Laure Abdallah 
  
Jérôme Ermont 
  
Jean-Luc Scharbarg 
  
Christian Fraboul 
  
Towards a mixed NoC/AFDX architecture for avionics applications

An heterogeneous network, where a switched-Ethernet backbone, as AFDX, interconnects several End Systems based on Network-On-Chip (NoC), is a promising candidate to build new avionics architecture. However, current avionics End System includes many functions, as performing a traffic shaping for each Virtual Link (VL) and scheduling the output frames in such a way the jitter on each VL is bounded. This paper describes how the NoC implements these functions in order to compute the worst-case traversal time (WCTT) of avionics frames on a NoC to reach the AFDX network. Besides, we illustrate the problem of guaranteeing a bounded jitter at the output of a NoC. We show that the existing mapping strategies present some limitations to reduce the congestion on the outgoing I/O flows (i.e. going from the NoC to the AFDX network) and so do not reduce the jitter on a given VL. We propose an extended mapping approach which considers the outgoing I/O flows. Experimental results on realistic avionics case studies show significant improvements of the jitter value.

I. Introduction

Avionics systems evolved from a federated architecture to a distributed one in order to deal with the increase of the avionics functions. In a federated architecture, each function is executed by a dedicated computer. The distributed architecture is based on the Integrated Modular Avionics (IMA) concept. As depicted in Figure 1, the architecture is composed of a set of computer systems typically interconnected by an Avionics Full Duplex switched Ethernet network (AFDX). Each computer is shared by a set of avionics functions accessing the sensors and the actuators and exchanging data with other functions. Data can also be transmitted between functions executed on different computers, through the AFDX network. The End System (ES) provides an interface between a processing unit and the network.

Up to now, each avionics computer is based on a single core. Manycore architectures are envisioned for the implementation of avionics systems. The target architecture, depicted in Figure 2, is composed of a set of manycores interconnected by an AFDX network. The basic idea is to replace several avionics computers by a manycore. Indeed, a manycore architecture includes many simple cores, easier to master, interconnected by a Network-on-Chip (NoC). The Tilera Tile64 [START_REF] Wentzlaff | On-chip interconnection architecture of the tile processor[END_REF] is one of the most popular manycore architecture. It is a NoC-based manycore architecture including DDR-SDRAM memory as well as Ethernet interfaces. In order to reduce buffers size, wormhole switching is used in the NoC and a flow control mechanism is implemented in each router. These mechanisms lead to potentially long delays depending on the number of competing flows. In our proposed architecture illustrated in Figure 2, avionics functions will be distributed on the available manycores. Communications between two functions allocated on the same manycore use the NoC, while communications between two functions allocated on different manycores should use the Ethernet. In this latter case, the communication is divided into several parts. First, the data is transmitted through the NoC from the core executing the source function to the Ethernet interface via an intermediate DDR memory. Second, the data is transmitted on the AFDX network. Third, the data is transmitted through the destination NoC from the Ethernet interface to the receiving avionics function, via an intermediate DDR memory. Most avionics functions have to respect hard real-time constraints. Main constraints on the communication part are the following: (1) end-to-end transmission delay has to be upper-bounded by an application defined value, (2) frame jitter at the egress of the AFDX network has to be smaller than a given value (typically 500 µs). In existing architectures such as the one depicted in Figure 1, the latter constraint is enforced by the implemented scheduling in the End System. Considering the manycore based architecture in Figure 2, frame jitter mainly depends on the delay variation between the source core and the source Ethernet interface, i.e. the delay variation on the NoC. This NoC delay variation for a given flow f dramatically increases with the number of competing flows on the f path. Thus, mapping of avionics functions on the NoC should minimize this number of competing flows. Different solutions have been proposed for mapping real-time functions on a manycore. SHiC [START_REF] Fattah | Smart hill climbing for agile dynamic mapping in many-core systems[END_REF] only considers intra manycore communications, while Map IO [START_REF] Abdallah | Reducing the contention experienced by real-time core-to-i/o flows over a tilera-like network on chip[END_REF] integrates as well the incoming I/O communications in its mapping rules. To the best of our knowledge, no existing approach integrates outgoing I/O communications which can lead to high delay variation between the source core and the source Ethernet interface. Consequently, we propose and evaluate an enhanced mapping approach which considers all types of communications present in the envisioned architecture shown in Figure 2.

II. NoC architecture and assumptions

This section describes the main characteristics of a Tilera-like NoC architecture and its I/O mechanisms.

In this paper, we consider a 2D-Mesh NoC with bidirectional links interconnecting a number of routers. Each router has five input and output ports. Each input port consists of a single queuing buffer. The routers at the edge of the NoC are interconnected to the DDR memory located north and south of the NoC via dedicated ports. The first and last columns of the NoC are not connected directly to the DDR. Besides, the routers at the east side connects the cores to the Ethernet interfaces via specific ports. Many applications can be allocated on a NoC as shown in Figure 3. Each application is composed of a number of tasks, where one core executes only one task. These tasks do not communicate only with each other (coreto-core flows), but also with the I/O interfaces, i.e. the DDR memory and Ethernet interfaces (core-to-I/O flows). These flows are transmitted through the NoC following the wormhole routing, an XY policy and a Round-Robin arbitration. Besides, a credit-based mechanism is applied to control the flows. A flow consists of a number of packets, corresponding to the maximal authorized flow size on the NoC. Indeed, a packet is divided into a set of flits (flow control digits) of fixed size (typically 32-bits). The maximal size of a NoC packet is of 19 flits as in Tilera NoC. The wormhole routing makes the flits follow the first flit of the packet in a pipeline way, so that creates a worm where flits are distributed on many routers. The credit-based mechanism blocks the flits before a buffer overflow occurs. The consequence of such a transmission model is that when two flows share the same path, if one of them is blocked, the other one can also be blocked. Thus, the delay of a flow can increase due to contentions on the NoC. The Worst-case Traversal Time (WCTT) of a flow can be computed using different methods proposed in the literature ( [START_REF] Ferrandiz | A method of computation for worst-case delay analysis on SpaceWire networks[END_REF], [START_REF] Ferrandiz | Using Network Calculus to compute end-to-end delays in SpaceWire networks[END_REF]). In this paper, we choose RC N oC [START_REF] Abdallah | Wormhole networks properties and their use for optimizing worst case delay analysis of many-cores[END_REF] to compute the WCTT as it leads to tightest bounds of delays compared to the existing methods on a Tilera-like NoC. This method considers the pipeline transmission, and thus computes the maximal blocking delay a flow can suffer due the contentions with blocking flows.

On the other hand, authors in [START_REF] Abdallah | Reducing the contention experienced by real-time core-to-i/o flows over a tilera-like network on chip[END_REF] show the need of a contention-aware mapping in order to reduce the core-to-I/O flows contentions. Indeed, a core-to-I/O flow can be either an incoming flow from the Ethernet interface to an allocated NoC application or an outgoing one from an allocated application to the Ethernet interface. The incoming I/O flow, is transmitted on the NoC following two steps, as illustrated for the application app 1 in Figure 3. In the first step, a number of packets are transmitted from the Ethernet interface to the nearest DDR port. Then, DDR memory transmits the data through the port connected at the closest column where the destination cores are. For example, in Figure 3, if the south Ethernet controller sends data to the cores (L, 1) and (L-1,3), it first sends data to port 1 of the south memory and then the data are transmitted by port n to the destination cores. Authors in [START_REF] Abdallah | Reducing the contention experienced by real-time core-to-i/o flows over a tilera-like network on chip[END_REF] have shown the limitations of existing mapping strategies to reduce the incoming I/O flows contentions, leading to drop incoming Ethernet frames. Indeed, an existing mapping strategy, called SHiC [START_REF] Fattah | Smart hill climbing for agile dynamic mapping in many-core systems[END_REF], reduces only the contentions on the core-to-core communications. It overcomes the problem of fragmented regions, generated by the methods in the literature (as in [START_REF] Souza | Dynamic task mapping for mpsocs[END_REF], [START_REF] Zimmer | Low contention mapping of realtime tasks onto tilepro 64 core processors[END_REF], [START_REF] Fattah | Dynamic application mapping for congestion reduction in many-core systems[END_REF]), by searching a region of size equal to the size of the application to be allocated. The tasks of this application are allocated in the selected region in such a way to reduce the distance between the communicating tasks. Thus, SHiC allocates the task with the maximum number of communications at the center of this region and around it the tasks communicating with it to form a square shape. The method proposed in [START_REF] Abdallah | Reducing the contention experienced by real-time core-to-i/o flows over a tilera-like network on chip[END_REF], called Map IO , performs the mapping into two steps. The first step splits the NoC into regions and then allocates primarily critical applications in a dedicated region close to memory and Ethernet controllers by following a circular direction and using rectangular shapes. The second step consists in allocating the tasks within each application where some rules are used to minimize the contentions on the path of the coreto-I/O flows. These rules are based on the principle of allocating the tasks which generate perpendicular flows on the path of the core-to-I/O flows. However, this strategy do not consider the outgoing I/O flows. Indeed, the tasks of the applications mapped on a region with no intersection with the Ethernet interface, are allocated following the principle of SHiC mapping. Actually, an outgoing I/O flow is transmitted following three steps, as illustrated in Figure 3 for the application app 2 : (1) A core sends a number of data packets to the nearest port of DDR memory, (2) then after all data packets are received at the DDR, it sends a DMA command to the Ethernet interface on a separate network. This DMA command indicates the placement of data in the DDR memory, and it is stored into a DMA command FIFO queue. (3) When the Ethernet interface executes the DMA command, data packets are then sent from the same port of DDR memory to the same Ethernet interface. The packets of an outgoing I/O flow will incur a contention with different types of communications on the NoC which could lead to an increasing jitter. The following sections show the limitations of existing mapping strategies to reduce the outgoing I/O flows contentions. In the remainder of this paper, we consider a NoC with at least three Ethernet controllers connected to the east of the NoC. The Ethernet interfaces nearest to the DDR are used for the incoming I/O flows while the I/O outgoing flows use the Ethernet interfaces located at the middle of the NoC. Besides, we consider Ethernet interfaces of giga-ethernet type and so the buffers, where the Ethernet frames are stored before being sent, have a size of 2040 Bytes.

III. Regulation of the VLs on the NoC

The objective of this section is to explain how the NoC can regulate each VL and what is its impact on the jitter computation. In this paper, we consider that the regulation according to the Bandwidth Allocation Gap (BAG), i.e. the minimum delay between two successive frames, is done at the core which executes the task sending the data to the Ethernet interface, noted t DDR . A task t DDR sends data on a given VL to an Ethernet interface by following the steps detailed for an outgoing I/O flow in section II. The Ethernet interface executes one DMA command at once and so the data are transmitted as NoC packets from the DDR memory to the Ethernet interface. When all the packets are received by the Ethernet interface, the Ethernet frame is created.

Then, the Ethernet interface executes another DMA command directly if there is enough place in the buffer or waits to transmit the Ethernet frame on the Ethernet link. This means that we could not simultaneously have two flows transmitted from the DDR to the Ethernet interface.

The transmission on a VL to the Ethernet interface can be delayed if a different task is sending on another VL to this Ethernet interface. In an AFDX network, this delay corresponds to the jitter induced by the multiplexing functions of the End System. The goal is now to define this delay in the proposed architecture.

In a NoC architecture, the DMA command from t DDR to the Ethernet interface is sent after the complete transmission of the data of the VL from t DDR to the DDR. This transmission delay is obtained by computing the WCTT of the data packets from the core executing t DDR to the DDR. This delay, noted W CT T T oDDR , is thus constant and can be computed as a part of the execution time of the task. This behavior is equivalent to the one in classical End Systems where writing to the memory is a part of the task execution.

Figure 4 shows the different steps of data transmission on a VL, noted V L 1 , from the task t1 DDR . In this example, the task t1 DDR sends a VL each BAG period to the AFDX. The interval BAG is counted after W CT T T oDDR . We show in this figure how the data transmission on V L 1 can be impacted by the data transmission on an other VL, noted V L 2 from a task t2 DDR using the same Ethernet interface. In the left side of the Figure 4, t1 DDR sends the data to the DDR controller. After waiting W CT T T oDDR , t1 DDR sends the DMA command to the Ethernet interface. The delay of a DMA command is neglected as it is transmitted on a separate network. When the Ethernet interface executes this DMA command, the data NoC packets are transmitted from the DDR controller to the Ethernet interface. Then, the Ethernet frame is transmitted on the AFDX V L 1 . The jitter in this case is equal to d 1 which is the transmission delay for the outgoing I/O flow from the DDR controller to the Ethernet interface. As contentions can appear on the NoC, thus this delay is non constant.

In the right part of the Figure 4, t2 DDR sends data on In this paper, we consider that each application can send only on a single VL. In a worst case scenario, for an analyzed V L i , the corresponding application app i sends the DMA command after all the n avionics applications allocated on the same NoC have sent their DMA command. Therefore, the maximum jitter on a given V L i , i.e. the jitter when considering a worst case scenario, corresponds to:

W CT T V Li T oDDR + n j=1 j =i W CT T V Lj T oDDR + n j=1 j =i d V Lj f rame (1) 
where W CT T

V Lj

T oDDR returns the WCTT of the NoC packets from the task t DDR , in an application j, to the DDR memory. Besides, d V Lj f rame corresponds to the transmission delay of a frame on the Ethernet link for V L j . As the equation (1) includes the W CT T T oDDR of all applications allocated on the NoC, thus the maximum jitter on all VLs is the same. Let us now see if this jitter does not exceed the maximal allowed jitter, i.e. 500µs.

IV. Problem illustration on a case study

In this section, we show on a realistic avionics case study that the existing mapping strategies do not guarantee the maximum jitter of AFDX networks.

A. Motivating case study

The considered case study is composed of critical and non critical applications: SHiC M ap IO jitter in µs 676. [START_REF] Ferrandiz | Using Network Calculus to compute end-to-end delays in SpaceWire networks[END_REF] 579 KBytes of data. They also send 5 KBytes of data to t f n-1 . Figure 5a shows the tasks graph of F ADEC 7 . This graph illustrates the core-to-core and core-to-I/O communications between the tasks of the FADEC application. . All these tasks finish their processing by storing their frames into the memory. Figure 5b shows the tasks graph of HM 6 . FADEC applications are critical, while HM applications are non-critical. The considered case study, noted A, is composed of 3 FADEC applications: F ADEC 13 , F ADEC 11 , F ADEC 7 and five HM applications: HM 16 , HM 12 , HM 11 , HM 10 and HM 9 . The AFDX network is connected to the Ethernet interface located at the middle of the NoC. SHiC and Map IO are both used to allocate these applications on a 10×10 Tilera-like NoC.

TABLE I:

B. Limitations of existing strategies

Figures 6a and6b show respectively how SHiC and M ap IO map the applications of the case study A on the NoC. In this paragraph, we focus on the outgoing I/O flows to compute the jitter on a given VL. Table I shows the jitter computed for a given VL using the equation (1). In both cases, the jiiter is greater than the maximum allowed jitter, i.e. 500µs. This jitter depends on the WCTTs of the outgoing I/O flows of the other applications. Figure 7 shows these WCTTs for each mapping strategy.

Let us first consider HM 16 and F ADEC 11 . SHiC mapping leads to a WCTT for HM 16 lower than this obtained V. Proposed mapping strategy: Ex M ap IO As M ap IO aims to reduce the contentions on the incoming I/O flows, we propose to extend this strategy. The new strategy adds some rules to M ap IO when allocating the tasks within the applications which regions do not intersect with Ethernet interfaces. This section details these rules to reach our objectives.

A. Rule 1: Minimizing the number of source-based contention

The intermediate port p DDR , used by t DDR to send the outgoing I/O flow to the Ethernet interface, could also be used by other tasks on the same column with t DDR . The flows sent from p DDR to these tasks generate a contention with the outgoing I/O flow at the source p DDR . To reduce this contention, the first rule allocates t DDR on the column, noted X min , which could allocate a minimal number of tasks and the nearest one to the Ethernet interfaces. We present in Figure 6c the mapping of the case study A after applying the ex M ap IO strategy. This figure illustrates the columns X min selected by this rule for each application.

B. Rule 2: Minimizing the number of flows in contention with the flows coming from p DDR

This rule allocates t DDR and other tasks on X min in such a way to generate flows in an opposite direction to the flows coming from p DDR to reduce their contentions. Thus, we build from the tasks graph of each application the lists of tasks sending to t DDR and those receiving from it, noted respectively by L S and L R . Different cases can exist dependent of the size of L S and L R : a) Case A: L S = L R = 0: We allocate t DDR on the first line nearest to the DDR memory as there are no tasks that communicate with t DDR . The tasks with the minimum number of ingress communications (IC), i.e. receiving data from a low number of tasks, are then allocated on X min . In fact, in Figure 8a, we allocate on the core 1 the task with the maximum number of IC. It is obvious that the flows received by this task, either from its column or other columns, block the flows coming from p DDR . The number of blocking flows is reduced when allocating on the core 3 the task with the maximum number of egress communications (EC), i.e. sending data to a high number of tasks, as illustrated in Figure 8b. As a task with a minimum number of EC could present a high number of IC, we thus allocate the tasks with an increasing number of IC by following the order illustrated in Figure 8c, i.e. from the top to the bottom while approaching to the DDR. Actually, a task with a maximum IC on the core 3, as illustrated in this figure, could receive from other rows above it without blocking the flows coming from DDR. Besides, a selected task should not send to the allocated tasks on X min in order to reduce the number of contentions, i.e. the task that will be allocated on 2 should not send to the task allocated on 1.

b) Case B: L S = 0 and L R = 0: L S = 0 means that t DDR receives data from the tasks of L S . If we allocate t DDR at the top, of X min as illustrated in Figure 9b, the flows received by this task are in the same direction of the flows going from p DDR and thus they are blocking flows. Thus, we allocate t DDR at the bottom, near to the DDR, as illustrated in Figure 9a. As the tasks in L S send data to t DDR , thus we have to begin their allocation on X min from the bottom to top with the increasing minimum number of EC. In fact, allocating a task with the maximum EC on the core 1, as in Figure 9d, generates flows in contention with the flow coming from the DDR, which is not the case when this task is allocated on the core 3, as shown in Figure 9c. Besides, each selected task should not receive data from the tasks allocated on X min , i.e. the task that will be mapped on the core 2 should not receive data from the task allocated on 1. Finally, when it remains a number of unallocated cores on X min , the case A is thus applied. For example, for HM 12 , L S includes only t h10 that sends data to t DDR , i.e. t h11 . t h11 is first allocated at the core at (8,2), while t h10 is allocated above it. The case A now applies to allocate t h0 , task with minimum IC, at [START_REF] Wentzlaff | On-chip interconnection architecture of the tile processor[END_REF][START_REF] Fattah | Dynamic application mapping for congestion reduction in many-core systems[END_REF], while th 1 is allocated at [START_REF] Wentzlaff | On-chip interconnection architecture of the tile processor[END_REF][START_REF] Fattah | Smart hill climbing for agile dynamic mapping in many-core systems[END_REF]. c) Case C: L S = 0 and L R = 0: This case is the opposite scenario of the case B. Here, t DDR sends data to the tasks in L R , and thus this task should be now allocated at the top of X min , far from the DDR. In this way, the flows received by these tasks are in the opposite direction with the flows coming from p DDR . Unlike the case B, here the allocation begin from the top to bottom by ordering the tasks in L R with an in increasing number of IC. Besides, each selected task should not send data to the allocated tasks to avoid a contention with any flow coming from p DDR . d) Case D: L S = 0 and L R = 0: This case associates the cases B and C: t DDR sends data to the tasks of L R and receives from the tasks in L S . Thus, t DDR is now allocated somewhere on X min in such a way the case B is applied above t DDR and the case C below it. Figure 10 shows that we must begin by allocating the tasks of L S . In Figure 10a, we allocate all the L S tasks above t DDR and some tasks of L R below it, while in Figure 10b, all the L R tasks are allocated below t DDR . In the first case, the remaining tasks of L R , not allocated on X min , receive the flows from t DDR without causing any contention with the flows coming from p DDR . However, in the second case, the flows generated by the remaining tasks of L S are blocking flows. Thus, when the tasks of L S could not fill all X min , then t DDR is allocated on the core corresponding to the difference between the size of L S and the size of X min . However, when the size of L S is greater than the size of (X min -1), we allocate t DDR at the second line near the DDR. In this case, we allocate a high number of tasks from L S on X min and only one task from L R . In all the cases, the remaining tasks from L S are thus allocated on the same line of t DDR and on its right, while those of L R are allocated on the same line with t DDR but on its left if possible.

C. Rule 3: Minimizing the path-based contention on the first line used by the outgoing I/O flows

This rule is only applied on the applications presenting an intersection with the DDR. The remaining tasks are ordered in two lists, noted L GS and L GR . These tasks are ordered with an increasing number of EC in L GS , while in L GR with the increasing number of IC. Therefore, we begin by the lowest degree of communications from L GS and then from L GR . A task with degree 0 in L GS means that the task does not send data to any other tasks. The placement of the task on the first line depends from which list is selected. Indeed, a task selected from L GS is allocated on the most left core of the first line. Actually, allocating a task with the maximum number of EC on the most left core, as at the core 1 of Figure 11a, generates blocking flows not only to the outgoing I/O flow on the first line but also to those coming from p DDR . These blocking flows are reduced when allocating this task at the core 4 as seen in Figure 11b. Besides, the selected task should not receive from the allocated tasks on its left on the same line, and not send the allocated tasks on its right. By the same principle, a task selected from L GR is thus allocated on the most right of the first line.

For HM 11 , L GS = (degree1 : t h9 , t h8 ...t h0 ) and L GR = (degree0 : t h0 ; degree1 : t h8 ...t h1 ). The lowest degree, i.e. degree 0, is only in L GR where the task selected is t h0 . It is allocated on the most right of the first line, i.e. at [START_REF] Fattah | Dynamic application mapping for congestion reduction in many-core systems[END_REF][START_REF] Abdallah | Wormhole networks properties and their use for optimizing worst case delay analysis of many-cores[END_REF]. The other tasks present the same characteristics, thus they are allocated arbitrary on this first line.

D. Rule 4: Minimizing the contentions on the flows coming from the DDR

In order to allocate the remaining tasks on the remaining cores, we begin the allocation from the second line, near the DDR (it is the first line for the applications that do not have any intersection with the DDR), to the lines at the top of the application. The tasks with the minimum number of EC are allocated first. Actually, a task with the maximum number of EC allocated at the last line generate flows in opposite direction with the flows coming from the DDR. Besides, it is preferable to select the tasks that send data to the tasks already allocated on the same line, and also that do not receive from the allocated tasks below its line and do not send to the allocated tasks above its line.

E. Rule 5: Modifying p DDR for an outgoing I/O flow for an application

At this level, all tasks are allocated within their applications. However, there are some applications presenting an all-to-all communications (like FADEC). Thus, it is impossible to reduce significantly the contentions with the outgoing I/O flow when they are allocated on the first line. For this reason, this rule aims to change p DDR for/from which the outgoing I/O flow is sent when the contention on the first line is not reduced. However, this change is subject to some conditions. In fact, we first compute the charge of the contentions on the outgoing I/O flow on the column of p DDR , noted charge y , and on the first line from p DDR , noted charge x . Then, we do another computation of these charges when changing p DDR to pm DDR . pm DDR is the first DDR port not used by another outgoing I/O flow (except the ports 1 and 11 to not add a contention on the incoming I/O flow). Only when the total charge is reduced, we confirm the change of the DDR port. charge x and charge y are calculated as following:

charge x = N F L f lows N F L routers ; charge y = N Cp DDR f lows N Cp DDR routers (2)
N F L f lows returns the number of flows having the same direction as the outgoing I/O flow on the first line. These flows are considered on the routers counted by N F L routers which are computed from the next port of the peripheries of the concerned application. On the other side, N Before applying this rule on HM 16 , its outgoing I/O flow, going from the port 17, is blocked by a number of flows from the 36 flows of FADEC going in the same direction with it, as illustrated in Figure 6c. The number of routers are counted from the port 16 which comes after the peripheries of HM 16 , thus N routers = 7. Therefore, charge x = 36 7 = 5.14. However, charge y = 0 as there are no core-to-core flows on HM 16 going on the same direction with the flows coming from p DDR . Let us now recompute the charge for HM 16 if the port used by its outgoing I/O flow is 13. Thus, the number of flows going on the same direction on the routers counted from the port 13, i.e. on 4 routers, is reduced to 9. Then, charge x = 9 4 = 2.25. However, charge y is increased. Indeed, the port 13 is used by F ADEC 13 and HM 10 , thus there are 4 routers use the port 13. On these routers, there are 7 flows going in the same direction with the flows coming from the DDR, as illustrated in Figure 6c. Thus, charge y = 7 4 = 1.75. As the total charge is reduced to 4, then the outgoing I/O flow for HM 16 goes from the port 13.

VI. Evaluation

This section evaluates ex M ap IO compared to the SHiC and M ap IO strategies. Thus, we first compare the jitter obtained with the existing mapping strategies on the case study A illustrated in section IV. We then explain the impact of the different rules on the WCTTs of the outgoing I/O flows. Then, we consider another realistic case study in order to show the impact of the number of applications allocated on the NoC on the jitter of an outgoing I/O flow.

A. Evaluation of the jitter on different sizes of NoCs 1) 10×10 NoC: Figures 6a, 6b and 6c illustrated the mapping of the case study A by considering the different mapping strategies. Table II reports the jitter value for a given VL in function of these strategies. This table shows that only by applying ex M ap IO , the jitter is reduced by respectively 35% and 11.5% compared to SHiC and M ap IO . This reduction is sufficient to lead to a jitter lower than 500µs.

To explain this reduction, we consider the graph in Figure 12 which shows the WCTTs of the outgoing I/O flows for the different applications in function of the mapping strategy. The WCTT of the outgoing I/O flow of F ADEC 11 is reduced by 33% compared to M ap IO . Indeed, this reduction is due to the rule 2, where t f 10 , i.e. t DDR is placed at the bottom of the application reducing the contention on the column of the port 2. In M ap IO , this task receiving from all other tasks is placed at the top of the column. The rule 1 has especially reduced the WCTT of HM outgoing flows for HM 7 , HM 9 , F ADEC 11 and F ADEC 8 , as shown in the graph of Figure 14. However, by comparing to SHiC, the WCTTs of HM 6 , HM 14 and F ADEC 6 are still higher. Indeed, SHiC allocates HM 6 and HM 14 near to the Ethernet interfaces, thus the congestion is reduced. Although F ADEC 6 is allocated near to the Ethernet interfaces in ex M ap IO , the increased value of its outgoing flow is explained by the contentions with the flows of F ADEC 11 . Actually, this flow goes from the port 12 and crosses more than 3 routers occupied by FADEC. However, in SHiC the outgoing flow is not blocked by a high number of flows at the first line as it crosses only one router occupied by F ADEC. Therefore, if we increase the size of F ADEC 6 , the WCTT of its outgoing flow in SHiC will increase, as the congestion at the source and possibly on the first line increases, which lead to a high jitter. However, the WCTT of the outgoing I/O flow of F ADEC 6 in ex M ap IO still the same as its value depends on the mapping of F ADEC 11 which is not modified.

B. Impact of the number of applications on the jitter

As the jitter depends on the WCTTs of the outgoing I/O flows of the different applications, thus theoretically adding a new application increases the jitter. In order to show the impact of adding applications on the jitter in the different mapping strategies, we consider an extension of the case study A where we add the application HM 7 . As ShiC strategy is unable to allocate this application, the mapping of this case study is the same in Figure 6a. M ap IO and ex map IO allocate the 9 applications as illustrated respectively in Figures 15 and16.

As SHiC leaves the same mapping, the jitter remains unchanged as shown in . We also decrease the size of F ADEC 8 to 7, HM 14 to 10 and HM 9 to 8, in order to make SHiC allocates all the applications. Here, the jitter increases with SHiC and M ap IO and exceeds the maximum allowed jitter with SHiC. However, it remains the same with ex M ap IO . Indeed, decreasing the size of some applications will decrease the WCTTs of their outgoing I/O flows. However, adding an application increases the congestion on the other applications. These congestions are reduced by applying our rules, but this is not the case when allocating the applications using M ap IO and SHiC strategies.

C. Discussion

The results presented in the previous section show that the jitter is a function of the type, the size of the applications and the size of the NoC. Considering different NoC sizes, we have seen that ex M ap IO reduces the WCTTs of the outgoing I/O flows and thus the jitter a given VL. jitter is lower than 500µs when allocating 8 applications. However, when increasing the number of applications (without modifying the size of the other applications) on a 10×10 NoC, the jitter exceeds 500µs. This is explained by adding a WCTT on the jitter as Equation 1indicates. Besides, this new application adds a on the outgoing from other applications. On a reduced size of a Tilera-like NoC, we have seen that till 8 applications, ex M ap IO leads to a jitter lower than 500µs. Therefore, our proposition explained in section III presents some limitations where ex M ap IO is applied with specific NoCs and applications sizes.

VII. Conclusion and future work

In this paper, we proposed to replace the mono-core processors in the avionics architecture by a NoC-based many-core architecture. Thus, in the proposed architecture the End Systems are based on NoC.

The main contributions in this paper are:

• First, the description of the integration problem of the NoC in an AFDX architecture in order to keep the same functions and of the current End Systems. • Second, the illustration on an avionics case study, where we show the limitations of existing mapping strategies to reduce the jitter for a given Virtual Link. • Third, the description of a new mapping strategy which adds a number of rules to an existing strategy, M ap IO , in order to reduce the jitter. These rules minimize the source-based and path-based contentions on the path of the outgoing I/O flows. • Finally, our new mapping strategy evaluation, performed on realistic avionics case studies, which shows that the jitter is significantly reduced (up to 34%). Meanwhile, the jitter increases with the increase of the NoC and the applications size, leading to exceed the maximum allowed bound. As future work, we aim to evaluate our proposed mapping strategy on different NoCs and applications sizes to find the threshold of these parameters that guarantee a bounded jitter. Besides, another proposition making the NoC behaves as a current End System is expected, as considering one dedicated core to shape the traffic and schedule the outgoing I/O flows in such a way to bound the jitter.

Fig. 2 :

 2 Fig. 1: A classical AFDX Architecture

Fig. 3 :

 3 Fig. 3: A Tilera-like NoC architecture illustrating incoming and outgoing I/O flows.

Fig. 4 :

 4 Fig. 4: A possible transmission on a given VL.

V L 2

 2 through the same Ethernet interface, in the same way as t1. The DMA command sent by t2 DDR arrives before the one sent by t1 DDR . The commands are stored into a FIFO buffer in the Ethernet interface. Only one DMA command can be executed by the Ethernet interface. The data sent by t1 DDR waits in the DDR memory for the complete transmission of the data of t2 DDR on the NoC and on the AFDX network. The jitter on V L 1 of the next frame is thus the sum of three delays: (1) the transmission delay of the outgoing I/O flow sent by t2 DDR from the DDR to the Ethernet interface, noted by d, (2) the transmission delay of the Ethernet frame on AFDX V L 2 from the Ethernet interface to the first AFDX switch, noted by d V L2 , (3) the transmission delay of the outgoing I/O flow sent by t1 DDR from the DDR to the Ethernet interface, noted by d 2 . Once this transmission is done, the Ethernet interface commands the transmission of the data of t1 to the Ethernet interface.

Fig. 5 :

 5 Fig. 5: Task graph of core-to-core and core-to-I/O communications of the: (a) FADEC application, (b) HM application.

Fig. 6 :Fig. 7 :

 67 Fig. 6: Mapping for the case study A composed of 8 applications using respectively SHiC, M ap IO and ex M ap IO .

Fig. 8 :

 8 Fig. 8: A possible scenario when allocating the task with: (a) the maximum IC on the core 1, (b) the maximum EC on the core 3, (c) the maximum IC on 3.

Fig. 9 :

 9 Fig. 9: Different scenarios on X min when allocating: (a) t DDR at the bottom, (b) t DDR at the top, (c) the task with maximum EC on the core 3, (d) the task with the maximum EC on the core 1.

Fig. 10 :

 10 Fig. 10: A possible scenario when allocating all the tasks of: (a) L S , (b) L R , on X min

Fig. 11 :

 11 Fig. 11: A possible scenario when allocating the task with the maximum EC on: (a) the core 1, (b) the core 4.

  Cp DDR f lows corresponds to the number of flows going on the same direction of the flows coming from p DDR on its column. N Cp DDR routers returns the number of cores on which the tasks allocated to them use p DDR . SHiC M ap IO ex M ap IO jitter in µs 676.7 579 436.5

Fig. 12 :

 12 Fig. 12: A graph illustrating the WCTT of the outgoing IO flows for different applications in function of mapping strategies when considering the case study A. SHiC M ap IO ex M ap IO jitter in µs 446.5 406 354.6

Fig. 13 :Fig. 14 :

 1314 Fig. 13: Mapping for the case study B composed of 7 applications using respectively SHiC, M ap IO and ex M ap IO .

Fig. 15 :Fig. 16 :

 1516 Fig. 15: M ap IO mapping for the case study A when adding a new application HM 7 .

Authority Digital Engine (FADEC) ap- plication:

  It controls the performance of the aircraft engine. It receives 30 KBytes of data from the engine sensors via an Ethernet interface and sends back 1500 Bytes of data to the engine actuators.

• Full The application FADEC n is composed of n tasks denoted t f 0 to t f n-1 . t f n-1 is dedicated to send the commands to the engine actuators via the Ethernet interface. Except t f n-1 , all other tasks exchange 5

  Table reporting the jitter for a given VL in function of SHiC and M ap IO strategies when considering the case study A.

TABLE II :

 II Table reporting the jitter for a given VL in function of mapping strategies when considering the case study A.

TABLE III :

 III Table reporting the jitter for a given VL in function of mapping strategies when considering the case study B.Figure6b, t h11 in HM 12 , i.e. t DDR is allocated on the last column, thus the outgoing I/O flow going from the port 8 is blocked at the source by 8 flows going from this port to the last two columns. However, the rule 1 allocates t h11 on X min , then the outgoing I/O flow goes from the port 7 and it is blocked at the source by 4 flows. Besides, the rule 3 eliminates some flows that was in the same direction with the outgoing I/O flows, as the flow from t h2 to t h3 in HM 11 in M ap IO . Finally, the WCTT of the outgoing I/O flow of HM 16 is reduced by 55.2% compared to M ap IO , but it is still greater than the one obtained by SHiC. In fact, in the SHiC mapping illustrated in Figure6a, HM 16 is the nearest Ethernet interface. This is not the case in M ap IO and ex M ap IO , where this flow is blocked by core-to-core flows of FADEC. The rules 1 and 2 reduce the WCTT of this flow by 11, 11% compared to M ap IO . These rules allocate t h15 at the 8 th column, and thus the outgoing I/O flow from HM 16 is blocked at the source by 5 unblocked flows, while it was blocked by 11 flows in M ap IO , as t 15 is on the last column. On the other hand, the rule 5 has the greatest impact on decreasing the WCTT of this flow by 44.09%. Indeed, the rule 5 has reduced the distance crossed by the outgoing I/O flow, from 14 to 9 routers, and thus it decreases the number of flows in congestion with it.2) 8×9 NoC: We consider a case study, noted B, consisting of 7 applications allocated on a NoC of size of 8 × 9. This case study is made of F ADEC 11 , F ADEC 8 , F ADEC 6 , HM 14 , HM 9 , HM 7 and HM 6 . Figures13a, 13cand 13b show respectively the mapping of these applications by considering SHiC, M ap IO and ex M ap IO . TableIIIshows that the jitter in all strategies is less than 500µs. The jitter in ex M ap IO is reduced by respectively 20.5% and 12.9% compared to other strategies. Besides, the jitter obtained in SHiC is close to the maximum allowed jitter. ex M ap IO can reduce the WCTTs of the

Table IV .

 IV However, this jitter is increased by 28% in M ap IO and ex map IO compared to the case study A made of 8 applications. Actually, adding an application leads not only to add the WCTT of its outgoing I/O flow but also increases the congestion on

	SHiC M ap IO ex M ap IO
	jitter in µs 676.7	744.3	558.2

TABLE IV :

 IV Table reporting the jitter for a given VL in function of mapping strategies after adding a new application to the case study A. SHiC M ap IO ex M ap IO

	jitter in µs	514	483.7	352.13

TABLE V :

 V Table reporting the jitter for a given VL in function of mapping strategies after adding a new application to the case study B. the other applications. When increasing the number of the applications, F ADEC 11 occupies more routers in the first line. Then the WCTTs of the outgoing I/O flows of HM 11 , HM 10 and HM 8 increase having these flows blocked by a high number of core-to-core flows of F ADEC 11 , as shown in Figures 15 and 16. On the other hand, F ADEC 11 occupies a less number of rows and thus the contention on the flows coming from the port 2, i.e. used by the outgoing I/O flow for F ADEC 11 , is reduced. Now, we consider the case study B, and we add a new application HM 5