the Harmonic oscillators

The resolution of the Schrdinger equation for an isotropic harmonic oscillator in R 4 has been performed by many others [START_REF] Moshinsky-Y | The Harmonic Oscillator in Modern Physics[END_REF][START_REF] Vilenkin | Fonctions spciales et thorie de la reprsentation des groupes[END_REF][START_REF] Hage | Angular momentum and the polar basis of harmonic oscillator[END_REF][START_REF] Hage | The matrices representation of division algebras, new properties, the Cartan-Weyl basis of SO(n) and the 2 n-dimensional harmonic oscillator basis[END_REF] using the method of separations of variables. However as a simple application of angular momentum couplings we will propose a new method for the determination of the wave function of R 4 in terms of Euler-angles (r, θ, ϕ, ψ). We give the orthogonal transformation of the operators of the creations of Dirac which allows us to determine the eigenfunctions of the kinetic moment L z . Then using the generating method we will find the wave functions of R 4 .

The basis of two dimensions Harmonic oscillator

The basis of two dimensions Harmonic oscillator in Dirac notations [START_REF] Messiah | Mcanique Quantique Tomes I et II[END_REF][START_REF] Hage | The matrices representation of division algebras, new properties, the Cartan-Weyl basis of SO(n) and the 2 n-dimensional harmonic oscillator basis[END_REF] is:

|n 1 , n 2 = (a + x ) n 1 (a + y ) n 1 |0, 0 (12.1) 
This basis is not eigenfunctions of L z . So to obtain the basis which has this property we must take the transformation [START_REF] Messiah | Mcanique Quantique Tomes I et II[END_REF]:

A + 1 = √ 2 2 (a + x -ia + y ), A + 2 = √ 2 2 (a + x + ia + y ), N 1 = A + 1 A 1 , N 2 = A + 2 A 2 L z = (N 1 -N 2 ), N = N 1 + N 2 (12.
2)

The new basis |N 1 , N 2 can be written in the form:

|jm = |j + m, j -m = A +j+m 1 A +j-m 2 (j + m)!(j -m)! |0, 0 (12.3) 
This basis is eigenfunctions of L z and N with the values 2m and 2j.

The generating function of the two dimensions oscillator

The generating function of the two dimensions oscillator may be written in the form:

|F jm (t 1 , t 2 ) = exp[t 1 A + 1 + t 2 A + 2 ]|0, 0 = jm t j+m 1 t +j-m 2 (j + m)!(j -m)! |j, m = exp[a + x √ 2(t 1 + t 2 )/2 + ia + y √ 2(-t 1 + t 2 )/2]|0, 0 (12.4) 
But the generating function of one dimension of harmonic oscillator is:

π -1/4 exp - x 2 2 + √ 2x - t 2 2 = ∞ n=0 t n √ n! x n , x n = u n (x) (12.5) 
Put z in term of Cartesian coordinates z = x + iy, x = ρcosϕ, y = ρsinϕ and using (12.5) we find:

F jm (t 1 , t 2 , z) = 1 √ π exp - x 2 + y 2 2 + t 1 (z) + t 2 (z) -t 1 t 2 = jm ϕ jm (t)ϕ jm (ρ, ϕ) (12.6)

The cylindrical basis of Harmonic oscillator and the Analytic Hilbert space

The wave function of the cylindrical base in term of Cartesian coordinates is very well known [START_REF] Hage | Angular momentum and the polar basis of harmonic oscillator[END_REF][START_REF] Karimi | Radial quantum number of Laguerre-Gauss modes[END_REF], so we put λ = mω/η = 1 and we write: A-We consider the product of the two uncoupled basis (7.10) by:

Φ nm (r, ϕ) = 2p! (p + |m|)! e -r
t j 1 +m 1 1 t j 2 -m 2 4 (j 1 + m 1 )!(j 2 -m 2 )! × t j 2 +m 2 3 t j 1 -m 1 2 (j 2 + m 2 )!(j 1 -m 1 )! (12.10)
And the generating function of 3-j of this basis is:

G s ((α, ξ), t) = exp [γ(t 1 t 2 -t 3 t 4 ) + ξ 1 (t 1 u 1 + t 4 u 2 ) + ξ 2 (t 3 u 1 + t 2 u 2 )] (12.11) 
B-We will derive the generating function of the spherical base of R 4 .

The generating function of R 4

To determine the generating function of the spherical base of R 4 we can perform the integration of the below expression using Gauss formula G c (s, ξu, λp) = G S ((γξ), t)F 2c ((s, t), λρ The Gauss formula is:

1 π n n i=1 du i dv i exp(-V t XV + A t V + V t B) = (det(X)) -1 exp(A t X -1 B) (12.13)
With V = (v 1 , v 2 , . . . , v n , v i = x i + iy -i After integration and putting γ = -1 we find the generating function of the basis Ψ (j 1 j 2 )j(m 1 m 2 )m (λρ, ψθϕ) of R 4 : We find the spherical base R 4 after development (12.14) and using the generating function of the Associates Laguerre polynomial [START_REF] Erdelyi | Higher transcendal functions[END_REF][START_REF] Gradshteyn | table of integrals series and products[END_REF]: x k (12.15)

G c (s, ξu, λp) = λ π 1 (1 -s 2 ) 2 Exp -λρ 2 - s 2 (1 -s 2 ) 2λρ 2 + s 1 -s 2 √ λ ξ 1 ξ 2 z 1 z 2 -z 2 -z
∞ p=0 t p L (α) p (x) = 1 (1 -t) β+1 e -
We write the development of (12.14) in the form:

s n+j (1 -s) n+2+2j ϕ j(j 1 -j 2 ) (ξ)ϕ jm (u)L 2j+1 j 1 +j 2 -j (2λρ 2 )D j ((j 1 -j 2 ),m) (z) (12.16) The spherical base of R 4 is therefore Ψ njm,m (ρ, ψθϕ) = N njm,m e -ρ 2 /2 R nk (ρ)D j (j 1 -j 2 ),m) (ψθϕ) (12.17 12.5 Generalization of the transformation of R 2 basis to R 4 and R 8 basis.

We observe that (12.2) analogue to the polar transformation [START_REF] Hage | The matrices representation of division algebras, new properties, the Cartan-Weyl basis of SO(n) and the 2 n-dimensional harmonic oscillator basis[END_REF] written in the matrix form by:

A + 1 A + 2 = √ 2 2 a + x ia + y , H 2 (1) = 1 -1 1 1 (12.20)
With H 2 (1) is an orthogonal matrix.

A-The transformation for R 4 basis With Hurwitz orthogonal matrices [START_REF] Hage | The matrices representation of division algebras, new properties, the Cartan-Weyl basis of SO(n) and the 2 n-dimensional harmonic oscillator basis[END_REF] we can easily generalize transformations (12.2) to oscillator R 4 using the polar cylindrical transformation [START_REF] Hage | The matrices representation of division algebras, new properties, the Cartan-Weyl basis of SO(n) and the 2 n-dimensional harmonic oscillator basis[END_REF]. So we write: 12.21) 

    A + 1 A + 2 A + 3 A + 4     = √ 2 4 H 4 (1)     a + x 1 ia + y 1 ia + y 2 a + x 2     , H 4 (1) = √ 2 4     1 -1 -1 -1 1 1 -1 1 1 1 1 -1 1 -1 1 1     ( 

(- 1 )

 1 k Γ(n + α + 1) k!(n -k)!Γ(k + α + 1)

)

  The radial part is:R nk (ρ) = N nk ρ k L (k+(d-d)2) n (ρ 2 )e -ρ 2 /2(12.18)With n = j 1 + j 2 -j 3 , and k = 2j 3 , d = 4, 2λ = 1. The normalization factor is:N nk = 2Γ(n + 1) Γ(n + k + d/2) (12.19)

  Are the Associates Laguerre polynomial: If we put p = 0 in (12.7) we find the relation of u n (z), (2.6), with the wave function of the cylindrical basis:

	With			
	n = n 1 + n 2 , p = (n -|m|)/2	(12.8)
	L |m| p (r) Φ nm (r, ϕ) = u n (z)e -zz/2 =	z n √ n!	e -zz/2	(12.9)
	12.4 The generating function of the spherical base of R 4	

2 /2 L |m| p (r)r |m| e imϕ (12.7)

  1 , λρ 2 ) 2c (t 1 , t 2 , λz) = F j 1 m 1 (t 1 , t 2 , λz 1 )F j 2 m 2 (t 3 , t 4 , λz 2 )
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	i=1 and F (12.12) dµ(t i )

  1 u 1 u 2 (12.14) 12.4.2 The spherical basis of R 4