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Abstract
Motivation: Many DNA-binding proteins recog-

nise their target sequences indirectly, by sensing
DNA’s response to mechanical distortion. ThreaDNA
estimates this response based on high-resolution
structures of the protein-DNA complex of interest.
Implementing an efficient nanoscale modeling of
DNA deformations involving essentially no adjustable
parameters, it returns the profile of deformation
energy along whole genomes, at base-pair resolution,
within minutes on usual laptop/desktop computers.
Our predictions can also be easily combined with
estimations of direct selectivity through a generalised
form of position-weight-matrices. The formalism of
ThreaDNA is accessible to a wide audience.
Results: We demonstrate the importance of indirect
readout for the nucleosome as well as the bacterial
regulators Fis and CRP. Combined with the direct
contribution provided by usual sequence motifs, it
significantly improves the prediction of sequence
selectivity, and allows quantifying the two distinct
physical mechanisms underlying it.
Availability: Python software available at
bioinfo.insa-lyon.fr, natively executable on
Linux/MacOS systems with a user-friendly graphical
interface. Galaxy webserver version available.
Contact: sam.meyer@insa-lyon.fr
Supplementary information: Supplementary
information and data available at Bioinformatics
online.

1 Introduction
Virtually all genomic processes are achieved by pro-

teins which bind a subset of target DNA sequences
among millions to billions of possible sites. This se-
quence recognition process, or readout, involves dif-

ferent mechanisms [1], as illustrated on Fig. 1 in the
example of the bacterial architectural and regulatory
protein Fis. The most natural one is a direct interac-
tion of aminoacids with specific bases (G/C at posi-
tions±7), allowing a strong sequence selectivity. This
selectivity is often described in the form of “sequence
logos” (as shown on Fig. 1A) or position weight ma-
trices (PWMs), which represent the frequency of oc-
currence of each nucleotide at all positions relative to
the protein, as computed from a set of experimentally
identified binding sites. But interestingly, in the cen-
tral region of the Fis-DNA complex, depicted here in
blue, the PWM also exhibits significant sequence pref-
erences, without there being any physical contact be-
tween protein and DNA. DNA mechanics plays a cen-
tral role in this indirect readout. Through distal inter-
actions, Fis imposes a significant bending to DNA in
this central region. Since DNA’s structure and flex-
ibility depend on its sequence, the propensity of the
double-helix to accommodate the deformation will re-
sult in sequence selectivity [2]. This recognition mode
is typically less specific than direct contacts, but may
be particularly relevant to abundant proteins that bind
many different sites along the genome, such as ar-
chitectural proteins or global regulators [1]. Notably,
since DNA flexibility is defined at least at the level
of dinucleotides (and possibly further) rather than in-
dividual nucleotides, descriptors based on the latter,
such as position weight matrices, might be poorly
suited to this mechanism, as we will also show. Re-
cent studies showed indeed that incorporating DNA
shape parameters as descriptors significantly improves
the prediction of regulatory protein binding sites [3]
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and subsequent gene expression patterns [4].

The objective of ThreaDNA is to predict DNA me-
chanics’ contribution to sequence selectivity of vari-
ous proteins, based on a physical model of the com-
plex without any protein-specific adjustable param-
eters. Such computations could be addressed with
all-atomic molecular dynamics simulations [5], but
these involve a considerable computational effort even
for a single DNA oligomer, and cannot be used for
entire genomes. Instead, ThreaDNA is based on a
nanoscale description of DNA as an elastic chain of
base-pairs [6]. In this computationally cheaper coarse-
grained scheme, the mechanical energy associated to
protein binding depends on (i) the equilibrium struc-
ture and elasticity of the DNA oligomer and (ii) its
conformation in the complexed state (Fig. 1B). The
former ingredient has been obtained for all possible se-
quences, from a combination of experimental [7] and
numerical simulation [8] data. The latter ingredient is
generally more difficult to obtain, because it requires
some level of modeling of the protein-DNA interaction
in the complex. Such models were developed mainly
for the nucleosome, with various levels of complex-
ity [9, 10, 11, 12, 13, 14, 15, 16], which demonstrated
the relevance of DNA nanoscale models in predicting
sequence preferences of proteins. In particular, if the
protein is stiffer than DNA, it can be treated implic-
itly [9, 11, 13] as imposing a rigid conformation to the
bound DNA, which can then be directly taken from
a high-resolution of the complex, obtained by X-ray
crystallography or by NMR. ThreaDNA is based on
an improvement of this rigid description, which pro-
vides several key advantages as a bioinformatics tool.
The very limited computational requirements of the
approach make it possible to compute protein distribu-
tions on entire genomes on a desktop or laptop com-
puter in a few minutes. In spite of this efficiency, in
the case of the nucleosome, the predictive power of
the algorithm matches that of more complex models
developed specifically for this nucleoprotein complex
(see below).

But more importantly, in contrast to previous soft-
ware, ThreaDNA allows generalising the approach to a
large class of DNA-binding proteins. In this paper, we
illustrate the software on the important bacterial tran-
scriptional regulators Fis and CRP. Many programs

are dedicated to the prediction of transcription factor
binding sites; however, most of these do not rely on
physico-chemical descriptions, but rather on statisti-
cal sequence models, which must be trained on a large
dataset of experimentally known binding sites, and this
independently for each analysed protein. In contrast,
ThreaDNA is based on validated physical models, in-
volving essentially no free parameter, and requires no
training. Its main restriction is the knowledge of a
high-resolution structure of the protein-DNA complex
of interest without disruption of the double-helical
structure. Although this is a limiting requirement, the
software remains applicable to a large class of pro-
teins of wide interest. Importantly, to our knowledge,
this is the first software to make the present approach
easily accessible to the community of experimental or
computational biologists interested in various proteins
that distort DNA upon binding. In order to facilitate
its diffusion, the algorithm was therefore implemented
in a user-friendly interface designed for non-specialist
users, and is also available as an installation-free on-
line tool on the Galaxy platform [17]. The software
also provides computational tools to combine the in-
direct contribution with direct contributions given by
standard PWMs, with a strong improvement in predic-
tive power.

2 Models and Methods
2.1 Parametrisation of DNA nanoscale elas-

ticity

DNA’s deformations are described with 6-vectors q
corresponding either to base-pair or base-pair step de-
formations [16]. For a given sequence s, the av-
erage conformation of naked DNA is quoted q0(s),
and its rigidity is given by the stiffness matrix K(s).
The software includes two parameter sets (“NP” or
“ABC”), and the length of s (di/tri/tetranucleotide) de-
pends on this choice. The “NP” parameter set de-
scribes the elasticity of base-pair steps at the dinu-
cleotide level, and was obtained from a collection of
high-resolution DNA or DNA-protein crystallographic
structures [7]. In the “ABC” parameter set, obtained
from microsecond-long molecular dynamics simula-
tions [8], the base-pair step elasticity depends on the
tetranucleotide sequence (“ABC_s”), and the inter-
nal base-pair deformations on the trinucleotide se-
quence (“ABC_i”). In all cases, under the elastic ap-
proximation, the associated deformation energy fol-
lows the same quadratic form: U(q, s) = 1

2(q −
q0(s))

tK(s)(q − q0(s)).
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Figure 1: Sequence recognition mechanisms illus-
trated on the bacterial nucleoid-associated protein Fis.
(A) Fis directly contacts the DNA bases at positions
±7 (red background), where it exhibits a strong pref-
erence for G/C bases. In the central region (blue),
DNA is not contacted, but Fis still exhibits signif-
icant sequence preferences, possibly for sequences
most favourable to Fis-induced bending. Adapted
from [18]. (B) ThreaDNA estimates DNA mechani-
cal energy associated to protein binding from high-
resolution structures of the complex, which provides
a significant contribution to sequence selectivity.

2.2 Estimation of sequence-dependent defor-
mation energy from protein-DNA struc-
tural models

The deformation of a given DNA base-pair (step) con-
formation is the result of a mechanical equilibrium
between the external potential exerted by the protein
Fext(q), and the DNA internal elastic energy U(q, s).
Even in the case of non-specific binding (Fext(q) in-
dependent of the sequence), the resulting equilibrium
conformation qe minimising the total energy still de-
pends on the sequence, and so does also the defor-
mation energy, see details in [16]. Computing these
conformations generally requires an involved model-
ing of this external force field [10, 15, 16]. To sim-
plify the calculation, we take advantage of the strong
stiffness of many DNA-binding proteins, as compared
to DNA stiffness. In the limit of infinite stiffness, the
conformation qe becomes sequence-independent, and
the deformation free energy can be computed very ef-
ficiently from the formula above. This approach (here-
after referred to as a “rigid approach”) has been pro-
posed for the nucleosome [9, 11, 7, 13]. Its main lim-
itation is that the histone core is actually not infinitely
stiff: the observed structures depend quite strongly on
the incorporated sequence [19], and the predictions

of these programs depend equally strongly on which
structural model is used as template (see Results). Our
algorithm overcomes this limitation by combining the
whole dataset of known structures into a single com-
putation of deformation energy, as follows. If differ-
ent conformations {qie}i=1,...,P were observed in dif-
ferent crystals, the calculation is based on the hy-
pothesis that this set is representative of the config-
urational space accessible to the complex incorporat-
ing any sequence. For a given sequence s, the equi-
librium conformation q adopted will then be a statis-
tical “mix” of these states, with a respective weight
given by the Maxwell-Boltzmann equilibrium statis-
tics: the total deformation free energy F (s) is then
given by exp(−βF (s)) =

∑P
i=1 exp(−βU(qie, s)),

where β = 1/(kBT ) is an effective temperature pa-
rameter. Our algorithm extends the method to other
proteins, where direct as well as indirect readout con-
tribute to the binding free energy.

2.3 Implementation of algorithm

The algorithm was written in Python2 using the
NumPy library [20] and the Tkinter cross-platform
graphical library. This makes the code easy to change,
and natively executable on recent Linux or MacOS
systems, as well as on Windows after installing these
tools. The user-friendly graphical interface is designed
for non-specialist users focusing on a protein of inter-
est; and the program is numerically optimised so as to
allow genome-wide computations on a desktop com-
puter. The first (and delicate) step is the inclusion of
the protein-DNA complex of interest into the software
database. It can be provided either in the form of a
NDB ID [21], or an output file of the popular confor-
mational analysis programs 3DNA [22] (available on
the webserver Web3DNA) or Curves+ [23]. For new
proteins, it is crucial to check that the DNA structure
was not broken during the conformational analysis,
otherwise the computation will be meaningless; usu-
ally, one only has to check that no base-pair is missing
in the base-pair step list. A previously observed dif-
ficulty in the analysis is that, because of thermal and
experimental noise in the structures, the computed en-
ergy profiles are affected by an unknown scaling factor
(“effective temperature”) [24, 16]: combining differ-
ent structures of different non-thermal energy scales
thus imposes an arbitrary rescaling choice. We choose
the normalising constant such that, for a random se-
quence, the profiles computed with all structural mod-
els have the same standard deviation. An “effective
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temperature” parameter then fixes the global energy
scale: for the default value of 1, all incorporated struc-
tural models contribute significantly to the combined
profile, and a smaller value gives more weight to the
most favourable structures. As a result, the computed
profiles are all given in arbitrary units. Details of the
computation parameters are described in the software
documentation. The memory requirement and compu-
tation time is proportional to the protein size (in con-
tacted base-pairs) and genome length.

3 Results
3.1 ThreaDNA: a new tool to analyse phys-

ical features involved in protein binding
at the genomic scale

ThreaDNA is a new software that predicts the con-
tribution of DNA deformations in the sequence se-
lectivity of proteins. Such deformations are often
described extensively in structural studies [27, 18],
but their translation into sequence-dependent binding
preferences requires a suitable physical model of the
DNA-protein complex. The efficient “rigid” approach
proposed by ThreaDNA relies on a nanoscale descrip-
tion whereby the protein imposes the conformation of
the DNA base-pairs in the complex [9, 11, 13]. This
approximation considerably simplifies the analysis of
the system, which can then be implemented by a non-
specialist user for a large class of DNA-binding pro-
teins of interest, provided high-resolution structures of
the complex involving no double-helix disruption are
available from X-ray crystallography or NMR exper-
iments. The inclusion of several alternate structural
models for the same protein results in a refined physi-
cal description of the interaction, while preserving its
strong computational efficiency. As an example, for
the proteins described in this paper, computing DNA
deformation energies at all possible positions along a
bacterial or yeast genome of a few megabases typi-
cally takes less than a minute on a laptop or desktop
computer, using less than 1 Gb RAM.

In a first step, ThreaDNA requires the user to in-
corporate the DNA conformation of the nucleoprotein
complex of interest into the software database. We rec-
ommend using the Web3DNA webserver [22] to anal-
yse a PDB file of interest. The output (.out) file can be
provided to ThreaDNA together with the original PDB
file. In a second step, the main program can then use
this conformation to compute mechanical energies on
any sequence provided in the standard Fasta format.
The details of the calculation (list of considered struc-

tures, DNA stiffness parameter set...) are specified in
an input file of standard format.

The program can be executed via a user-friendly
graphical interface, available as a Supplementary File,
which runs natively on MacOS/Linux distributions.
Additionally, a web-server version is available on
a local version of the Galaxy bioinformatics plat-
form (bioinfo.insa-lyon.fr) [17], which provides
an installation-free access to all users. The returned
profiles are in the standard BedGraph format and can
be visualised on genome browsers (Fig. S1). The in-
direct selectivity of the protein is also returned as a
generalised position weight matrix (PWM), that rep-
resents the energy or occurrence probability for each
di/tetranucleotide along the protein (see below), in the
standard JASPAR format. An additional subprogram
facilitates the manipulation and combination of such
generalised PWMs.

3.2 The nucleosome: genomic and high-
affinity sequences

To illustrate the predictive power and possible appli-
cations of the software, we start with the nucleosome.
Since most previous comparable models were devel-
oped specifically for this complex, we use it as a
benchmark, keeping in mind that our software aims
at generalising the approach to other proteins. We
first use ThreaDNA to compute nucleosome occupan-
cies on the entire Saccharomyces cerevisiae genome
(Fig. 2A). These predictions are compared to experi-
mental data obtained from DNA digestion experiments
by micrococcal nuclease followed by high-throughput
sequencing [25], either on in vitro reconstituted chro-
matin, or on the native (“in vivo”) fibre. The calcu-
lation involves computing (i) deformation energies at
all genomic positions without any free parameter, and
(ii) a Boltzmann inversion of the profile to get occu-
pancies, using a single global scaling parameter (ef-
fective temperature). Note that the latter operation
coarsely neglects the interaction between adjacent nu-
cleosomes [28, 29]; this is justified here by our focus-
ing on the former computation by the present software.
The agreement is good with in vitro data (r2 = 0.56),
and only slightly less so with in vivo data, suggest-
ing that in yeast, the positions occupied by most nu-
cleosomes are thermodynamically encoded in the se-
quence through DNA mechanical properties. These
results are comparable to previous ones obtained by
rigid approaches, e.g., a correlation of 0.45 is reported
in [30]. In contrast, better correlations could only
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be obtained using a different class of sequence-based
models trained on the analysed data [25, 29], involving
a large number of fitted parameters.

However, it was noted that, with some excep-
tions [29], even these specialised models fail to re-
produce the strong affinity of specific sequences used
in crystallisation experiments. A possible explanation
is that these sequences bind the histones with qualita-
tively different conformations [19], which is difficult
to take into account within a single model. Notably,
ThreaDNA takes this plasticity into account, by let-
ting each sequence statistically “choose” its favourite
shape from a combination of crystallised structures,
rather than imposing a single one. Although this treat-
ment is simplified compared to previous schemes [10,
15, 16], it successfully reproduces the strong affinity
of various sequences (Fig. 2B, lower panel), which is
not possible based on a single structural template (up-
per panel and Fig. S3) [11, 12, 13]. Although the
structural landscape sampled by ThreaDNA may not
be comprehensive with respect to other high-affinity
or genomic sequences of yet unknown conforma-
tion [16], new structures will likely be obtained reg-
ularly in the future, thereby “automatically” refining
our model. Altogether, considering the simplifications
imposed by its purpose, our model stands the compar-
ison with most reported predictive models dedicated
specifically to the nucleosome, including for the del-
icate prediction of high-affinity sequences. But more
importantly, our program is the first to generalise the
approach to other proteins, for which none is currently
available.

3.3 Sequence selectivity of Fis, a major bacte-
rial architectural and regulatory protein

Factor for inversion stimulation (Fis) is one of the
most abundant DNA-binding proteins in Escherichia
coli in conditions of rapid growth [32]. As shown in
Fig. 1, Fis binds around 15 bp of DNA, with specific
contacts at positions ±7, and indirect sequence read-
out occurring in the central region. It has been sug-
gested that the latter recognition might be achieved
through DNA denaturation [33]; however, since ex-
isting crystallographic models of the complex ex-
hibit significant DNA bending without disruption of
the double-helix, we address the question, whether
double-stranded flexibility of DNA might rather be the
relevant mechanism. To answer this question, we used
ThreaDNA to compute deformation energies imposed
by Fis at all positions along the E. coli chromosome,

and asked if experimentally known binding sites are
associated to significantly low values.

Fis binding sites were detected in many separate
studies, each of them often focusing on a particular
gene promoter, and this information was collected into
the RegulonDB database [26]. The database thus con-
tains around 250 binding sites at base-pair resolution,
with different levels of confidence depending on the
experimental method used. Fig. 3 shows that the av-
erage mechanical energy profile around experimental
binding sites (blue) drops at the binding position, in-
dicating that Fis binding sequences are associated to
weaker mechanical energies than their neighbours, and
than genomic average. Consistently, the associated
histogram is significantly shifted to the left (p-value
P < 10−6, Kolmogorov-Smirnov test), as compared
to the whole genome. This observation is expected if
DNA mechanical properties play a significant role in
the selectivity, as hypothesised. On the other hand,
we also note that the deformation energies of most ex-
perimental binding sites are not among the lowest in
the genome, indicating that other mechanisms are in-
volved in the recognition process, including the afore-
mentioned direct readout at positions ±7.

Fis was crystallised in complex with several DNA
sequences, which adopt different conformations [18].
We analysed this flexibility by computing the defor-
mation energy associated to these sequences, depend-
ing on which conformation is used as template in the
program (Fig. S4). In most cases, ThreaDNA cor-
rectly predicts the observed binding position, associ-
ated to a low deformation energy, when the computa-
tion is based on the specific conformation adopted by
the considered sequence, but not necessarily by other
conformations. Thus, as observed previously for the
nucleosome, the conformational freedom exhibited in
the crystals is an important ingredient for the predic-
tion of high-affinity sequences. Indeed, the prediction
of binding affinities for these sequences is strongly im-
proved by the use of a combined structure (r2 = 0.44)
compared to a single structure (r2 = 0.3).

3.4 DNA sequence-encoded mechanical
properties are essential determinants of
CRP selectivity

cAMP receptor protein (CRP) is another important
global bacterial regulator, involved in cell metabolism.
It binds several hundred sites along the E. coli genome,
also with a combination of direct and indirect se-
quence recognition [27], and bends the DNA by al-
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most 90° (Fig. 4A). The degeneracy of recognised se-
quences in the non-contacted central region thus also
points to a role for DNA mechanics. However, in ab-
sence of physical models of the interaction, little is
known on this contribution.

We start with the approach already used for Fis, with
the ∼350 experimental binding sites listed in the Reg-
ulonDB database, and the 1CGP structural model for
DNA deformations [35]. The results are shown on
Fig. 4: the decrease observed at experimental posi-
tions is here much stronger than for Fis (P < 10−16,
Kolmogorov-Smirnov test). Importantly, in contrast to
the latter case, the large majority of observed values
are among the weakest of the genome. This obser-
vation suggests that DNA distortions could not only
be a significant, but even the dominant contribution
to the sequence selectivity of CRP. Yet this hypothe-
sis seems contradicted by the presence of a minority
of datapoints in the right side of the histogram. We
reasoned that these points might also correspond to
false positives of the database, as RegulonDB incorpo-
rates data of heterogeneous levels of confidence, and
considering that the spatial resolution of most meth-
ods used (including DNA footprinting by DNAse I)
is lower than a single basepair. As an example, two
gene regulatory regions (sohB and proP) reportedly
contain two binding sites separated by a single base-
pair, which seems unlikely. In both cases, only one
of the two sites has a low bending energy, whereas the
other is very unfavourable (identifiers ECK120012440
and ECK120015998), likely indicative of false posi-
tives. The same is true of 6 out of 11 reported regions
with overlapping CRP sites.

To weaken the effect of such issues, we repeated
the analysis on an independent dataset obtained by ge-
nomic SELEX [31]. In contrast to the previous case,
these sites are obtained from a single genome-wide
experiment, where DNA fragments enriched in CRP
binding are isolated, and a subsequent bioinformatics
analysis allows identifying the strongest binding sites
at base-pair resolution. The resulting list is shorter
than that of RegulonDB (∼260 sites), but since it does
not result from a mixing of heterogeneous studies, it
might include less false positives. Indeed, the his-
togram is quite similar (Fig. 4C), but remarkably, the
group of datapoints on the right part has almost en-
tirely vanished. Taken together, these observations
clearly show that CRP binding sites are systematically
characterised by very low deformation energies, sug-
gesting an important or even dominant role for indirect
readout.

We now quantitatively test the predictive power of
the software on a group of 25 mutants of the high-
affinity LacP1 sequence from E. coli, whose affinities
for CRP were measured in vitro by [34]. The mutants
were selected either randomly, or for their high affin-
ity (with a maximal 14-fold change). Importantly, mu-
tations all occurred in the central, non-contacted re-
gion of the DNA oligomer. It is thus reasonable to
assume that direct readout contributes only marginally
to these affinity variations, which can then be directly
compared to the predictions of ThreaDNA. For all se-
quences, we found the lowest deformation energy at
the experimental binding position (data not shown).
Fig. 5A shows that these deformation energies corre-
late well with the measured affinities (correlation coef-
ficient r2 = 0.53, p-value P = 2.6× 10−5). Remark-
ably, this correlation coefficient is much higher than
that obtained with the position weight matrix (PWM)
constructed with all RegulonDB sites (r2 = 0.3, see
also Fig. S6). Thus, even though our model is based
on structural information only and involves no train-
ing on CRP binding sequences, in this indirect read-
out assay, it outperforms a PWM that concentrates
our knowledge of CRP binding selectivity obtained
through hundreds of studies. Note that although the
PWM theoretically provides binding affinities in abso-
lute units, in practice we had to rescale them as we did
for ThreaDNA, using a single slope parameter.

At this point, the reader should keep in mind that
since ThreaDNA tells nothing on direct recognition,
its general objective is not to compete with sequence
motifs, but rather to pinpoint and quantify the indirect
contribution to the binding selectivity represented in
these motifs. In the next paragraph, we show that this
information can be combined with usual PWMs con-
taining complementary information about direct read-
out, with a notable improvement in predictive power.

3.5 Combining indirect and direct readout
significantly improves the prediction of
binding selectivity

Our previous results immediately suggest to combine
our estimation of the indirect contribution with the
PWM describing the total (direct+indirect) interaction,
in order to infer the direct contribution. Theoretically,
this can be achieved by computing a new PWM, where
each nucleotide is weighted according to its indirect
contribution. In practice, this “subtraction” operation
is challenging: for instance, any wrong binding site in
the list (false positive), associated to a high deforma-
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tion energy, will get an enormous weight in the new
PWM. Fortunately, it is possible to avoid this diffi-
culty, by noticing that the indirect contribution com-
puted from ThreaDNA acts at least at the level of din-
ucleotides, as represented in Fig. 5C (lower panel),
rather than mononucleotides. The software provides
such generalised “di-PWMs”, which can be manipu-
lated and combined with usual PWMs with a subpro-
gram. Importantly, if we try to project this di-PWM
into a traditional mono-PWM, we lose most of its pre-
dictive power (r2 = 0.2), which shows that indirect
readout cannot be described at the mononucleotide
level. As a consequence, it is a reasonable approxi-
mation to consider the usual mono-PWM as a repre-
sentation of the direct contribution rather than the total
interaction. In other words, the ThreaDNA di-PWM
and the traditional mono-PWM can be considered as
providing orthogonal information about indirect and
direct readout contributions respectively, which can
then simply be added to compute the total interaction.
Their relative weight cannot be predicted, but may be
estimated by comparison to the data. For the Linde-
mose et al. sequences, the combination remarkably
improves the predictive power, with up to 0.88 cor-
relation with the experimental values for 35% direct
readout (P < 10−11, Fig. 5B). To confirm that this
result is not an accident, we repeated the analysis on
Fis, where the combination also improves the results
significantly (Fig. S5). The lower correlation values
compared to CRP might be due to the mutations oc-
curing in the regions in direct contact with the protein,
which may be more difficult to describe.

4 Discussion
In order to recognise their target sequences, DNA-

binding proteins often use a combination [1] of di-
rect readout of DNA bases and indirect readout of the
“analogue” mechanical code encoded in the DNA se-
quence [36]. ThreaDNA implements a systematic ap-
proach to estimate the latter contribution for a large
class of nucleoprotein complexes. Being based on a
nanoscale physical analysis of structural data, it does
not require any training on protein-specific binding
datasets. All essential model parameters are protein-
independent and chosen from known experimental val-
ues. Starting from a structural model of the protein-
DNA complex, the software provides genome-wide
deformation energy profiles within minutes on stan-
dard computers.

We wish to give some emphasis on the assumptions
and limitations of ThreaDNA, in order to avoid erro-

neous applications of the software. Firstly, the only
DNA deformations analysed are those located within
the structural models provided as input. As a con-
sequence, regarding proteins that bind together dis-
tant DNA sites or act collectively, e.g. by bridging,
looping, polymerisation, etc., ThreaDNA might give
useful information on their individual binding affinity,
but tells nothing of the collective process, for which
additional detailed modeling of the interaction is re-
quired [37, 28]. The main assumption of the model is
that the elasticity of (naked) double-helical DNA re-
mains valid within the protein-DNA complexes anal-
ysed, which is incompatible with proteins that disrupt
the Watson-Crick bonds of the base-pairs or distort
them too strongly. Such problems can generally be
identified in the form of missing or aberrant values in
the list of base-pair step geometrical parameters given
in the Nucleic Acids Database [21]. As noted earlier,
caution must therefore be paid upon including a new
structure into the database.

Still, previous analyses suggest that the software
can be useful even for proteins exerting extreme con-
straints on DNA. One such example is the HIV inte-
grase, a large nucleoprotein complex that inserts vi-
ral DNA into the genome of a host human cell, with
non-uniform insertion preferences. Using a structural
model of the pre-integration complex [38] exhibiting
significant deformations of the genomic DNA prior
to its disruption, we predicted insertion preferences in
surprisingly good agreement with the inhomogeneous
patterns observed both in vitro and in vivo [39]. A
possible interpretation is that indirect readout might
be used in intermediate kinetic steps by proteins that
end up disrupting or even breaking the double-helix.
This seems a reasonable hypothesis in the speculative
point of view of a protein which has to find its targets
among millions of possible sites: the “cheap” (low
energy-barrier) DNA deformation steps might con-
tribute in “preselecting” favourable sequences, while
“expensive” base-pair disruption occurs only as a less
frequent second step. Although these kinetic views go
beyond our thermodynamic approach, a better under-
standing of the latter might prove helpful in decipher-
ing the whole process.

Our analysis shows that ThreaDNA may substan-
tially improve the prediction of binding sequences for
proteins that distort DNA, by complementing the usual
approach based on position weight-matrices. The
software includes Python modules that facilitate their
combination. It is well-known that many proteins use
a combination of direct and indirect readout [1], but

7



to our knowledge, our approach is the first to explic-
itly use this distinction for quantitative sequence bind-
ing predictions. In addition to practical applications
in binding selectivity prediction for various proteins,
it will therefore also provide a new understanding of
the mechanistic features underlying this selectivity.
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Figure 2: ThreaDNA provides efficient predictions
of nucleosome binding preferences encoded in DNA
elasticity. (A) Comparison of nucleosome occupancy
profiles predicted by ThreaDNA along the S. cere-
visiae genome with MNAse-seq profiling of nucleo-
somes on in vitro reconstituted or in vivo (native) chro-
matin [25]. Upper panel: illustration on a particu-
lar location of chromosome 2. Lower panels: Cor-
relation histograms along the whole genome (loga-
rithmic density scale): linear correlation coefficients
0.56 and 0.36 respectively, both p-values P < 10−16.
(B) Prediction of wrapping energies of high-affinity
sequences. While a single structural template (here
1KX3) overestimates the energy of other high-affinity
sequences, ThreaDNA combines their structures into
a single model (lower panel), which accurately pre-
dicts low energies for all sequences. All calculations
involved the NP parameter set (see Figs. S2 and S3 for
comparison).
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Figure 3: DNA mechanics provides a significant contribution to the sequence selectivity of Fis in Escherichia
coli. (A) Crystallographic structural model 3IV5 of the Fis-DNA complex [18]. (B) Average mechanical
energy profile around experimental binding sites collected in the RegulonDB database [26] (blue) vs random
sites (grey). Obtained with 3JR9 structure [18] and ABC step parameter. (C) The histogram of mechanical
energies at experimental binding sites (position 0 in B) is significantly shifted toward low energies (P < 10−6).
Still, a large fraction of these sites exhibits medium or high energies, confirming that other mechanisms are
involved in Fis sequence selectivity (Fig. 1).
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Figure 4: Role of indirect readout in CRP sequence recognition. (A) The deformation energy is strongly lower
at experimental CRP binding sites (from RegulonDB), compared to random sites (same legend as Fig. 3). (B)
Associated histogram of energies (position 0 in A): in contrast to Fis, DNA deformation energy is very low
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positives, the group of sequences with high deformation energies has almost vanished.
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Figure 5: (A) Comparison of in vitro experimental affinities for mutants of the high-affinity LacP1 se-
quence [34] with predictions of the position weight matrix (PWM) based on all RegulonDB sites, of ThreaDNA,
and of a combination of the two. The reference energy is for the wild-type LacP1 site. The arbitrary unit of
ThreaDNA results was converted into kcal/mol using the slope of the regression (one adjusted parameter), and
the PWM predictions were equally rescaled (by a factor of 2.5). The computation was carried with a com-
bination of the 1CGP and 1ZRF structures [35, 27], with the NP parameter set. (B) Combining the indirect
(ThreaDNA) and direct (PWM) contributions to sequence selectivity considerably improves the prediction. In
this assay, a fraction of ∼ 35% direct readout contribution gives the best results (shown in A). (C) In our com-
bination scheme, the direct contribution is approximated by the “traditional” PWM (see text) obtained from all
RegulonDB binding sites of CRP (top panel), while the indirect contribution is given by a generalised “dinu-
cleotide” step PWM provided by ThreaDNA. The grey box indicates the mutated region in the Lindemose et
al. study.
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