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A fluid flowing over a granular bed can move its superficial grains, and eventually
deform it by erosion and deposition. This coupling generates a beautiful variety of
patterns such as ripples, bars and streamwise streaks. Here, we investigate the latter,
sometimes called “sand ridges” or “sand ribbons”. We perturb a sediment bed with
sinusoidal streaks, the crests of which are aligned with the flow. We find that, when
their wavelength is much larger than the flow depth, bedload diffusion brings mobile
grains from troughs, where they are more numerous, to crests. Surprisingly, gravity can
only counter this destabilising mechanism when sediment transport is intense enough.
Relaxing the long-wavelength approximation, we find that the cross-stream diffusion of
momentum mitigates the influence of the bed perturbation on the flow, and even reverses
it for short wavelengths. Viscosity thus opposes the diffusion of entrained grains to select
the most unstable wavelength. This instability might turn single-thread alluvial rivers
into braided channels.

Key words: Bedload transport, bedforms, pattern formation, river morphology, granular
diffusion.

1. Introduction

When water flows over a granular bed with enough strength, it dislodges some of the
superficial grains and entrains them downstream (Shields 1936; Einstein 1937; Bagnold
1973). As long as the flow-induced force is comparable to their weight, the entrained
grains remain close to the bed surface, where they travel with the flow, until they
eventually settle down. In steady state, the balance between entrainment and settling
sets the number of travelling grains, which thus depends primarily on the flow-induced
shear stress (Charru et al. 2004a; Lajeunesse et al. 2010). Accordingly, the sediment flux
resulting from their collective motion, called bedload transport, is usually expressed as
a function of shear stress (Meyer-Peter & Müller 1948).

Bedload transport is often heterogeneous—it scours away the bed somewhere, and
deposits the entrained material elsewhere (Exner 1925). The flow then adjusts to the
deformed bed, and alters the distribution of erosion and deposition. This fluid-structure
interaction generates bedforms through various instabilities (Seminara 2010; Charru et al.
2013).

Current ripples are iconic underwater bedforms found in streams, on beaches and
sometimes in the sedimentary record (Allen 1982; Coleman & Melville 1994). They result
from the inertia of the flow, which concentrates shear stress just upstream of their crest
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Figure 1. Sediment bed perturbed by longitudinal streaks. A layer of fluid (blue) flows over
a granular bed (brown). The reference frame is inclined with respect to gravity (downstream
slope S). The vertical grey line with a diamond marker symbolises a plumb line.

(Kennedy 1963; Charru 2006; Charru et al. 2013). Nascent ripples make the most of this
mechanism by orienting their crest across the flow. At least initially, they do not involve
any cross-stream sediment flux. By contrast, the oblique crest of alternate bars diverts
the water flow to induce the cross-stream bedload flux that makes them unstable (Parker
1976; Colombini et al. 1987; Devauchelle et al. 2010; Andreotti et al. 2012).

Although less common, streamwise streaks materialise cross-stream bedload more
neatly—their crest remains aligned with the stream as they grow (Karcz 1967; Colombini
& Parker 1995; McLelland et al. 1999). To initiate a cross-stream flux of sediment, these
bedforms use a subtle peculiarity of turbulence. When streamwise ridges perturb their
boundary, turbulent flows generates transverse, counter-rotating vortices (Colombini
1993; Vanderwel & Ganapathisubramani 2015). Over a granular bed, these slow sec-
ondary currents transport sediment across the primary flow to accumulate it in upwelling
areas, thus reinforcing the ridges that brought them about. A similar phenomenon occurs
when grains of different sizes make up the bed, the heterogeneous roughness of which
then plays the role of ridges (McLelland et al. 1999; Willingham et al. 2014).

In the above examples, the sediment grains travel along the force that entrains them.
This is certainly true on average, but bedload particles slide and roll over a rough bed,
which makes their trajectory seesaw across the stream (Nikora et al. 2002; Furbish et al.
2012). The experiments of Seizilles et al. (2014) show that these fluctuations cause
the grains to disperse laterally, like random walkers. Collectively, they diffuse across
the bedload layer towards areas of lesser transport, thus moving across the stream in
the absence of transverse flow. We speculate that this Fickian diffusion could create
streamwise streaks without secondary currents, provided bedload is less intense on the
bedforms’ crests.

To test this scenario, we investigate the stability of a flat sediment bed sheared by a
laminar flow. We begin with the shallow-water approximation (section 2). Extending our
analysis to two dimensions, we then find that viscosity, which diffuses momentum across
the stream, selects the size of the most unstable mode (section 3). We then consider a
stream covered with a rigid lid, which might facilitate measurements in a laboratory
experiment (section 4). Finally, we look for this instability in previous experiments
(section 5).
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2. Bedload instability

2.1. Base state

We consider an infinitely wide, flat granular bed sheared by a free-surface, laminar
flow (figure 1). A small slope S drives the fluid along x, the streamwise direction, but we
will neglect its effect on the weight of a grain later on. We further assume that the size
of a grain, ds, is much smaller than the flow depth D. In steady state, the shear stress
the fluid exerts on the bed, τ , is the projection of its weight on the streamwise direction:

τ = ρgDS (2.1)

where ρ is the density of the fluid, and g the acceleration of gravity.
To entrain a grain, the fluid needs to pull it with enough strength to overcome its

weight. Mathematically, this happens when the ratio of these two forces, θ, exceeds a
threshold value, θt. Shields (1936) defined this ratio as

θ =
τ

(ρs − ρ)gds
, (2.2)

where ρs is the density of a grain.
Based on laboratory observations, Charru et al. (2004a) suggested that the number of

grains the fluid dislodges from the bed, per unit surface and time, is proportional to the
distance to threshold, θ− θt. The bedload layer is fed by this constant input. Conversely,
it loses a fraction of its population through settling. When moving grains are too sparse
to interact, the settling rate is proportional to the number of moving grains per unit
area, n (Aussillous et al. 2016). At equilibrium, the density of moving grains thus reads

n =
αn

d2s
(θ − θt) (2.3)

where αn is, like θt, a dimensionless, empirical parameter (Lajeunesse et al. 2010). For
illustration, θt ∼ 0.1 and αn ∼ 0.01 are typical values for these parameters in a laminar
flow (Seizilles et al. 2014). Equation (2.3) is valid only above threshold, that is, when
θ > θt; below threshold, the bedload layer is empty (n = 0).

After equation (2.3), a flow near threshold can only entrain a sparse bedload layer.
Then, the velocity of the travelling grains is that of the fluid near the bed, which is
proportional to shear stress in a laminar flow (Seizilles et al. 2014). As a consequence,
the average velocity in the bedload layer is proportional to Stokes’ settling velocity, which
reads

Vs =
(ρs − ρ)gd2s

18η
(2.4)

where η is the viscosity of the fluid. The sediment flux, qs, results from the collective
motion of the bedload grains:

qs = αvnVs , (2.5)

where αv is a dimensionless coefficient. In a laminar flow, Seizilles et al. (2014) found
αv ∼ 0.4.

Most authors relate bedload directly to the Shields parameter with a sediment trans-
port law (Meyer-Peter & Müller 1948). Combining equations (2.3) and (2.5), we find that
bedload transport is proportional to the distance to threshold. The specific expression
of this law, however, is still debated, and is likely to depend on the particle Reynolds
number (Ouriemi et al. 2009). Here, we choose a simple law that compares reasonably
with near-threshold, laminar experiments (Charru et al. 2004a; Seizilles et al. 2014).

Equations (2.1) to (2.5) represent a uniform base state, both in the downstream
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Figure 2. Mechanism of the bedload instability. a: Bed elevation (brown) and free surface flow
(blue). b: Distribution of the corresponding downstream sediment flux. Red arrows indicate
bedload diffusion.

direction x and in the cross-stream direction y. In the following, we add a perturbation
to it to introduce bedload diffusion.

2.2. Bedload diffusion

Heterogeneity drives diffusion. To introduce some of it in our system, we now carve
streamwise streaks into the granular bed, in the form of a sinusoidal perturbation of
amplitude h and wavelength λ (figure 1). The fluid flow and the sediment bed remain
invariant along x, and our system is now two-dimensional.

To illustrate the mechanism of bedload instability, we consider, in this section, that
the amplitude of the perturbation is much smaller, and its wavelength much longer, than
the flow depth. With these assumptions, we expect the shallow-water approximation to
yield a reasonable estimate of the shear stress τ , and therefore of the Shields parameter
θ. Both are then proportional to the local flow depth, D − h, and therefore of lesser
intensity at the crest of the perturbation. Mathematically,

θ =
ρDS

(ρs − ρ)ds

(
1− h

D

)
. (2.6)

According to equation (2.3), the bedload layer is thus denser in the troughs than on the
crests. Its density reads

n = n0 −
αnθ0
d2s

h

D
(2.7)

where n0 and θ0 are the density of moving grains and the Shields parameter in the base
state, respectively. Like equation (2.3), from which it is derived, the above equation only
holds above threshold, that is, when

h

D
6
θ0 − θt
θ0

. (2.8)

This condition sets the maximum amplitude the perturbation h can reach before the
following analysis breaks down.

Following Seizilles et al. (2014), we now treat the bedload grains as independent random
walkers. As they travel downstream at the average velocity αvVs, their cross-stream
velocity fluctuates around zero. We represent this process by a series of random sideways
steps, the amplitude of which is a fraction of the grain size. Statistically, the accumulation
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of these steps generates a diffusive flux, qd, towards the less populated areas of the bedload
layer. As long as their density remains low, the moving grains do not interact with each
other, and bedload diffusion obeys Fick’s law:

qd = −αv`dVs
∂n

∂y
, (2.9)

where we expect the diffusion length, `d, to be a fraction of the grain size. Seizilles et al.
(2014) found `d ∼ 0.03 ds in their laminar experiment, and we are not aware of any other
measurement of this empirical parameter.

The stage is now set for the bedload instability: diffusion brings grains from the troughs,
where bedload is more intense, to the less populated crests, thus furrowing further into
the bed (figure 2). This mechanism, however, is countered by gravity, to which we now
turn our attention.

2.3. Stability

As a grain travels over a slanting bed, gravity deflects its trajectory downwards.
For an arbitrary slope, the mathematical formulation of the resulting cross-stream
flux is intricate, and its experimental evaluation challenging (Kovacs & Parker 1994).
Fortunately, for a linear stability analysis, we may content ourselves with a first-order
formulation valid for shallow slopes, and near the threshold of motion. Accordingly, we
assume that the cross-stream, slope-induced flux, qg, is proportional to the density of
moving grains, and to the cross-stream slope of the bed:

qg = −γαvVsn
∂h

∂y
, (2.10)

where γ is another empirical parameter—the last we will need. Based on the observations
of Yamasaka et al. (1987) in a wind tunnel, Chen et al. (2009) proposed that γ lies in
the range 0.1 − 1. Most probably, this value depends on the Reynolds number at the
grain’s scale, and on the relative density of the grain. To our knowledge, it has never
been measured in a laminar flow.

The gravity flux, qg, brings bedload grains from crest to trough, and thus hinders
the instability driven by the diffusion flux, qd. Mass balance mediates this competition
through the Exner equation:

∂h

∂t
+
d3s
φ

∂

∂y
(qd + qg) = 0 (2.11)

where φ and t are the packing fraction of the sediment bed and time, respectively. For
randomly packed spheres, the packing fraction is approximately φ ∼ 0.6 (Bernal & Mason
1960). The bedload density equation (2.7), the cross-stream flux equations (2.9) and
(2.10), and the the Exner equation form a closed system, which the slope-induced flux
makes nonlinear.

We consider an infinitesimal perturbation of the bed, and expand our equations up
to first order in its amplitude. When we combine its four equations, the resulting linear
system takes the familiar form of the heat equation:

∂h

∂t
− qs0d

3
s

φ

(
γ − `d

D

θ0
θ0 − θt

)
∂2h

∂y2
= 0 (2.12)

where qs0 is the bedload intensity of the base state. The diffusivity of this equation
depends on the base state, and indeed can change sign. Its expression straightforwardly
conveys the character of the two cross-stream fluxes. The slope-induced flux, represented
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Figure 3. Dispersion relation of the bedload instability, in a free-surface flow. Dashed
lines: shallow-water approximation (equation (2.17)). Solid lines: two-dimensional Stokes flow
(equation (3.9)).

by γ, tends to increase the diffusivity, and thus stabilises the system. Conversely, the
diffusive flux, represented by `d, destabilises the bed—as anticipated, bedload diffusion
drives the instability.

We now introduce the transport number, Tr, as the ratio of the two terms of the
diffusivity in equation (2.12):

Tr =
γD

`d

θ0 − θt
θ0

. (2.13)

Combining this definition with the bedload transport law (equation (2.5)) recasts the
transport number into a dimensionless sediment flux:

Tr =
γDd2s

αvαn`dVs

qs0
θ0

. (2.14)

Literally, Tr depends not only on the sediment flux of the base state, but also on the
Shields parameter, θ0. Near the threshold, however, θt becomes a good approximation
for θ0; the transport number then bears its name rightly.

When bedload is intense in the base state, the transport number is large, and so is
diffusivity in equation (2.12). Sediment transport therefore stabilises the bed. Conversely,
a vanishing sediment flux brings the transport number arbitrarily close to zero. Eventu-
ally, the effective diffusivity in equation (2.12) becomes negative, and bedload diffusion
destabilises the bed.

This surprising result can be understood as follows. After the shallow-water approxi-
mation, the density of moving grains is simply proportional to the local depth (equation
(2.7)). As a consequence, its cross-stream gradient does not depend on the intensity of
bedload in the base state. Conversely, the slope-induced flux is proportional to n0, and
therefore to the downstream sediment flux in the base state. Intense bedload thus favours
the stabilising mechanism, without affecting bedload diffusion.

To formalise this discussion, we now perform the linear stability analysis of equation
(2.12), an elementary undertaking that will serve as a guide for the next section. We first
introduce the following characteristic time:

T =
φD3

θ0αnαvVs`dds
(2.15)



Streamwise streaks 7

which, when lengths are rescaled with D, makes equation (2.12) dimensionless. Next, we

express the bed perturbation as a sinusoidal wave of dimensionless amplitude ĥ:

h

D
= Re

(
ĥ exp

(
ik
y

D
+ σ

t

T

))
, (2.16)

where k and σ are the dimensionless wavenumber and growth rate of the perturbation,
respectively. Substituting this expression in equation (2.12) yields the dispersion relation
of the instability:

σ = k2 (1− Tr) . (2.17)

When the base state transports enough sediment to bring the transport number above
one, the growth rate is negative for any wavenumber, indicating that all perturbations of
the bed decay (figure 3). This oversimplified model transitions to instability drastically:
all wavelengths suddenly become unstable as the transport number is reduced below one.
Short-wavelength perturbations grow infinitely fast, and equation (2.12) is then ill-posed.

In reality, of course, streamwise streaks will never grow infinitely fast. This mathemat-
ical exaggeration is only due to some rash assumption. In the next section, we attempt
to fix our model by dropping the shallow-water approximation.

3. Regularisation by cross-stream diffusion of momentum

3.1. Stokes flow

Bedload diffusion reinforces streamwise streaks provided (i) bedload transport is weak,
and (ii) the flow exerts a lower shear stress on the crests than in the troughs. When
the wavelength of the perturbation is much longer than the flow depth, the shallow-
water approximation ensures that the latter condition is fulfilled. For small wavelengths,
however, viscosity diffuses momentum in the cross-stream direction (y), thus dampening
the influence of the bed perturbation on the flow. This mechanism regularises the
instability. By definition, the shallow-water approximation neglects this mechanism, and
unduly maintains the instability for short wavelengths. In this section, we replace the
shallow-water approximation with a two-dimensional Stokes equation.

We still consider a streamwise-invariant, laminar flow. However, the downstream
velocity u is now a function of y and z (figure 2). This Stokes flow then obeys Poisson’s
equation:

η ∇2u = −ρgS (3.1)

where η is the viscosity of the fluid, and the Laplacian operator ∇2 applies to cross-
stream coordinates only. We further assume that the flow does not slip along the bed
surface, and that the fluid surface is free of constraint. Mathematically,

u = 0 at z = h (3.2)

and
∂u

∂z
= 0 at z = D . (3.3)

Solving Poisson’s equation with the above boundary conditions yields the shear stress
the flow exerts on the bed surface:

τ = η en · ∇u at z = h (3.4)

where en is the unit vector normal to the bed surface.
Like in section 2, the flow entrains superficial grains as bedload, thus altering the bed
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surface through erosion and deposition. Here, however, this coupling takes the form of
a free-boundary problem in two dimensions, since the Exner equation transforms the
domain over which Poisson’s equation is to be solved. Fortunately, linearising makes its
stability analytically tractable.

Let us first consider the velocity profile of the base state, u0. Like the bed itself, it is
invariant along the streamwise and cross-stream direction, and Poisson’s equation reduces
to the direction normal to the bed, z. Its solution is half the classical parabola of the
Poiseuille flow:

u0 = 9
θ0VsD

ds

(
2
z

D
−
( z
D

)2)
, (3.5)

which provides us with a velocity scale for the flow, namely θ0VsD/ds.
The velocity profile of the base state equates the source term of Poisson’s equation.

Therefore, the velocity perturbation is a solution of Laplace’s equation or, equivalently,
it is the real part of some analytical function of the complex coordinate y + iz. This
velocity profile vanishes at the surface of the bed (equation (3.2)), the elevation of which
is perturbed by sinusoidal streaks (equation (2.16) at t = 0). In addition, its normal
derivative also vanishes at the surface of the flow or, equivalently, it is symmetrical with
respect to this surface (equation (3.3)). At first order, we find:

u = u0 − 18
θ0VsD

ds
Re

(
ĥ

cosh(k)
cosh

(
ik
y + iz

D
+ k

))
. (3.6)

Figure 4 shows the iso-velocity lines of the first-order flow, that is, the contours of
the above expression. When the wavelength of the perturbation is much larger than the
flow depth (λ � D or, equivalently, k � 1), the Stokes flow accords qualitatively with
the shallow-water approximation: its contours constrict above troughs, indicating intense
shear stress on the deepest parts of the bed. This distribution of shear stress favours the
instability.

The iso-velocity lines tell a different story for short wavelengths (k � 1). As the space
between streaks gets narrower, the bulk of the flow cannot squeeze in between crests
any more. The latter then find themselves fully exposed to the flow, from which they
shelter the troughs. As a result, shear stress is more intense on the crests than in the
troughs, and bedload diffusion will combine with gravity to wear the streaks down. We
thus anticipate that the screening induced by the diffusion of momentum across the flow,
which is the signature of Laplace’s equation, will provide us with the regularisation we
lacked in section 2.

3.2. Dispersion relation

To turn the above reasoning into a quantitative expression, we first need to calculate
the shear stress on the sediment bed. Deriving equation (3.6) with respect to z, and
evaluating the result on the bed yields the bed shear stress, and therefore the Shields
parameter, at first order:

θ = θ0

(
1− (1− k tanh k) Re

(
ĥ exp

(
iky

D

)))
. (3.7)

According to this expression, the perturbation of the Shields parameter is either in phase
or in antiphase with the bed perturbation, depending on wavelength (figure 4). For long
wavelengths (k � 1), the Shields parameter approaches its shallow-water expression
(equation (2.6)); it then reaches its maximum above a trough, and the bed is unstable.
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Figure 4. Stokes flow above streamwise streaks. Bed elevation (brown) and iso-velocity contours
(blue scale). Below the red dashed line, the shear stress is higher than in the base state. a: long
wavelength (kD = 1.4). b: short wavelength (kD = 4.2).

Conversely, for short wavelengths (k � 1), equation (3.7) reduces to

θ ≈ θ0
(

1 + kRe

(
ĥ exp

(
iky

D

)))
, (3.8)

which reverses the phase of the Shields parameter with respect to the bed perturbation.
The shear stress then concentrates on the crests, thus stabilising the bed.

Equipped with a new expression for the Shields parameter, we now return to the
stability analysis of section 2. We substitute equation (2.6) for equation (3.7), and
reuse the expression of the bedload fluxes, which the new flow model leaves unaffected
(equations (2.3), (2.9) and (2.10)). Injecting these equations into the mass-balance
equation (2.11) yields a new dispersion relation:

σ = k2 (1− Tr)− k3 tanh k . (3.9)

This expression equals its shallow-water counterpart (equation 2.17), but for an addi-
tional regularisation term. The latter, always negative, dominates the dispersion relation
at short wavelength (large k). Thanks to the two-dimensional Stokes flow, equation (3.9)
now behaves like a proper dispersion relation—the growth rate never diverges (figure 3).

The transport number still controls the global stability of the bed. Intense sediment
transport (Tr > 1) precludes the bedload instability. When the transport number
becomes less than its critical value of one, however, a range of unstable wavelengths
appears. Within this range, a well-defined maximum indicates the most unstable mode,
which is likely to emerge in experiments.

Figure 5a shows the trajectory of the most unstable mode on a stability map. As
the transport number crosses its critical value, the bedload instability appears with a
vanishing wavenumber, which quickly increases. The wavenumber of the most unstable
mode then increases towards its maximum value kmax, which it reaches when the base
state transports no sediment (Tr = 0). The largest of all most unstable wavenumber,
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Figure 5. Stability map of the bedload instability, for a free surface flow. a: Dispersion relation.
Darker areas correspond to faster growth rate. Red line: most unstable wave number for a given
value of the transport number. b: Growth rate of the most unstable wavenumber. c: Maximum
growth rate as a function of the transport number.

kmax, is the positive solution of the following equation:

3k tanh(k) + k2
(
1− tanh2 k

)
= 2 . (3.10)

Numerically, kmax ≈ 0.813. Returning to dimensional quantities, we find that kmax

translates into a remarkably universal ratio. When the intensity of bedload vanishes,
the most unstable wavelength, λmax, is simply proportional to the flow depth, regardless
of any other parameter:

λmax

D
=

2π

kmax
≈ 7.73 . (3.11)

This result suggests a recipe for an experiment—a hypothetical one for now. To identify
the bedload instability unambiguously, one need only reduce the bedload flux until the
wavelength of the instability reaches its minimum, which should be the above value.
Unfortunately, laboratory experiments seldom abide by idealised theories; we will return
to this question in the discussion (Section 5).

In addition to a wavelength, the most unstable mode also has a growth rate, σmax ≈
0.300, which we calculate by injecting kmax into the dispersion relation, and sending the
transport number to zero. Like the wavenumber of the most unstable mode, the growth
rate is at its highest when the base state transports no sediment (Tr = 0, figure 5c).
This statement, counter-intuitive with dimensionless quantities, becomes preposterous
in physical units: after equation (2.15), the dimensional growth rate also reaches its
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Figure 6. Saturation of the bedload instability. Red line: amplitude of the bed perturbation
at the transition to the non-linear regime, hmax, as a function of the transport number. Inset :
transition criterium, the amplitude of the perturbation of the Shields parameter reaches θ0− θt.

maximum when bedload transport vanishes. Since it is bedload that feeds the instability,
we would expect its absence to turn off the growth of the streaks. This apparent paradox
is due to the threshold of the sediment transport law (equation (2.3)), which brings the
linear regime to its end.

3.3. End of the linear regime

As the flow-induced shear stress approaches the threshold, bedload vanishes from the
base state, and so does the efficiency of the gravity-induced flux. This, however, does not
affect the sensitivity of bedload, which responds as strongly as ever to any perturbation
of the flow. Therefore, while the stabilising mechanism vanishes, the unstable coupling
between the flow and the bed persists—the bedload instability then thrives.

Such full-blown growth, however, will quickly meet its end. The linear expansion of
the transport law holds as long as the perturbed bed remains above the threshold. This
gets more demanding as the base state itself approaches the threshold (figure 6). We
define hmax as the amplitude of the perturbation when the Shields parameter hits the
threshold. Mathematically, after equation (3.7), hmax reads:

hmax =
`d
γ

Tr

1− k tanh k
. (3.12)

For any value of the transport number Tr, we calculate numerically the wavenumber k
of the most unstable mode, and inject the result in the above expression (figure 6). We
find that, as the intensity of bedload vanishes (Tr→ 0), so does the maximum amplitude
of the most unstable mode. Our linear stability analysis then holds for imperceptible
streaks only.

Once the perturbation has outgrown hmax, the instability enters a nonlinear regime, to
which the present analysis grants no access. We speculate, however, that the perturbation
could keep growing beyond this point, since its driving mechanism—active troughs and
frozen crests—should survive the end of linearity.
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4. Rigid lid

Although most bedload experiments involve open channels, the free surface of the flow
makes the tracking of sediment grains difficult. To avoid this problem, some experimenters
covered the flow with a transparent lid (Charru et al. 2004a; Lobkovsky et al. 2008;
Aussillous et al. 2016). In this section, we investigate the influence of this new boundary
condition on the bedload instability.

4.1. Fixed lid

Like in the experiments of Lobkovsky et al. (2008), a fixed, flat and rigid lid now
confines the fluid above the sediment bed. The flow is driven along this infinitely wide
pipe either by a downstream pressure gradient or, like in the previous sections, by the tilt
of the bed. Equating the pressure gradient with ρgS, we may treat these configurations
alike.

Following the structure of section 2, let us first use the shallow-water approximation,
keeping its limitations in mind. Above a long-wavelength perturbation, the flow profile is
essentially the Poiseuille parabola—the entire one, this time. It is symmetric with respect
to the centre of the fluid gap, and therefore distributes shear stress evenly between the
lid and the bed. We thus replace equation (2.6) by

θ =
ρDS

2(ρs − ρ)ds

(
1− h

D

)
. (4.1)

Apart from the factor of 2 in the above expression, the lid does not affect our system,
at least according to the shallow-water approximation. This factor of 2 does not even
propagate beyond equation (2.3) where, by virtue of the normalisation by n0 and θ0, it
retreats into the definition of the base state. We are thus left with equation (2.17) again,
that is, the same dispersion relation as in section 2.

Based on the above reasoning, we expect the lid to affect the bedload instability only
marginally, if at all. To check this formally, we now repeat the two-dimensional stability
analysis of section 3, with a new boundary condition at the flow surface. Specifically,
we replace the free-boundary condition with a no-slip one. At first order, we find the
following velocity field:

u = 18
θ0VsD

ds

(
z

D

(
1− z

D

)
− Re

(
ĥ

sinh k
sinh

(
ik
y + iz

D
+ k

)))
, (4.2)

which replaces equation (3.6). The dispersion relation associated with this expression
reads

σ = k2(2− Tr)− k3

tanh k
, (4.3)

which, qualitatively, behaves like its open-channel counterpart, equation (3.9). Again, the
bed is stable when the transport number is larger than one, and the dispersion relation
shows a positive maximum otherwise. The most unstable mode grows faster as bedload
vanishes (Tr → 0), until the growth rate reaches is maximum (σmax ≈ 0.831), for the
mode of wavelength λmax/D ≈ 4.785.

This result encourages us to look for the bedload instability in a closed channel, where
their observation should be easier than in an open one—although, to our knowledge they
have never been reported in any laboratory experiment.
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4.2. Driving lid

In their experiment, Charru et al. (2004b) drove the flow along a circular channel with
a rotating lid. The ring circumference was much larger that the channel’s width; we now
approximate this configuration with an infinitely long channel, covered with a rigid lid
travelling downstream at velocity U . The shallow-water approximation then yields

θ =
ηU

D(ρs − ρ)gds

(
1 +

h

D

)
. (4.4)

Unlike equations (2.6) and (4.1), equation (4.4) indicates that the shear stress is stronger
where the bed is closer to the moving lid, that is, at the crest of the perturbation. This
is a dramatic change: bedload diffusion and gravity now conspire to wear away even a
long-wavelength perturbation.

The two-dimensional velocity field now reads

u = 18
θ0VsD

ds

(
z

D
− Re

(
ĥ

sinh(k)
sinh

(
ik
y + iz

D
+ k

)))
, (4.5)

and the associated Shields parameter becomes

θ = θ0

(
1 +

(
k

tanh(k)

)
Re

(
ĥ exp

(
iky

D

)))
, (4.6)

thus confirming that, regardless of the wavenumber k, the shear stress is always stronger
at the crest. As a consequence, driving the flow with a moving lid prevents the growth
of the bedload instability. Experiments like that of Charru et al. (2004b) are therefore
specially well suited to produce wide and shallow flows with stable bedload transport.

5. Laboratory channels

Bedload experiments in laminar channels or pipes are not uncommon (Charru et al.
2004b; Ouriemi et al. 2007; Lobkovsky et al. 2008; Aussillous et al. 2013; Seizilles et al.
2014), and yet streamwise bed streaks have never been reported in laminar flows, at least
to our knowledge. We now use the theory of the present paper to evaluate how unstable
these experiments were.

We first disqualify the experiment of Charru et al. (2004b), the driving lid of which
precludes the instability (section 4.2). Next, we need to consider the sidewalls that confine
the flow in an actual channel. In principle, we should treat them as no-slip boundaries,
and account for them even in the base state. This, however, will produce a base state
that varies in the cross-stream direction, thus complicating the analysis tremendously.

Instead, we will content ourselves with a less ambitious analysis which, we hope, will
yield an order-of-magnitude interpretation of laboratory experiments. Accordingly, we
replace the sidewalls with free-slip boundaries for the fluid, and impervious boundaries
for the sediment. Both conditions preserve the homogeneity of the base state, to the cost
of mathematical rigour.

An expected consequence of the sidewalls is to select acceptable modes (figure 7). For
the perturbation to fulfill the boundary conditions at the sidewalls, its wavenumber needs
to belong to a discrete set of values:

k = nπ
D

W
(5.1)

where n is an integer, and W is the width of the channel. Substituting this expression into
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Figure 7. First three modes of the bedload instability in a finite-width channel. a,b,c: Bed
perturbation. d,e,f: Dispersion relation for individual modes. Blue scale indicates growth rate.

the dispersion relation for an open channel, equation (3.9), we find that no instability
can grow in a too narrow channel. As the transport number vanishes, the first mode
(n = 1) is unstable only when W/D & 2.26 (figure 7a). The higher the mode, the wider
the channel needs to be to accommodate its growth.

Considering all acceptable modes in a given experiment, we can identify the fastest-
growing one, and treat it as the dominant mode (figure 8). In the parameter space
made up by the transport number and the aspect ratio, the unstable domain is tiled
with individual modes. When the transport number is below one, the order of the most
unstable mode increases with the aspect ratio of the channel. Overall, the unstable
domain is bounded by the same curve as the first mode.

We now wish to place the laboratory experiments of Lobkovsky et al. (2008), Aussillous
et al. (2013) and Seizilles et al. (2014) on the stability diagrams of figure 8. Unfortunately,
we can only do this approximately since, for instance, Lobkovsky et al. (2008) and
Aussillous et al. (2013) let the sediment discharge decrease slowly as the bed reaches
the threshold for sediment transport. Such a transient may not last long enough for
the instability to grow. Conversely, Seizilles et al. (2014) feed their open channel with
a constant input of sediment, thus approaching the theory presented here. Table 1
summarises our estimates of the relevant parameters in these experiments, but many
of them are uncertain. In addition, the parameter γ, which accounts for the gravity-
induced flux of sediment, has never been measured in a laminar flow (section 2.3). Based
on the wind-tunnel measurements of Yamasaka et al. (1987), we use the range 0.1 − 1.
The last parameter we need is the diffusion length `d, which was measured by Seizilles
et al. (2014) in a laminar flume. They found `d ∼ 0.03 ds, which is the only estimate we
can use.

Remembering that the roughness of the above estimates matches that of our simplified
boundary conditions, we may now map the explored regions of the parameter space
(figure 8). For the most part, they lie in the stable domain, although the experiments by
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Aussillous et al. (2013) and Seizilles et al. (2014) marginally overlap the stable domain
on the first mode. This overlap is precarious, since we neglect the influence of sidewalls
on a viscous flow, in a channel whose aspect ratio is less than five.

Preliminary though it may be, figure 8 suggests that laboratory channels are usually
too narrow for the bedload instability to flourish.

6. Conclusion

The linear stability analysis we have presented in this paper identifies a new instability
associated with bedload transport, caused by the cross-stream diffusion of the travelling
grains. This instability produces bed streaks aligned with the flow, in the absence
of any secondary currents. Because it can only grow near the threshold of sediment
transport, the unstable perturbation quickly enters a nonlinear regime which we have
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Lobkovsky et al. (2008) Aussillous et al. (2013) Seizilles et al. (2014)

Channel Rectangular channel Rectangular channel Rectangular channel
Fixed lid Fixed lid Free surface

Steady state No No Yes

Run duration (min) 10 5 60 – 120

Flow depth, D (cm) 0.3 – 0.9 0.4 – 0.9 0.13 – 0.31

Flow width, W (cm) 2.6 3.5 3

Reynolds number 0.3 0.2 – 1.2 500 – 1400

Grain size, ds (µm) 700 1100, 2040 344

Shields number, θ 0.35 – 0.8 0.22 – 1 0.13 – 0.21

Threshold Shields, θt 0.3 0.2 0.12

Transport number, Tr 2.4 – 71 0.4 – 58 0.2 – 14

Table 1. Estimated parameter values for laminar bedload-transport experiments.

not investigated. The bedload instability is sensitive to boundary conditions; it persists
in a rectangular pipe, but disappears when the flow is driven by a travelling lid.

Despite the simplicity of its driving mechanism, we could not find any report of this
instability appearing in a laboratory experiment. This, of course, raises the question of its
actual existence, but we suspect that the basic reason for its absence from the literature
is that the aspect ratio of laboratory channels is usually too small to accommodate its
growth. We speculate that this might not be fortuitous, as experimenters often wish the
sediment bed to be invariant in the cross-stream direction.

At this point, we can only imagine an ideal set-up, specially designed to observe the
bedload instability. Ideally, this set-up would involve a transparent rectangular pipe (as
opposed to an open channel) to eliminate the fluctuations of the free surface. The pipe
should be wider than the wavelength of the perturbation; an aspect ratio of approximately
20, for instance, should allow two parallel streaks to grow. The sediment and fluid
discharges would be kept constant until the streaks, visualised with a laser beam, emerge.
With the grains used by Seizilles et al. (2014), we expect an inverse growth rate of
approximately 10 hours. If the bedload instability indeed appears in such an experiment,
the critical transport number at which it does so would yield an estimate of the parameter
γ, which represents the influence of gravity on the cross-stream transport of sediment.

Cross-stream fluxes of sediment shape the channel of alluvial rivers and, most probably,
select their size (Ikeda et al. 1998). A reliable theory of bedload diffusion, tested against
laboratory experiments, would therefore help us understand their morphology. Once such
a framework is set, it will become a matter of numerical routines to explore it beyond
linearity. A natural question to ask, then, will be whether the bedload instability grows
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as far as to split a broad channel into smaller ones, thus creating the precursor of a
braided river (Stebbings 1963; Métivier et al. 2017).

We thank F. Métivier, J.A. Neufeld, D.H. Rothman, P. Szymczak, P. Gondret
and S. Courrech du Pont for fruitful discussions. O.D. was partially funded by the
Émergence(s) programme of the Mairie de Paris.
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