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frequencies [9], the so called analytic signal allows a separate modulation diagnosis. However, several mechanical faults,
such as bearing or gear box faults, induce modulation frequencies which violate the Bedrosian conditions [10]. The spectral
or time frequency signature can thus be misleading. Signals violating (respectively, respecting) the Bedrosian theorem
conditions are defined as fast (respectively, slow) modulated signals.

The Concordia transform (CT) is often used in electrical engineering for control purposes [11,12] and in electrical or
mechanical diagnosis to detect static converter defects [13], unbalanced electrical systems [14], machine stator electric
defects [15,16], mechanical eccentricity [17] or bearing defects [18,19]. The main purpose of the CT is to reduce the number
of variables describing the three phase machine: this transform builds a complex variable from three real measurements
[20]. This paper proposes the CT as an alternative to the HT to built a complex vector, in the case of three phase machines.
Then, a time frequency analysis through the WD can be performed, even when the Bedrosian theorem conditions are
violated. Section 2 presents the stator current model in case of two elementary mechanical faults: dynamic eccentricity and
load torque oscillations. Section 3 recalls the HT, the Bedrosian theorem limitations and the CT. Section 4 compares the
Hilbert analytic signal and Concordia space vector IA and IP for various modulation frequency ranges using simulated and
experimental stator currents. HT and CT are also compared in terms of computing complexity. Finally, Section 5 studies
time frequency diagnosis and compares the AM and PM time frequency signatures through WD via HT and CT.

2. Stator current model under mechanical faults

In three phase machines, three current measurements with a phase separation of one third cycle (2p=3 rad) are
available. Assuming a first harmonic model, they can be written in the simple form:

ikðtÞ ¼ aðtÞ cosðcðtÞ fkÞ; k ¼ 1;2;3

with fk ¼ ðk 1Þ
2p
3

(1)

Using a first harmonic approach, the healthy machine is characterized by

aðtÞ ¼ I

cðtÞ ¼ 2pf st þc0

(

where I denotes the stator current amplitude, f s the machine supply frequency and c0 is the initial phase. Mechanical faults
lead to particular expressions of aðtÞ and cðtÞ. Dynamic eccentricity and load torque oscillations are the main elementary
mechanical faults [1]. They may be considered separately; however, a general default model that involves their
combinations is proposed.

2.1. Amplitude modulation resulting from time varying airgap

The rotation of the rotor geometrical center around the geometrical stator center is called dynamic eccentricity. As a
result, the point of minimum air gap length is not stationary [21]. The time variation of the air gap permeance causes an
AM of the stator current [1,21,22] with carrier frequency f s such as

aðtÞ ¼ I½1þ a cosð2pf amt þ famÞ�

cðtÞ ¼ 2pf st þc0

(
(2)

where a denotes the AM index, f am the AM frequency and fam the AM initial phase. It can be noticed that the effects of
dynamic eccentricity and time varying air gap length are similar. Moreover, the time varying air gap length caused by a
geometrical deformation of the rotor may be such as f am4f s. In this case, this particular mechanical defect is said to induce
fast AM on stator currents.

2.2. Phase modulation resulting from pure load torque oscillations

When submitted to periodic oscillations, the mechanical torque may be approximated by the first term of its Fourier
series decomposition:

GloadðtÞ ¼ G0 þ Gc cosð2pf pmtÞ (3)

where Gc is the amplitude of the load torque oscillation and f pm the oscillation frequency. The stator current may be
approximated by a PM signal [1,3] such as

aðtÞ ¼ I

cðtÞ ¼ 2pf st þ b sinð2pf pmt þfpmÞ þ c0

(
(4)

where f pm is the PM frequency, fpm is the PM phase, b is the PM index function of Gc , f pm and f s [1]. In case of bearing or
gear box faults for instance, the load torque oscillation frequency is a high multiple of the rotating frequency leading to fast
modulation of the measured current [10].



2.3. Mixed modulations resulting from general mechanical faults

More realistic fault models involve both time varying air gap length and load torque oscillations. As a consequence, the
measured current general model may be written as follows:

aðtÞ ¼ I½1þ a cosð2pf amt þ famÞ�

cðtÞ ¼ 2pf st þ b sinð2pf pmt þ fpmÞ þ c0

(

Note that null AM and PM indexes (a ¼ 0 and b ¼ 0) correspond to the stator current model in healthy conditions.

3. The need for a complex signal representation

The study of AM and/or PM requires the definition of the IA and IP. For a univocal definition, a complex signal has to be
associated to the real observed signal [8]. Indeed, for a given real signal xðtÞ, there exists an infinite number of pairs
½AðtÞ;CðtÞ� such as xðtÞ ¼ AðtÞ cosðCðtÞÞ. The definition of IA and IP requires the construction of a canonical pair i.e. in one to
one correspondence with xðtÞ [5 8].

3.1. Analytic signal via the Hilbert transform

The classical way to define the IA and IP is to associate a complex signal to the measured real signal iðtÞ through the HT.
Let Iðf Þ denote the Fourier transform (FT) of iðtÞ along the frequency f. The associated analytic signal FT IHT ðf Þ is given in [7]

IHT ðf Þ ¼ Iðf Þ þ jHðf ÞIðf Þ with Hðf Þ ¼ j signðf Þ (5)

where

signðf Þ ¼

þ1 for f40

0 for f ¼ 0

1 for fo0

8><
>:

Hðf Þ is the Hilbert filter transfer function. Now let iHT ðtÞ ¼ aHT ðtÞe
jcHT ðtÞ with aHT ðtÞ non negative and cHT ðtÞ defined

modulo 2p. Then aHT ðtÞ and cHT ðtÞ are the IA and IP respectively [8]. It can be noticed that the HT leads to the cancelation of
negative frequency components. When a modulation transfers significative components into the negative frequencies, the
HT may yield misleading interpretations [5].

3.2. Bedrosian theorem conditions

One can consider a real stator current fundamental component iðtÞ ¼ i1ðtÞ ¼ aðtÞ cosðcðtÞÞ. This signal can be considered
as an AM and/or PM signal. The imaginary part of the analytic signal is expected to be the quadrature component of iðtÞ:

IðiHT ðtÞÞ ¼ hðtÞn½aðtÞ cosðcðtÞÞ� ¼ aðtÞ sinðcðtÞÞ (6)

where h denotes the impulse response of the Hilbert filter. In this case, iHT ðtÞ ¼ aðtÞejcðtÞ. The commutation between
convolution and multiplication in (6) is only possible under the conditions of the Bedrosian theorem: the time varying
amplitude should have the characteristics of a low pass signal whereas cosðcðtÞÞ should be a high pass signal as depicted in
Fig. 1, where c is an arbitrary constant [9]. Moreover, the bandwidth of cosðcðtÞÞ has to be relatively small.

In case of slow modulations, the HT provides aHT ðtÞ ¼ aðtÞ as the IA and cHT ðtÞ ¼ cðtÞ as the IP. Thus, the IA (respectively,
IP) carries information about the AM (respectively, the PM). Note that the PM is preferentially studied through the
instantaneous frequency (IF) defined by

IFðtÞ ¼
1

2p
dcHT ðtÞ

dt
. (7)

Finally, to obtain a complex signal, a component in quadrature with the real observed signal has to be derived. The HT
allows to compute this component only for slow modulated signals. However, rotor geometrical deformations, bearing or
FT {a(t) }

c ν

FT { cos( ψ(t) ) }

Fig. 1. Illustration of the Bedrosian theorem conditions.



gear box faults may produce fast modulations. In this case, a new strategy is proposed to build an appropriate complex
signal by taking advantage of the three current measurements.

3.3. Concordia transform

In case of three phase electrical machines, the three stator current measurements i1ðtÞ, i2ðtÞ and i3ðtÞ can be represented
by a set of three coplanar vectors with a phase shift of 2p=3 rad (Fig. 2). The CT is a linear transform which defines an
orthogonal basis i.e. two components in quadrature ðu;vÞ from the three previous vectors [12,20]. This linear transform can
be expressed with the normalized Clarke matrix:
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This study focuses on balanced systems satisfying the following condition i1ðtÞ þ i2ðtÞ þ i3ðtÞ ¼ 0; 8t. For such systems,
the matrix in (8) is simplified in the Concordia matrix:
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(9)

A geometrical interpretation of this linear transform is displayed in Fig. 2. The Clarke matrix may be interpreted as a
constant projection matrix. The complex space vector is defined by iCT ðtÞ ¼ uðtÞ þ jvðtÞ.

The CT is widely implemented in electrical drives for control purposes [11] and monitoring applications [15 19].
Generally, the Concordia space vector modulus is considered as the demodulated signal and allows to detect faulty
operations. In these cases, the space vector argument is ignored. On the contrary, the proposed approach uses both the
modulus and argument of the space vector to analyze the stator current IA and IF. Indeed, for the three current in the form
(1), it can be easily shown from (9) that iCT ðtÞ ¼ aðtÞejcðtÞ whatever the modulation and carrier frequencies.

4. Comparison of Hilbert analytic signal and Concordia space vector

4.1. Theoretical analysis

The frequency content of the IA and the IF obtained through HT and CT have been theoretically derived for the signal
models (2) and (4) in case of slow and fast AM and PM. As an example, the case of fast PM is developed in Appendix A.
Results are provided in Table 1.

The CT and HT provide the same complex signal for slow modulated signals. However, in case of fast modulations, extra
harmonics appear in the IA and IF derived through HT. These extra harmonics may lead to a misleading diagnosis since pure
AM and pure PM both appear as mixed AM/PM. Another key comparison criterion is the computational complexity. Indeed,
in practical applications on sampled stator current signals, HT can be approximated by a finite impulse response filtering
with relatively high order N [4]. It results in N multiplication/accumulation operations and in a delay of N=2 samples. On
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Fig. 2. Geometrical construction of the Concordia basis from the three current components.
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Fig. 4. Spectrum of stator current and associated IF computed through the HT and CT in case of slow PM.
performed using the spectrum. A separate analysis of the IA and IF is preferred (Fig. 4(b)). For slow modulated signals, the
IF estimated with the HT and CT are similar.

4.2.2. Fast modulations

Synthetic signals: A stator current submitted to PM is simulated with the same model parameters, except for f pm ¼ 70 Hz,
which is now larger than f s. Fig. 5(a) and (b) shows, respectively, the spectrum of the IA and IF of the simulated current
derived with the HT and CT.

As Bedrosian theorem hypothesis are not valid, the HT leads to extra harmonics at f pm and j2f s f pmj frequencies on the
IA spectrum, in accordance with Table 1. The CT leads to a unique harmonic at frequency f pm on the IF spectrum and thus
clearly reveals a fast PM. It can be noticed that similar results can be observed in case of fast AM according to Table 1.

Experimental signals: Experimental measurements are performed in case of load torque oscillations such as
f pm � 81 Hz4f s. As for simulated signals, the estimated IF with the HT creates an extra harmonic at j2f s f pmj frequency
(Fig. 6(a)). The CT provides a unique harmonic related to the PM at f pm frequency (Fig. 6(b)) and thus reveals that the major
modulation is a PM at f pm frequency.

5. Application to time-frequency diagnosis through Wigner distribution

5.1. Definition

The WD is a time frequency energy distribution. The WD Wzðt; nÞ of a complex signal zðtÞ is defined as

Wzðt; f Þ ¼

Z 1
�1

z t þ
t
2

� �
z� t

t
2

� �
ej2pft dt (10)

where z� denotes the conjugate of z. The WD is the FT of the kernel Kzðt; tÞ with respect to the delay variable t:

Kzðt; tÞ ¼ z t þ
t
2

� �
z� t

t
2

� �
(11)

The WD is of strong interest for detection and diagnosis purposes in electrical drives, either in steady state or at variable
speed. Indeed, unlike IA and IF spectra, the WD can be used in a non stationary context i.e. at variable speed or variable
carrier frequency. WD can also be used to detect the fault emergence in steady and transient state. Moreover, in steady and
transient state operation, AM and PM (i.e. time varying air gap length and load torque oscillations) can be distinguished
from the phase analysis of the WD interference structure [1,4].

First the WD expression has to be recalled in case of slow PM and AM.

5.2. Wigner distribution of steady state PM and AM currents

A pure slow PM can considered, with f0 ¼ fpm ¼ 0 to simplify. In this case, the HT and CT complex signals are equal
such as

iCT ðtÞ ¼ iHT ðtÞ ¼ Iej2pf stþb sinð2pf pmtÞ (12)
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The associated WD can be derived using the Jacobi Anger expansion [4,23]:

WiHT
ðt; f Þ ¼WiCT

ðt; f Þ

¼ I2dðf f sÞ �
Xþ1

n �1

Jnð2b cosð2pf pmtÞÞd f n
f pm

2

� �" #
(13)

where JkðbÞ denotes the k th order Bessel function of the first kind. Now, a low level fault characterized by b51 is
considered. According to Bessel function properties, J0ðbÞ ’ 1 and J1ðbÞ ¼ J�1ðbÞ ’ b=2 and higher order Bessel function
terms may be neglected. The WD can be simplified in

WiHT
ðt; f Þ ¼WiCT

ðt; f Þ ’ I2dðf f sÞ þ I2b cosð2pf pmtÞ d f f s

f pm

2

� �
d f f s þ

f pm

2

� �� �
(14)

Thus the slow PM current WD is characterized by a fundamental component at f s and periodic sidebands at f s � f pm=2
with frequency f pm. Note that in case of PM, the sidebands are in phase opposition or with opposite signs.

Now, one can consider a pure slow AM signal with f0 ¼ fam ¼ 0 to simplify. The HT and CT are such as

iHT ðtÞ ¼ iCT ðtÞI½1þ a cosð2pf amtÞ�ej2pf st (15)

A low level fault such as a� e1 is considered. Straightforward derivations lead to the approached WD:

WiHT
ðt; f Þ ¼WiCT

ðt; f Þ ’ I2dðf f sÞ þ I2a cosð2pf amtÞ d f f s

f am

2

� �
þ d f f s þ

f am

2

� �� �
(16)
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between sideband components whatever the modulation frequency. Moreover, the Concordia transform is by far less
expensive than the Hilbert transform in terms of computing complexity. As a consequence, when at least two stator current
components are available, the Concordia transform should be preferred to build the complex signal required for the
modulation analysis.

Appendix A. Fast PM stator current signal

One can consider the Hilbert transform of a PM stator current iðtÞ ¼ I cosð2pf st þ b sinð2pf pmtÞÞ according to the general
model (1) with c0 ¼ f0 ¼ fpm ¼ 0. Assuming that b51, the FT can be approximated by

Iðf Þ ’
I

2
½dðf f sÞ þ dðf þ f sÞ� þ

Ib
4
½dðf f s f pmÞ þ dðf þ f s þ f pmÞ�

Ib
4
½dðf f s þ f pmÞ þ dðf þ f s f pmÞ� (17)

Assuming that f sof pm, the FT of the approximated analytic signal equals:

IHT ðf Þ ¼ I dðf f sÞ þ
b
2
½dðf f s f pmÞ dðf þ f s f pmÞ�

� �
(18)

Thus, iHT ðtÞ expresses as

iHT ðtÞ ¼ Iej2pf st
þ Ib sinð2pf stÞe

jð2pf pmtþp=2Þ (19)

In order to study the IA and IP, iHT ðtÞ has to be expressed as iHT ðtÞ ¼ aHT ðtÞe
jcHT ðtÞ. The IA and IP, aHT ðtÞ and cHT ðtÞ are given

by

aHT ðtÞ ¼ I 1þ b2 sin2
ð2pf stÞ þ 2b sinð2pf stÞ sinð2pðf s f pmÞtÞ

q

cHT ðtÞ ¼ 2pf st þ arctan
b sinð2pf stÞ cosð2pðf pm f sÞtÞ

1 b sinð2pf stÞ sinð2pðf pm f sÞtÞ

" #
8>>><
>>>:

(20)

Since b51, terms proportional to b2 are neglected in the first order Taylor development of the square root leading to

aHT ðtÞ ’ I 1þ
b
2

cosð2pf pmtÞ cos 2pð2f s f pmÞt
� �� �� �

(21)

Consequently, in case of fast PM, the Hilbert analytic signal IA shows two harmonics at f pm and j2f s f pmj frequencies.
These harmonics do not exist in case of slow PM. It can be noticed that there is no harmonic in the Concordia space vector
IA, whatever the fundamental and the modulation frequencies.

With the same hypothesis on b, the approximated IP expresses as

cHT ðtÞ ’ 2pf st þ
b sinð2pf stÞ cosð2pðf pm f sÞtÞ

1 b sinð2pf stÞ sinð2pðf pm f sÞtÞ

" #
(22)



From first order Taylor development of the denominator and by neglecting terms proportional to b2, the approximated IP
expresses as

czðtÞ ’ 2pf st þ
b
2

sinð2pf pmtÞ þ
b
2

sinð2pð2f s f pmÞtÞ (23)

According to the definition in (7), the IF is given by

IFðtÞ ’ f s þ
bf pm

2
cosð2pf pmtÞ þ

bð2f s f pmÞ

2
cosð2pð2f s f pmÞtÞ (24)

Finally, in case of fast PM, the Hilbert analytic signal IF shows two harmonics at f pm and j2f s f pmj frequencies. The
harmonic at j2f s f pmj frequency does not exist in case of slow PM. The Concordia space vector IF has no extra harmonic
whatever the fundamental and the modulation frequencies.

To obtain the WD signature of iðtÞ using the HT, the kernel is expressed:

KiHT
ðt; tÞ ¼ I2ej2pf st þ I2b cosð2pf pmtÞej2pðf sþf pm=2Þt I2b cosð2pð2f s f pmÞtÞe

j2pðf pm=2Þt (25)

Then, the WD is derived:

WiHT
ðt; f Þ ¼ I2dðn f sÞ þ I2b cosð2pf pmtÞd n f s

f pm

2

� �
I2b cosð2pð2f s f pmÞtÞd n

f pm

2

� �
(26)
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