Towards a unified approach for worst-case analysis of Tilera-like and KalRay-like NoC architectures

Hamdi Ayed * , Jérôme Ermont † , Jean-luc Scharbarg ‡ and Christian Fraboul § Toulouse University -IRIT -ENSEEIHT Email: * hamdi.ayed2@enseeiht.fr, † jerome.ermont@enseeiht.fr, ‡ jean-luc.scharbarg@enseeiht.fr, § christian.fraboul@enseeiht.fr packet. Flit is the transmission unit. In each cycle one flit is forwarded from each router, provided its destination output port (in the next router) is not busy. Figure 1(a) shows the architecture of a Tilera TILE64 router. It includes five full duplex input-output ports. A three flits buffer is associated to each input port. Input ports are polled, based on Round-Robin Arbitration (RRA). The first packet in the buffer of the polled input port is forwarded flit by flit to the next router on its path if the buffer of the corresponding input port is not full.

Otherwise the next input port (based on RRA) is polled.

(a) Tilera TILE64 router [START_REF] Wentzlaff | On-chip interconnection architecture of the tile processor[END_REF] (b) Kalray MPPA 256 router [START_REF] De Dinechin | Timecritical computing on a single-chip massively parallel processor[END_REF] Fig. 1. Architectures of two commercial NoC

This strategy requires very small buffers in routers. However a flow can be delayed by indirect blocking, as illustrated in Figure 2. In this example, flow f 1 can be blocked by flow f 2 in the upper-left router. The blocking duration can be increased, because f 2 can be blocked by f 3 later on its path. Thus f 1 can be indirectly blocked by f 3 .

Kalray MPPA 256 eliminates flow control mechanism in routers. Figure 1(b) shows the architecture of a Kalray MPPA 256 router. It includes five full duplex input-output ports. Four sets of buffers are associated to each output port, one for each other input port. For instance the four sets associated with east output port correspond to north, west, south and compute cluster input ports. As soon as a flit arrives in an input port, it is stored in the corresponding buffer of its destination output port. For each output port, buffer sets are polled based on RRA. The first packet in the polled buffer set is transmitted (there is no flow control at this level).

One problem is to ensure that no buffer will overflow. In that way, Kalray MPPA 256 implements flow regulation in source nodes. Each flow bandwidth is limited, leading to a bounded occupancy of each buffer set.

Compared to Tilera TILE64, Kalray MPPA 256 reduces Abstract-In this paper, we consider two Network-on-Chip (NoC) architectures used within commercially available manycore systems, namely Tilera TILE64 which implements flow regulation within routers and KalRay MPPA 256 which implements flow regulation in source nodes. The Worst-Case Traversal Time (WCTT) on the NoC has to be bounded for real-time applications, and buffers should never overflow. Different worstcase analysis approaches have been proposed for each of these NoC architectures. However, no general worst-case analysis supporting both NoC architectures exists in the literature and most approaches are specific to one of the studied NoC. In this paper, we propose to use Recursive Calculus (RC) method for Tilera and KalRay. Furthermore, we compare the performances on a preliminary case study, in terms of WCTT and required buffer capacity. It allows to quantify the trade-off between delays and buffer occupancy.

I. INTRODUCTION

Many-core architectures are promising candidates to support the design of hard real-time systems. They are based on simple cores interconnected by a Network-on-Chip (NoC). Timing constraints, such as bounded delays, have to be guaranteed for hard real-time systems. Thus worst-case behavior of the NoC is a key feature for such systems.

However, the initial motivation when designing NoCs was to increase the average case throughput. NoCs can thus be used in hard real-time systems either by analyzing the Worst-Case Traversal Time (WCTT) of flows on existing many-cores or by modifying the hardware so that no contentions can occur by design, leading to straightforward WC-TT for flows.

Several NoC have been proposed based on the second approach [START_REF] Goossens | AEthereal network on chip: Concepts, architectures, and implementations[END_REF], [START_REF] Hansson | Aelite: A flitsynchronous network on chip with composable and predictable services[END_REF], [START_REF] Schoeberl | A statically scheduled time-division-multiplexed network-on-chip for real-time systems[END_REF]. However, none of these NoCs targeting hard real-time constraints are available in commercially existing many-core architectures, such as for instance the STMicroelectronics P2012/STHORM fabric [START_REF] Rahmati | Computing accurate performance bounds for best effort networks-on-chip[END_REF], the Tilera Tile CPUs [START_REF] Wentzlaff | On-chip interconnection architecture of the tile processor[END_REF] or the KalRay MPPA [START_REF] De Dinechin | Timecritical computing on a single-chip massively parallel processor[END_REF].

In this work, we focus on these commercially existing architectures. More specifically we consider Tilera TILE64 [START_REF] Wentzlaff | On-chip interconnection architecture of the tile processor[END_REF] and Kalray MPPA 256 [START_REF] De Dinechin | Timecritical computing on a single-chip massively parallel processor[END_REF], because they consider different strategies for flow control.

Tilera TILE64 implements flow control in each router: a packet cannot be forwarded if the next output port on its path is busy. It corresponds to a classical wormhole switching mechanism [START_REF] Ni | A survey of wormhole routing techniques in direct networks[END_REF]. A packet is divided in flow control digits (flits) of fixed size. The first flit is called the header flit. It contains routing information that define the path for all the flits of the flow delay upper bounds, since the flow regulation eliminates indirect blocking. However required queue size increases with overall flow bandwidth.

The contribution of this paper is to propose a unified approach for delay analysis of both Tilera TILE64 and Kalray MPPA 256, as well as buffer occupancy analysis of Kalray MPPA 256.

Several approaches have been proposed for Worst-Case-Traversal-Time (WCTT) computation of NoC. Two main existing approaches can be used for Tilera TILE64, based on Recursive Calculus (RC) [START_REF] Ferrandiz | A method of computation for worst-case delay analysis on SpaceWire networks[END_REF] and Network Calculus (NC) [START_REF] Ferrandiz | A Network Calculus Model for SpaceWire Networks[END_REF]. The RC method offers a simple way to capture the wormhole effect and the possible direct and indirect blocking that may be induced in the network. Furthermore, in [START_REF] Ferrandiz | A Network Calculus Model for SpaceWire Networks[END_REF], au-thors have compared these two timing analysis approaches and showed that in practical cases (medium and high loads) the RC methods provides tighter bounds compared to NC method.

One approach based on Network Calculus has been proposed for delay and buffer analysis of Kalray MPPA 256 [START_REF] De Dinechin | Timecritical computing on a single-chip massively parallel processor[END_REF]. It assumes that the applications use all the available bandwith on the different links. This is not the case for the real-time applications considered in the context of this paper.

In this paper we show how RC can be used for delay and buffer analysis of Kalray MPPA 256. We show how such a unified approach can be used to compare WCTT on both Tilera TILE64 and Kalray MPPA 256. We also show how it can determine the required buffer size for a given application (with known flow bandwidth) on Kalray MPPA 256. A comparison of WCTT and required buffer size is conducted on a preliminary case study.

II. WORST-CASE ANALYSIS FOR TILERA-LIKE NOC

The goal is to compute the WCTT of a flow f i transmitted on a Tilera-like NoC. f i follows a path which is an ordered list of links. Different approaches have been proposed in this context. Two of them, based on Network Calculus (NC) and Recursive Calculus (RC) have been compared in [START_REF] Ferrandiz | A Network Calculus Model for SpaceWire Networks[END_REF]. It has been shown that RC based approach provides tighter bounds in practical cases. Several enhancements of this RC based approach have been proposed in order to better consider Flow as well as NoC architecture features. Flow periods are considered in [START_REF] Dasari | NoC Contention Analysis Using a Branch-and-prune Algorithm[END_REF] while a pipeline effect is addressed in [START_REF] Abdallah | Wormhole networks properties and their use for optimizing worst case delay analysis of many-cores[END_REF]. Bounds are improved. In the context of this paper we focus on initial RC approach [START_REF] Ferrandiz | A method of computation for worst-case delay analysis on SpaceWire networks[END_REF], since it is much simpler to extend to Kalray. Taking into account enhanced RC approaches is left as future work.

The Recursive Calculus method [START_REF] Ferrandiz | A method of computation for worst-case delay analysis on SpaceWire networks[END_REF] defines d(f i , l j) as the upper bound on the transmission delay of flow f i from link l j to its destination. It corresponds to the duration from the moment when the header flit first tries to access link l j till the complete reception of the packet at the destination. Thus the end-to-end delay for flow f i is upper-bounded by d (f i , first (f i)), where first (f i)) is the first link of f i path.

The approach proceeds in a set of recursive iterations which can be represented by a tree. Let's analyse flow f 1 of example in Figure 2. This process is illustrated in Figure 3. We have to compute d (f 1 , first (f 1)), i.e. d (f 1 , l 1). This is the root of the tree. First f 1 is delayed at its first link l 1 by f 2 which has to access link l 2 . As soon as f 1 reaches router R 1 , it is transmitted on link l 6 . Then, f 1 reaches router R 4 and it is transmitted on link l 9 . It cannot be delayed on this last link, since there is no competing flow. Thus we have to add two durations:

• the blocking time of f 1 in its source node, due to f 2 (left child of d (f 1 , l 1) node), • the transmission time of f 1 till its destination, as soon as l 1 is free (right child of d (f 1 , l 1) node). The second duration is obtained by adding the time d c needed to move the first flit of f 1 from its source node to input buffer of router R 1 , the time d sw + d c needed to compute the route at R 1 and move the first flit of f 1 from R 1 to R 4 , the time to compute the route at R 4 and the time needed to transmit one f 1 packet on link l 9 , i.e. S 1 /C. In the Recursive Calculus method, this transmission time is denoted d (f 1 , null). Without loss of generality, we assume

d sw = d c = 1 cycle.
The first duration is the sum of the time d c needed to move one flit of f 2 from its source node to input buffer of router R 1 and the time needed to transmit a packet of f 2 to its destination starting from link l 2 , i.e. d (f 2 , l 2).

Since f 2 is the only flow transmitted on link l 2 , we have

d (f 2 , l 2) = d sw + d c + d (f 2 , l 4)
. Indeed, we have to take into account the time needed to compute the route at R 2 and then move one flit from R 1 to R 2 and the time needed to transmit a packet of f 2 from R 2 to its destination.

Since f 2 shares link l 4 with f 3 , we have to add the blocking time of f 2 in R 2 due to f 3 and the transmission time of f 2 till its destination. These two durations do not include blocking time. Thus they are computed like d(f 1 , l 9), as shown in Figure 3.

Thus, assuming that

S i /C = S i ×d c , we get W CT T (f 1) = 7 * d sw + (6 + S 1 + S 2 + S 3) × d c = 25 cycles.

III. WORST-CASE ANALYSIS FOR KALRAY-LIKE NOC

An approach for worst-case analysis of Kalray has been proposed in [START_REF] De Dinechin | Timecritical computing on a single-chip massively parallel processor[END_REF]. It is based on Network Calculus theory [START_REF] Cruz | A calculus for network delay, part i: Network elements in isolation[END_REF]. Available bandwidth is split between flows, insuring that no link is overloaded. Each flow is modeled by its allocated bandwidth, thanks to the classical (σ, ρ) leaky bucket concept, where σ is the largest burst and ρ is the long term rate of the flow. Based on Network Calculus theorems, the method derives a WCTT as well as a worst-case buffer occupancy for each flow.

In this paper, we consider that each flow is strictly periodic and the overall application does not use all the available bandwidth on the different links. Thus a straightforward application of the approach in [START_REF] De Dinechin | Timecritical computing on a single-chip massively parallel processor[END_REF] leads to very pessimistic WCTT.

Here we propose to adapt RC based approach in Section II to Kalray. We illustrate this adaptation using the same example (Figure 2). Figure 4 shows the adapted computation tree. It is a copy of Figure 3 where terms which are removed are crossed out.

First, terms corresponding to indirect blocking are removed (single line cross out). Indeed, Kalray does not implement flow control within routers. Thus indirect blocking will never occur.

Second, the influence of a directly blocking flow ends as soon it leaves the path of the flow under study. In the example ilustrated in Figure 4, f 2 does not impact f 1 after link l 1 , since they are stored in different buffers in R 1 (south output port for f 1 , west output port for f 2). Thus, in Figure 4 The maximum occupancy for each output port buffer set can be deduced from RC computation. This computation determines all the packets which can delay the flow under study. The worst-case backlog experienced by this flow in a given output port is determined by considering all the competing packet in the buffer set of this output port. For flow f 1 , its only competing packet is from flow f 2 and it does not share any router buffer with f 1 . Thus the maximum occupancy of buffers crossed by f 1 is one packet from f 1 .

If we analyse flow f 2 , it shares compute cluster output port of R 3 with one packet from f 3 . Thus it leads to a maximum backlog of a packet of f 2 and a packet of f 3 . For any buffer set of any output port the maximum buffer occupancy is obtained by analysing all the flows which cross this buffer set and considering the largest computed backlog.

IV. CASE STUDY

We consider the case study in Figure 5, where 6 flows, f 1 to f 6 , are exchanged on a 3*3 2D-mesh NoC. These flows have static paths and are strictly periodic. For all the flows, a packet size of 50 flits and a period of 1000 cycles are considered. The goal is to evaluate the WCTT and the buffering occupancy of the routers for both the Tilera-like and the Kalray-like NoCs using the RC method described in previous sections. Table I summarizes WCTT obtained by RC method for both Tilera and Kalray NoCs as well as WCTT for Kalray NoC considering a straightforward application of the NC method in [START_REF] De Dinechin | Timecritical computing on a single-chip massively parallel processor[END_REF] (σ = 50 flits and ρ = 50 1000 flits per cycle). We can observe that Kalray NoC experiences lower WCTT than Tilera NoC. The difference corresponds to the removing of the indirect blocking flows and the limitation of direct blocking flows. Such situations do not occur for flows f 4 , f 5 and f 6 . Table I shows that the straightforward application of the NC method is very pessimistic. This is due to the fact that in this example the links are lightly loaded (never more than 15%).

Table II gives the maximum occupancy of one FIFO queue and all the FIFO queues. For Tilera NoC, one FIFO queue is always 3 flits. This leads to 135 flits for all the FIFO queues (5 queues per router and 9 routers). For Kalray NoC, one FIFO queue size has to be 150 flits in order to guarantee that, based on the application constraints (packet sizes and periods), there will be no overflow. It leads to an overall queue size of 27000 flits (20 queues per routers and 9 routers). These results show that, even on a very simple application, removing flow regulation within routers leads to a very large increasing of the queue size. Results of table I and II show that a trade-off between the queue and the delays has to be found.

V. CONCLUSION AND PERSPECTIVES

In this paper we propose an unified approach to analyze different types of NoCs: Tilera NoC which implements flow regulation within routers and Kalray NoC which implements flow regulation in source nodes. This approach is based on Recursive Calculus. We applied this approach on a very basic case study.

This approach has to be formalized and applied to larger case study. Then, the proposed approach is based on the initial RC [START_REF] Ferrandiz | A method of computation for worst-case delay analysis on SpaceWire networks[END_REF]. It should be improved using results of more recent works [START_REF] Dasari | NoC Contention Analysis Using a Branch-and-prune Algorithm[END_REF], [START_REF] Abdallah | Wormhole networks properties and their use for optimizing worst case delay analysis of many-cores[END_REF].

Finally, another question concerns the impact of queue size on WCTT. To what extend can we decrease the flow WCTT by increasing queue size?

Fig. 2 .

 2 Fig. 2. Illustrative example

 , double line cross out terms are removed. Finally it leads to W CT T (f 1) = 2 * d sw + 3 * d c + S 1 * d c + (S 2 -1) * d c = 12 cycles.

Fig. 4 .

 4 Fig. 4. W CT T (f 1) computation tree of KalRay-like NoC

Fig. 5 .

 5 Fig. 5. Case study

TABLE I

 I

		FLOWS CHARACTERISTICS AND WCTT
	Flow	Kalray RC (cycles)	Kalray NC (cycles)	Tilera (cycles)
	f 1	258	4204	417
	f 2	258	4204	417
	f 3	207	5255	417
	f 4	103	3153	103
	f 5	156	5255	156
	f 6	103	3153	103