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IRIT INP-ENSEEIHT, Université de Toulouse

F-31000 Toulouse, France
Email: Firstname.Lastname@enseeiht.fr

Abstract—An heterogeneous network, where a
switched-Ethernet backbone, as AFDX, interconnects
several End Systems based on Network-On-Chip
(NoC), is a promising candidate to build new avionics
architecture. However, current avionics End System
includes many functions, as performing a traffic shaping
for each Virtual Link (VL) and scheduling the output
frames in such a way the jitter on each VL is bounded.
This paper describes how the NoC implements these
functions in order to compute the worst-case traversal
time (WCTT) of avionics frames on a NoC to reach
the AFDX network. Besides, we illustrate the problem
of guaranteeing a bounded jitter at the output of a
NoC. We show that the existing mapping strategies
present some limitations to reduce the congestion on
the outgoing I/O flows (i.e. going from the NoC to the
AFDX network) and so do not reduce the jitter on a
given VL. We propose an extended mapping approach
which considers the outgoing I/O flows. Experimental
results on realistic avionics case studies show significant
improvements of the jitter value.

I. Introduction
Avionics systems evolved from a federated architecture

to a distributed one in order to deal with the increase of the
avionics functions. In a federated architecture, each func-
tion is executed by a dedicated computer. The distributed
architecture is based on the Integrated Modular Avionics
(IMA) concept. As depicted in Figure 1, the architecture
is composed of a set of computer systems typically inter-
connected by an Avionics Full Duplex switched Ethernet
network (AFDX). Each computer is shared by a set of
avionics functions accessing the sensors and the actuators
and exchanging data with other functions. Data can also
be transmitted between functions executed on different
computers, through the AFDX network. The End System
(ES) provides an interface between a processing unit and
the network.

Up to now, each avionics computer is based on a single
core. Manycore architectures are envisioned for the im-
plementation of avionics systems. The target architecture,
depicted in Figure 2, is composed of a set of manycores
interconnected by an AFDX network. The basic idea is to
replace several avionics computers by a manycore. Indeed,
a manycore architecture includes many simple cores, easier
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Fig. 2: A proposed mixed NoC/AFDX architecture.

to master, interconnected by a Network-on-Chip (NoC).
The Tilera Tile64 [8] is one of the most popular manycore
architecture. It is a NoC-based manycore architecture
including DDR-SDRAM memory as well as Ethernet in-
terfaces. In order to reduce buffers size, wormhole switch-
ing is used in the NoC and a flow control mechanism
is implemented in each router. These mechanisms lead
to potentially long delays depending on the number of
competing flows. In our proposed architecture illustrated
in Figure 2, avionics functions will be distributed on
the available manycores. Communications between two
functions allocated on the same manycore use the NoC,
while communications between two functions allocated
on different manycores should use the Ethernet. In this
latter case, the communication is divided into several
parts. First, the data is transmitted through the NoC from
the core executing the source function to the Ethernet
interface via an intermediate DDR memory. Second, the



App2

Incoming 

flow to App1

2

Outgoing flow

from App2

Fig. 3: A Tilera-like NoC architecture illustrating incoming and
outgoing I/O flows.

data is transmitted on the AFDX network. Third, the
data is transmitted through the destination NoC from the
Ethernet interface to the receiving avionics function, via
an intermediate DDR memory.
Most avionics functions have to respect hard real-time
constraints. Main constraints on the communication part
are the following: (1) end-to-end transmission delay has
to be upper-bounded by an application defined value, (2)
frame jitter at the egress of the AFDX network has to be
smaller than a given value (typically 500 µs). In existing
architectures such as the one depicted in Figure 1, the
latter constraint is enforced by the implemented schedul-
ing in the End System. Considering the manycore based
architecture in Figure 2, frame jitter mainly depends on
the delay variation between the source core and the source
Ethernet interface, i.e. the delay variation on the NoC.
This NoC delay variation for a given flow f dramatically
increases with the number of competing flows on the f
path. Thus, mapping of avionics functions on the NoC
should minimize this number of competing flows. Differ-
ent solutions have been proposed for mapping real-time
functions on a manycore. SHiC [4] only considers intra
manycore communications, while MapIO [2] integrates as
well the incoming I/O communications in its mapping
rules. To the best of our knowledge, no existing approach
integrates outgoing I/O communications which can lead
to high delay variation between the source core and the
source Ethernet interface. Consequently, we propose and
evaluate an enhanced mapping approach which considers
all types of communications present in the envisioned
architecture shown in Figure 2.

II. NoC architecture and assumptions
This section describes the main characteristics of a

Tilera-like NoC architecture and its I/O mechanisms.
In this paper, we consider a 2D-Mesh NoC with bidi-

rectional links interconnecting a number of routers. Each
router has five input and output ports. Each input port
consists of a single queuing buffer. The routers at the edge
of the NoC are interconnected to the DDR memory located
north and south of the NoC via dedicated ports. The first
and last columns of the NoC are not connected directly to

the DDR. Besides, the routers at the east side connects
the cores to the Ethernet interfaces via specific ports.
Many applications can be allocated on a NoC as shown
in Figure 3. Each application is composed of a number
of tasks, where one core executes only one task. These
tasks do not communicate only with each other (core-
to-core flows), but also with the I/O interfaces, i.e. the
DDR memory and Ethernet interfaces (core-to-I/O flows).
These flows are transmitted through the NoC following
the wormhole routing, an XY policy and a Round-Robin
arbitration. Besides, a credit-based mechanism is applied
to control the flows.
A flow consists of a number of packets, corresponding to
the maximal authorized flow size on the NoC. Indeed, a
packet is divided into a set of flits (flow control digits) of
fixed size (typically 32-bits). The maximal size of a NoC
packet is of 19 flits as in Tilera NoC. The wormhole routing
makes the flits follow the first flit of the packet in a pipeline
way, so that creates a worm where flits are distributed on
many routers. The credit-based mechanism blocks the flits
before a buffer overflow occurs. The consequence of such
a transmission model is that when two flows share the
same path, if one of them is blocked, the other one can
also be blocked. Thus, the delay of a flow can increase
due to contentions on the NoC. The Worst-case Traversal
Time (WCTT) of a flow can be computed using different
methods proposed in the literature ([6], [7]). In this paper,
we choose RCNoC [1] to compute the WCTT as it leads
to tightest bounds of delays compared to the existing
methods on a Tilera-like NoC. This method considers the
pipeline transmission, and thus computes the maximal
blocking delay a flow can suffer due the contentions with
blocking flows.

On the other hand, authors in [2] show the need of a
contention-aware mapping in order to reduce the core-to-
I/O flows contentions. Indeed, a core-to-I/O flow can be
either an incoming flow from the Ethernet interface to an
allocated NoC application or an outgoing one from an allo-
cated application to the Ethernet interface. The incoming
I/O flow, is transmitted on the NoC following two steps,
as illustrated for the application app1 in Figure 3. In the
first step, a number of packets are transmitted from the
Ethernet interface to the nearest DDR port. Then, DDR
memory transmits the data through the port connected
at the closest column where the destination cores are. For
example, in Figure 3, if the south Ethernet controller sends
data to the cores (L, 1) and (L-1,3), it first sends data
to port 1 of the south memory and then the data are
transmitted by port n to the destination cores.
Authors in [2] have shown the limitations of existing
mapping strategies to reduce the incoming I/O flows
contentions, leading to drop incoming Ethernet frames.
Indeed, an existing mapping strategy, called SHiC [4],
reduces only the contentions on the core-to-core communi-
cations. It overcomes the problem of fragmented regions,
generated by the methods in the literature (as in [3], [9],



[5]), by searching a region of size equal to the size of the
application to be allocated. The tasks of this application
are allocated in the selected region in such a way to
reduce the distance between the communicating tasks.
Thus, SHiC allocates the task with the maximum number
of communications at the center of this region and around
it the tasks communicating with it to form a square shape.
The method proposed in [2], called MapIO, performs the
mapping into two steps. The first step splits the NoC into
regions and then allocates primarily critical applications
in a dedicated region close to memory and Ethernet
controllers by following a circular direction and using
rectangular shapes. The second step consists in allocating
the tasks within each application where some rules are
used to minimize the contentions on the path of the core-
to-I/O flows. These rules are based on the principle of
allocating the tasks which generate perpendicular flows on
the path of the core-to-I/O flows.
However, this strategy do not consider the outgoing I/O
flows. Indeed, the tasks of the applications mapped on a
region with no intersection with the Ethernet interface,
are allocated following the principle of SHiC mapping.
Actually, an outgoing I/O flow is transmitted following
three steps, as illustrated in Figure 3 for the application
app2: (1) A core sends a number of data packets to the
nearest port of DDR memory, (2) then after all data pack-
ets are received at the DDR, it sends a DMA command to
the Ethernet interface on a separate network. This DMA
command indicates the placement of data in the DDR
memory, and it is stored into a DMA command FIFO
queue. (3) When the Ethernet interface executes the DMA
command, data packets are then sent from the same port
of DDR memory to the same Ethernet interface.
The packets of an outgoing I/O flow will incur a contention
with different types of communications on the NoC which
could lead to an increasing jitter. The following sections
show the limitations of existing mapping strategies to re-
duce the outgoing I/O flows contentions. In the remainder
of this paper, we consider a NoC with at least three
Ethernet controllers connected to the east of the NoC.
The Ethernet interfaces nearest to the DDR are used for
the incoming I/O flows while the I/O outgoing flows use
the Ethernet interfaces located at the middle of the NoC.
Besides, we consider Ethernet interfaces of giga-ethernet
type and so the buffers, where the Ethernet frames are
stored before being sent, have a size of 2040 Bytes.

III. Regulation of the VLs on the NoC
The objective of this section is to explain how the NoC

can regulate each VL and what is its impact on the jitter
computation.
In this paper, we consider that the regulation according to
the Bandwidth Allocation Gap (BAG), i.e. the minimum
delay between two successive frames, is done at the core
which executes the task sending the data to the Ethernet
interface, noted tDDR. A task tDDR sends data on a given
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Fig. 4: A possible transmission on a given VL.

VL to an Ethernet interface by following the steps detailed
for an outgoing I/O flow in section II. The Ethernet inter-
face executes one DMA command at once and so the data
are transmitted as NoC packets from the DDR memory to
the Ethernet interface. When all the packets are received
by the Ethernet interface, the Ethernet frame is created.
Then, the Ethernet interface executes another DMA com-
mand directly if there is enough place in the buffer or
waits to transmit the Ethernet frame on the Ethernet link.
This means that we could not simultaneously have two
flows transmitted from the DDR to the Ethernet interface.
The transmission on a VL to the Ethernet interface can
be delayed if a different task is sending on another VL
to this Ethernet interface. In an AFDX network, this
delay corresponds to the jitter induced by the multiplexing
functions of the End System. The goal is now to define this
delay in the proposed architecture.

In a NoC architecture, the DMA command from tDDR

to the Ethernet interface is sent after the complete trans-
mission of the data of the VL from tDDR to the DDR. This
transmission delay is obtained by computing the WCTT
of the data packets from the core executing tDDR to the
DDR. This delay, noted WCTTT oDDR, is thus constant
and can be computed as a part of the execution time of
the task. This behavior is equivalent to the one in classical
End Systems where writing to the memory is a part of the
task execution.

Figure 4 shows the different steps of data transmission
on a VL, noted V L1, from the task t1DDR. In this example,
the task t1DDR sends a VL each BAG period to the AFDX.
The interval BAG is counted after WCTTT oDDR. We show
in this figure how the data transmission on V L1 can be
impacted by the data transmission on an other VL, noted
V L2 from a task t2DDR using the same Ethernet interface.
In the left side of the Figure 4, t1DDR sends the data to the
DDR controller. After waitingWCTTT oDDR, t1DDR sends
the DMA command to the Ethernet interface. The delay of
a DMA command is neglected as it is transmitted on a sep-
arate network. When the Ethernet interface executes this
DMA command, the data NoC packets are transmitted
from the DDR controller to the Ethernet interface. Then,
the Ethernet frame is transmitted on the AFDX V L1. The
jitter in this case is equal to d1 which is the transmission
delay for the outgoing I/O flow from the DDR controller
to the Ethernet interface. As contentions can appear on
the NoC, thus this delay is non constant.

In the right part of the Figure 4, t2DDR sends data on



V L2 through the same Ethernet interface, in the same
way as t1. The DMA command sent by t2DDR arrives
before the one sent by t1DDR. The commands are stored
into a FIFO buffer in the Ethernet interface. Only one
DMA command can be executed by the Ethernet interface.
The data sent by t1DDR waits in the DDR memory for
the complete transmission of the data of t2DDR on the
NoC and on the AFDX network. The jitter on V L1 of
the next frame is thus the sum of three delays: (1) the
transmission delay of the outgoing I/O flow sent by t2DDR

from the DDR to the Ethernet interface, noted by d, (2)
the transmission delay of the Ethernet frame on AFDX
V L2 from the Ethernet interface to the first AFDX switch,
noted by dV L2 , (3) the transmission delay of the outgoing
I/O flow sent by t1DDR from the DDR to the Ethernet
interface, noted by d2. Once this transmission is done, the
Ethernet interface commands the transmission of the data
of t1 to the Ethernet interface.

In this paper, we consider that each application can
send only on a single VL. In a worst case scenario, for
an analyzed V Li, the corresponding application appi sends
the DMA command after all the n avionics applications al-
located on the same NoC have sent their DMA command.
Therefore, the maximum jitter on a given V Li, i.e. the
jitter when considering a worst case scenario, corresponds
to:

WCTTV Li

T oDDR +
n∑

j=1
j 6=i

WCTT
V Lj

T oDDR +
n∑

j=1
j 6=i

d
V Lj

frame (1)

where WCTT
V Lj

T oDDR returns the WCTT of the NoC pack-
ets from the task tDDR, in an application j, to the DDR
memory. Besides, dV Lj

frame corresponds to the transmission
delay of a frame on the Ethernet link for V Lj . As the
equation (1) includes the WCTTT oDDR of all applications
allocated on the NoC, thus the maximum jitter on all VLs
is the same. Let us now see if this jitter does not exceed
the maximal allowed jitter, i.e. 500µs.

IV. Problem illustration on a case study
In this section, we show on a realistic avionics case study

that the existing mapping strategies do not guarantee the
maximum jitter of AFDX networks.

A. Motivating case study
The considered case study is composed of critical and

non critical applications:
• Full Authority Digital Engine (FADEC) ap-

plication: It controls the performance of the air-
craft engine. It receives 30 KBytes of data from the
engine sensors via an Ethernet interface and sends
back 1500 Bytes of data to the engine actuators.
The application FADECn is composed of n tasks
denoted tf0 to tfn−1. tfn−1 is dedicated to send the
commands to the engine actuators via the Ethernet
interface. Except tfn−1, all other tasks exchange 5

Fig. 5: Task graph of core-to-core and core-to-I/O communications
of the: (a) FADEC application, (b) HM application.

SHiC MapIO

jitter in µs 676.7 579

TABLE I: Table reporting the jitter for a given VL in function of
SHiC and MapIO strategies when considering the case study A.

KBytes of data. They also send 5 KBytes of data to
tfn−1. Figure 5a shows the tasks graph of FADEC7.
This graph illustrates the core-to-core and core-to-
I/O communications between the tasks of the FADEC
application.

• Health Monitoring (HM) application: It is used
to recognize incipient failure conditions of engines. It
receives through an Ethernet interface, a set of frames
of size 130 KBytes and sends back 1500 bytes of data
actuators. The application HMn is composed of n
tasks, denoted th0 to thn−1. The last task thn−1 is
dedicated to send the data actuators to the Ethernet
interface. The task thi sends 2240 bytes of data to
thi+1, with i ∈ [0, n − 2]. All these tasks finish their
processing by storing their frames into the memory.
Figure 5b shows the tasks graph of HM6.

FADEC applications are critical, while HM applica-
tions are non-critical. The considered case study, noted
A, is composed of 3 FADEC applications: FADEC13,
FADEC11, FADEC7 and five HM applications: HM16,
HM12, HM11, HM10 and HM9. The AFDX network is
connected to the Ethernet interface located at the middle
of the NoC. SHiC and MapIO are both used to allocate
these applications on a 10×10 Tilera-like NoC.

B. Limitations of existing strategies
Figures 6a and 6b show respectively how SHiC and

MapIO map the applications of the case study A on the
NoC. In this paragraph, we focus on the outgoing I/O flows
to compute the jitter on a given VL. Table I shows the
jitter computed for a given VL using the equation (1). In
both cases, the jiiter is greater than the maximum allowed
jitter, i.e. 500µs. This jitter depends on the WCTTs of
the outgoing I/O flows of the other applications. Figure 7
shows these WCTTs for each mapping strategy.

Let us first consider HM16 and FADEC11. SHiC map-
ping leads to a WCTT for HM16 lower than this obtained
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Fig. 6: Mapping for the case study A composed of 8 applications using respectively SHiC, MapIO and ex MapIO.
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for different applications in function of SHiC and MapIO strategies
when considering the case study A.

with MapIO. Conversely, the WCTT for FADEC11 is
higher with SHiC than with MapIO. This difference of
values is explained by the way the allocation of these appli-
cations is performed. With SHiC, FADEC11 is allocated
far from the Ethernet interface, while HM16 is allocated
near to this interface. Conversely, MapIO maps FADEC11
near to the Ethernet interface, and HM16 far from this
interface. Consequently, the distance of the application to
the Ethernet interface varies the number of routers crossed
by the outgoing I/O flow to reach the Ethernet interface
located at (0,5). Thus, this distance is a factor varying the
WCTT of an outgoing I/O flow.
On the other side, HM12 is allocated near to the Eth-
ernet interface in SHiC, while it is allocated far from
this interface in MapIO. However, the WCTTs of their
outgoing I/O flows are quite the same. Thus, the distance
to the Ethernet interface is not the sole factor impacting
the WCTT of an outgoing I/O flow. As we can see in
Figure 6b, some core-to-core flows of FADEC13 share
the same path as the outgoing I/O flow of HM16. Then,
the WCTT of the outgoing I/O flow of HM16 depends
on the contentions that experiences this flow on its path,
especially on the first line.
Now, let us consider HM9 and FADEC11 in MapIO.

HM9 is allocated further from the Ethernet Interface than
FADEC11, as shown in Figure 6b. The WCTT of the
outgoing I/O flow of FADEC11 is much greater than the
HM9 one although they share a part of their path. Indeed,
the outgoing I/O flow of HM9 is blocked at the source, i.e.
the port 6 of DDR, by six non-blocked flows as illustrated
in Figure 6b. On the other side, the outgoing flow of
FADEC11 is blocked at the source, i.e. the port 2, by
five flows. However, these flows are blocked on their paths
by core-to-core flows illustrated in Figure 6b. Then, the
source-based contention combined with the contentions
on the blocking flows path is another factor varying the
WCTT of an outgoing I/O flow.
To overcome the limitations of existing mapping strategies,
we propose a mapping strategy, noted ex MapIO, that
has the following three objectives: (1) minimize the num-
ber of source-based contentions by reducing the number
of flows coming from the same DDR port used by the
outgoing I/O flow, noted pDDR, (2) minimize the path-
based contention on the flows coming from pDDR, (3)
minimize the path-based contention on the path of the
outgoing I/O flow.

V. Proposed mapping strategy: Ex MapIO

As MapIO aims to reduce the contentions on the in-
coming I/O flows, we propose to extend this strategy. The
new strategy adds some rules to MapIO when allocating
the tasks within the applications which regions do not
intersect with Ethernet interfaces. This section details
these rules to reach our objectives.

A. Rule 1: Minimizing the number of source-based con-
tention

The intermediate port pDDR, used by tDDR to send
the outgoing I/O flow to the Ethernet interface, could
also be used by other tasks on the same column with
tDDR. The flows sent from pDDR to these tasks generate
a contention with the outgoing I/O flow at the source
pDDR. To reduce this contention, the first rule allocates
tDDR on the column, noted Xmin, which could allocate
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a minimal number of tasks and the nearest one to the
Ethernet interfaces. We present in Figure 6c the mapping
of the case study A after applying the ex MapIO strategy.
This figure illustrates the columns Xmin selected by this
rule for each application.

B. Rule 2: Minimizing the number of flows in contention
with the flows coming from pDDR

This rule allocates tDDR and other tasks on Xmin in
such a way to generate flows in an opposite direction to
the flows coming from pDDR to reduce their contentions.
Thus, we build from the tasks graph of each application
the lists of tasks sending to tDDR and those receiving from
it, noted respectively by LS and LR. Different cases can
exist dependent of the size of LS and LR:

a) Case A: LS = LR = 0: We allocate tDDR on
the first line nearest to the DDR memory as there are no
tasks that communicate with tDDR. The tasks with the
minimum number of ingress communications (IC), i.e. re-
ceiving data from a low number of tasks, are then allocated
on Xmin. In fact, in Figure 8a, we allocate on the core 1
the task with the maximum number of IC. It is obvious
that the flows received by this task, either from its column
or other columns, block the flows coming from pDDR. The
number of blocking flows is reduced when allocating on
the core 3 the task with the maximum number of egress
communications (EC), i.e. sending data to a high number
of tasks, as illustrated in Figure 8b. As a task with a
minimum number of EC could present a high number of
IC, we thus allocate the tasks with an increasing number
of IC by following the order illustrated in Figure 8c, i.e.
from the top to the bottom while approaching to the
DDR. Actually, a task with a maximum IC on the core
3, as illustrated in this figure, could receive from other
rows above it without blocking the flows coming from
DDR. Besides, a selected task should not send to the
allocated tasks on Xmin in order to reduce the number
of contentions, i.e. the task that will be allocated on 2
should not send to the task allocated on 1.

b) Case B: LS 6= 0 and LR = 0: LS 6= 0 means
that tDDR receives data from the tasks of LS . If we allocate
tDDR at the top, of Xmin as illustrated in Figure 9b, the
flows received by this task are in the same direction of the
flows going from pDDR and thus they are blocking flows.
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Fig. 9: Different scenarios on Xmin when allocating: (a) tDDR at the
bottom, (b) tDDR at the top, (c) the task with maximum EC on the
core 3, (d) the task with the maximum EC on the core 1.

Thus, we allocate tDDR at the bottom, near to the DDR,
as illustrated in Figure 9a. As the tasks in LS send data to
tDDR, thus we have to begin their allocation on Xmin from
the bottom to top with the increasing minimum number
of EC. In fact, allocating a task with the maximum EC on
the core 1, as in Figure 9d, generates flows in contention
with the flow coming from the DDR, which is not the case
when this task is allocated on the core 3, as shown in
Figure 9c. Besides, each selected task should not receive
data from the tasks allocated on Xmin, i.e. the task that
will be mapped on the core 2 should not receive data from
the task allocated on 1. Finally, when it remains a number
of unallocated cores on Xmin, the case A is thus applied.

For example, for HM12, LS includes only th10 that sends
data to tDDR, i.e. th11. th11 is first allocated at the core
at (8,2), while th10 is allocated above it. The case A now
applies to allocate th0, task with minimum IC, at (8,5),
while th1 is allocated at (8,4).

c) Case C: LS = 0 and LR 6= 0: This case is the
opposite scenario of the case B. Here, tDDR sends data
to the tasks in LR, and thus this task should be now
allocated at the top of Xmin, far from the DDR. In this
way, the flows received by these tasks are in the opposite
direction with the flows coming from pDDR. Unlike the
case B, here the allocation begin from the top to bottom
by ordering the tasks in LR with an in increasing number
of IC. Besides, each selected task should not send data to
the allocated tasks to avoid a contention with any flow
coming from pDDR.

d) Case D: LS 6= 0 and LR 6= 0: This case
associates the cases B and C: tDDR sends data to the tasks
of LR and receives from the tasks in LS . Thus, tDDR is
now allocated somewhere on Xmin in such a way the case
B is applied above tDDR and the case C below it. Figure 10
shows that we must begin by allocating the tasks of LS . In
Figure 10a, we allocate all the LS tasks above tDDR and
some tasks of LR below it, while in Figure 10b, all the
LR tasks are allocated below tDDR. In the first case, the
remaining tasks of LR, not allocated on Xmin, receive the
flows from tDDR without causing any contention with the
flows coming from pDDR. However, in the second case, the
flows generated by the remaining tasks of LS are blocking
flows. Thus, when the tasks of LS could not fill all Xmin,
then tDDR is allocated on the core corresponding to the
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Fig. 10: A possible scenario when allocating all the tasks of: (a) LS ,
(b) LR, on Xmin

difference between the size of LS and the size of Xmin.
However, when the size of LS is greater than the size of
(Xmin − 1), we allocate tDDR at the second line near the
DDR. In this case, we allocate a high number of tasks from
LS on Xmin and only one task from LR.

In all the cases, the remaining tasks from LS are thus
allocated on the same line of tDDR and on its right, while
those of LR are allocated on the same line with tDDR but
on its left if possible.

C. Rule 3: Minimizing the path-based contention on the
first line used by the outgoing I/O flows

This rule is only applied on the applications presenting
an intersection with the DDR. The remaining tasks are
ordered in two lists, noted LGS and LGR. These tasks
are ordered with an increasing number of EC in LGS ,
while in LGR with the increasing number of IC. Therefore,
we begin by the lowest degree of communications from
LGS and then from LGR. A task with degree 0 in LGS

means that the task does not send data to any other
tasks. The placement of the task on the first line depends
from which list is selected. Indeed, a task selected from
LGS is allocated on the most left core of the first line.
Actually, allocating a task with the maximum number of
EC on the most left core, as at the core 1 of Figure 11a,
generates blocking flows not only to the outgoing I/O flow
on the first line but also to those coming from pDDR. These
blocking flows are reduced when allocating this task at the
core 4 as seen in Figure 11b. Besides, the selected task
should not receive from the allocated tasks on its left on
the same line, and not send the allocated tasks on its right.
By following the same principle, a task selected from LGR

is thus allocated on the most right of the first line.
For HM11, LGS = (degree1 : th9, th8...th0) and LGR =

(degree0 : th0; degree1 : th8...th1). The lowest degree, i.e.
degree 0, is only in LGR where the task selected is th0. It
is allocated on the most right of the first line, i.e. at (5, 1).
The other tasks present the same characteristics, thus they
are allocated arbitrary on this first line.

D. Rule 4: Minimizing the contentions on the flows coming
from the DDR

In order to allocate the remaining tasks on the remain-
ing cores, we begin the allocation from the second line,

pDDRpDDR-1 pDDR+1

Xmin

(a) (b)

pDDR-2

1 4

pDDRpDDR-1 pDDR+1

Xmin

pDDR-2

1 4

Fig. 11: A possible scenario when allocating the task with the
maximum EC on: (a) the core 1, (b) the core 4.

near the DDR (it is the first line for the applications that
do not have any intersection with the DDR), to the lines
at the top of the application. The tasks with the minimum
number of EC are allocated first. Actually, a task with the
maximum number of EC allocated at the last line generate
flows in opposite direction with the flows coming from the
DDR. Besides, it is preferable to select the tasks that send
data to the tasks already allocated on the same line, and
also that do not receive from the allocated tasks below its
line and do not send to the allocated tasks above its line.

E. Rule 5: Modifying pDDR for an outgoing I/O flow for
an application

At this level, all tasks are allocated within their appli-
cations. However, there are some applications presenting
an all-to-all communications (like FADEC). Thus, it is
impossible to reduce significantly the contentions with the
outgoing I/O flow when they are allocated on the first line.
For this reason, this rule aims to change pDDR for/from
which the outgoing I/O flow is sent when the contention
on the first line is not reduced. However, this change is
subject to some conditions. In fact, we first compute the
charge of the contentions on the outgoing I/O flow on the
column of pDDR, noted chargey, and on the first line from
pDDR, noted chargex. Then, we do another computation
of these charges when changing pDDR to pmDDR. pmDDR

is the first DDR port not used by another outgoing I/O
flow (except the ports 1 and 11 to not add a contention
on the incoming I/O flow). Only when the total charge is
reduced, we confirm the change of the DDR port. chargex

and chargey are calculated as following:

chargex =
NF L

flows

NF L
routers

; chargey =
N

CpDDR

flows

N
CpDDR
routers

(2)

NF L
flows returns the number of flows having the same

direction as the outgoing I/O flow on the first line. These
flows are considered on the routers counted by NF L

routers

which are computed from the next port of the peripheries
of the concerned application. On the other side, NCpDDR

flows

corresponds to the number of flows going on the same
direction of the flows coming from pDDR on its column.
N

CpDDR
routers returns the number of cores on which the tasks

allocated to them use pDDR.



SHiC MapIO ex MapIO

jitter in µs 676.7 579 436.5

TABLE II: Table reporting the jitter for a given VL in function of
mapping strategies when considering the case study A.

Before applying this rule on HM16, its outgoing I/O
flow, going from the port 17, is blocked by a number
of flows from the 36 flows of FADEC going in the same
direction with it, as illustrated in Figure 6c. The number
of routers are counted from the port 16 which comes after
the peripheries of HM16, thus Nrouters = 7. Therefore,
chargex = 36

7 = 5.14. However, chargey = 0 as there are
no core-to-core flows on HM16 going on the same direction
with the flows coming from pDDR. Let us now recompute
the charge for HM16 if the port used by its outgoing I/O
flow is 13. Thus, the number of flows going on the same
direction on the routers counted from the port 13, i.e. on
4 routers, is reduced to 9. Then, chargex = 9

4 = 2.25.
However, chargey is increased. Indeed, the port 13 is used
by FADEC13 and HM10, thus there are 4 routers use the
port 13. On these routers, there are 7 flows going in the
same direction with the flows coming from the DDR, as
illustrated in Figure 6c. Thus, chargey = 7

4 = 1.75. As the
total charge is reduced to 4, then the outgoing I/O flow
for HM16 goes from the port 13.

VI. Evaluation
This section evaluates ex MapIO compared to the

SHiC and MapIO strategies. Thus, we first compare the
jitter obtained with the existing mapping strategies on the
case study A illustrated in section IV. We then explain the
impact of the different rules on the WCTTs of the outgoing
I/O flows. Then, we consider another realistic case study
in order to show the impact of the number of applications
allocated on the NoC on the jitter of an outgoing I/O flow.

A. Evaluation of the jitter on different sizes of NoCs
1) 10×10 NoC: Figures 6a, 6b and 6c illustrated the

mapping of the case study A by considering the different
mapping strategies. Table II reports the jitter value for a
given VL in function of these strategies. This table shows
that only by applying ex MapIO, the jitter is reduced
by respectively 35% and 11.5% compared to SHiC and
MapIO. This reduction is sufficient to lead to a jitter lower
than 500µs.

To explain this reduction, we consider the graph in
Figure 12 which shows the WCTTs of the outgoing I/O
flows for the different applications in function of the
mapping strategy. The WCTT of the outgoing I/O flow
of FADEC11 is reduced by 33% compared to MapIO.
Indeed, this reduction is due to the rule 2, where tf10, i.e.
tDDR is placed at the bottom of the application reducing
the contention on the column of the port 2. In MapIO,
this task receiving from all other tasks is placed at the
top of the column.
The rule 1 has especially reduced the WCTT of HM12 and
HM11 by 28% compared to MapIO. Actually, in MapIO in
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Fig. 12: A graph illustrating the WCTT of the outgoing IO flows
for different applications in function of mapping strategies when
considering the case study A.

SHiC MapIO ex MapIO

jitter in µs 446.5 406 354.6

TABLE III: Table reporting the jitter for a given VL in function of
mapping strategies when considering the case study B.

Figure 6b, th11 in HM12, i.e. tDDR is allocated on the last
column, thus the outgoing I/O flow going from the port
8 is blocked at the source by 8 flows going from this port
to the last two columns. However, the rule 1 allocates th11
on Xmin, then the outgoing I/O flow goes from the port
7 and it is blocked at the source by 4 flows. Besides, the
rule 3 eliminates some flows that was in the same direction
with the outgoing I/O flows, as the flow from th2 to th3 in
HM11 in MapIO.
Finally, the WCTT of the outgoing I/O flow of HM16
is reduced by 55.2% compared to MapIO, but it is still
greater than the one obtained by SHiC. In fact, in the
SHiC mapping illustrated in Figure 6a, HM16 is the
nearest Ethernet interface. This is not the case in MapIO

and ex MapIO, where this flow is blocked by core-to-core
flows of FADEC. The rules 1 and 2 reduce the WCTT
of this flow by 11, 11% compared to MapIO. These rules
allocate th15 at the 8th column, and thus the outgoing I/O
flow from HM16 is blocked at the source by 5 unblocked
flows, while it was blocked by 11 flows in MapIO, as t15
is on the last column. On the other hand, the rule 5 has
the greatest impact on decreasing the WCTT of this flow
by 44.09%. Indeed, the rule 5 has reduced the distance
crossed by the outgoing I/O flow, from 14 to 9 routers,
and thus it decreases the number of flows in congestion
with it.

2) 8×9 NoC: We consider a case study, noted B,
consisting of 7 applications allocated on a NoC of size of
8 × 9. This case study is made of FADEC11, FADEC8,
FADEC6, HM14, HM9, HM7 and HM6. Figures 13a, 13c
and 13b show respectively the mapping of these applica-
tions by considering SHiC, MapIO and ex MapIO.
Table III shows that the jitter in all strategies is less than

500µs. The jitter in ex MapIO is reduced by respectively
20.5% and 12.9% compared to other strategies. Besides,
the jitter obtained in SHiC is close to the maximum
allowed jitter. ex MapIO can reduce the WCTTs of the
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Fig. 13: Mapping for the case study B composed of 7 applications using respectively SHiC, MapIO and ex MapIO.
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Fig. 14: A graph illustrating the WCTT of the outgoing IO flows
for different applications in function of mapping strategies when
considering the case study B.

outgoing flows for HM7, HM9, FADEC11 and FADEC8,
as shown in the graph of Figure 14. However, by comparing
to SHiC, the WCTTs of HM6, HM14 and FADEC6
are still higher. Indeed, SHiC allocates HM6 and HM14
near to the Ethernet interfaces, thus the congestion is
reduced. Although FADEC6 is allocated near to the
Ethernet interfaces in ex MapIO, the increased value of
its outgoing flow is explained by the contentions with the
flows of FADEC11. Actually, this flow goes from the port
12 and crosses more than 3 routers occupied by FADEC.
However, in SHiC the outgoing flow is not blocked by
a high number of flows at the first line as it crosses only
one router occupied by FADEC. Therefore, if we increase
the size of FADEC6, the WCTT of its outgoing flow in
SHiC will increase, as the congestion at the source and
possibly on the first line increases, which lead to a high
jitter. However, the WCTT of the outgoing I/O flow of
FADEC6 in ex MapIO still the same as its value depends
on the mapping of FADEC11 which is not modified.

B. Impact of the number of applications on the jitter
As the jitter depends on the WCTTs of the outgoing

I/O flows of the different applications, thus theoretically
adding a new application increases the jitter. In order to
show the impact of adding applications on the jitter in
the different mapping strategies, we consider an extension
of the case study A where we add the application HM7.
As ShiC strategy is unable to allocate this application,
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Fig. 15: MapIO mapping for the case study A when adding a new
application HM7.
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Fig. 16: ex MapIO mapping for the case study A when adding a
new application HM7.

the mapping of this case study is the same in Figure 6a.
MapIO and ex mapIO allocate the 9 applications as
illustrated respectively in Figures 15 and 16.

As SHiC leaves the same mapping, the jitter remains
unchanged as shown in Table IV. However, this jitter is
increased by 28% in MapIO and ex mapIO compared to
the case study A made of 8 applications. Actually, adding
an application leads not only to add the WCTT of its
outgoing I/O flow but also increases the congestion on



SHiC MapIO ex MapIO

jitter in µs 676.7 744.3 558.2

TABLE IV: Table reporting the jitter for a given VL in function of
mapping strategies after adding a new application to the case study
A.

SHiC MapIO ex MapIO

jitter in µs 514 483.7 352.13

TABLE V: Table reporting the jitter for a given VL in function of
mapping strategies after adding a new application to the case study
B.

the other applications. When increasing the number of the
applications, FADEC11 occupies more routers in the first
line. Then the WCTTs of the outgoing I/O flows of HM11,
HM10 and HM8 increase having these flows blocked by a
high number of core-to-core flows of FADEC11, as shown
in Figures 15 and 16. On the other hand, FADEC11
occupies a less number of rows and thus the contention on
the flows coming from the port 2, i.e. used by the outgoing
I/O flow for FADEC11, is reduced.

Now, we consider the case study B, and we add a new
application HM5. We also decrease the size of FADEC8
to 7, HM14 to 10 and HM9 to 8, in order to make SHiC
allocates all the applications. Here, the jitter increases
with SHiC and MapIO and exceeds the maximum al-
lowed jitter with SHiC. However, it remains the same
with ex MapIO. Indeed, decreasing the size of some
applications will decrease the WCTTs of their outgoing
I/O flows. However, adding an application increases the
congestion on the other applications. These congestions
are reduced by applying our rules, but this is not the case
when allocating the applications using MapIO and SHiC
strategies.

C. Discussion
The results presented in the previous section show

that the jitter is a function of the type, the size of the
applications and the size of the NoC. Considering different
NoC sizes, we have seen that ex MapIO reduces the
WCTTs of the outgoing I/O flows and thus the jitter on a
given VL. This jitter is lower than 500µs when allocating
8 applications. However, when increasing the number of
applications (without modifying the size of the other ap-
plications) on a 10×10 NoC, the jitter exceeds 500µs. This
is explained by adding a WCTT on the jitter as Equation 1
indicates. Besides, this new application adds a congestion
on the outgoing I/O flows from other applications. On a
reduced size of a Tilera-like NoC, we have seen that till 8
applications, ex MapIO leads to a jitter lower than 500µs.
Therefore, our proposition explained in section III presents
some limitations where ex MapIO is applied with specific
NoCs and applications sizes.

VII. Conclusion and future work
In this paper, we proposed to replace the mono-core

processors in the avionics architecture by a NoC-based
many-core architecture. Thus, in the proposed architecture
the End Systems are based on NoC.

The main contributions in this paper are:
• First, the description of the integration problem of

the NoC in an AFDX architecture in order to keep
the same functions and characteristics of the current
End Systems.

• Second, the illustration on an avionics case study,
where we show the limitations of existing mapping
strategies to reduce the jitter for a given Virtual Link.

• Third, the description of a new mapping strategy
which adds a number of rules to an existing strategy,
MapIO, in order to reduce the jitter. These rules min-
imize the source-based and path-based contentions on
the path of the outgoing I/O flows.

• Finally, our new mapping strategy evaluation, per-
formed on realistic avionics case studies, which shows
that the jitter is significantly reduced (up to 34%).
Meanwhile, the jitter increases with the increase of
the NoC and the applications size, leading to exceed
the maximum allowed bound.

As future work, we aim to evaluate our proposed map-
ping strategy on different NoCs and applications sizes to
find the threshold of these parameters that guarantee a
bounded jitter. Besides, another proposition making the
NoC behaves as a current End System is expected, as
considering one dedicated core to shape the traffic and
schedule the outgoing I/O flows in such a way to bound
the jitter.
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