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The exploration of the phase diagram of a minimal model for barchan fields leads to the description of three
distinct phases for the system: stationary, percolable, and unstable. In the stationary phase the system always
reaches an out-of-equilibrium, fluctuating, stationary state, independent of its initial conditions. This state has a
large and continuous range of dynamics, from dilute—where dunes do not interact—to dense, where the system
exhibits both spatial structuring and collective behavior leading to the selection of a particular size for the dunes.
In the percolable phase, the system presents a percolation threshold when the initial density increases. This per-
colation is unusual, as it happens on a continuous space for moving, interacting, finite lifetime dunes. For extreme
parameters, the system exhibits a subcritical instability, where some of the dunes in the field grow without bound.
We discuss the nature of the asymptotic states and their relations to well-known models of statistical physics.

DOI: 10.1103/PhysRevE.94.042101

I. INTRODUCTION

One of the key assumptions of equilibrium statistical
physics is the existence of conservation laws associated
to quantities like energy, linear and angular momenta,
and number of particles. Out of equilibrium, some of the
conservation laws may break. In driven systems, some of the
mechanical quantities are continuously injected and dissipated
into the surrounding medium [1]. In reaction-diffusion
problems [2,3], even the conservation of the number of
particles may be absent. Systems without conservation laws
often exhibit an absorbing phase transition (APT) between
an active phase with a fluctuating number of particles, and an
absorbing phase without any activity. Depending on the model,
it could be a state where all particles have disappeared, or
where particles are in a frozen state. A prominent universality
class for absorbing phase transitions is the directed percolation
(DP) class [4,5]. But the definition of a class of universality
is very sensitive to the underlying symmetries: parity of the
number of reactants [6], nature of the absorbing phase [7], etc.,
imply different universality classes from DP. Furthermore,
if a source of noise has an effect on the absorbing phase, it
seems that the phase transition disappears [4,8].

In reaction-diffusion models, the dynamics is defined in
terms of particles, and the order parameter is linked to the
number of particles. In other models, the dynamics acts on
a continuous additive quantity: mass, energy, or momentum.
Related phase transitions happen between a low, even
fluctuating, homogeneous level of this quantity and a localized
state where it is maximized. For instance, in systems of
self-propelled particles [9], the momentum is zero on average
in the disordered phase, whereas it is concentrated in solitons,
or in nonlinear, periodic peaks [10,11] in the “ordered” phase.
In mass transfer models (MTMs) [12], an out-of-equilibrium
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activity maintains the exchange of mass between sites and
leads to a transition of mass condensation on few sites.

Previously [13,14], geophysical matters have led us to build
a model for barchan fields in order to understand the peculiar
characteristics of such structures. Our studies were based
on experiments [15,16] and on field observations [17-19].
However, we will now ignore the natural background of
the model to study its whole phase diagram. We consider
objects, which we will arbitrarily call dunes and which are
characterized by an extensive quantity V that we will call
volume, but could as likely be either mass or energy. Those
objects appear, move spatially, react with each other, and
disappear depending on the value of V.

This model presents features similar to both reaction-
diffusion models and MTMs. One can wonder whether a
symmetry will govern the properties of the system and its phase
transition, or if we get a richer phase diagram. We propose now
to investigate the parameter space of our system to understand
the interplay between both ingredients.

In the following, we define our model. We question its
microscopic symmetries and we present the (classical) models
of statistical physics to which we expect to compare our dunes
model. Then, with numerical measurements and analytical
arguments, we will show that percolated noisy deserts can be
found. Finally, in an opposite limit of the control parameters,
we find a transition of dune condensation.

II. DESCRIPTION OF THE MODEL

In this model, cubic dunes are labeled by their position
(x,y) on the field and their size w = V'!/3. These variables are
continuous, as neither the space nor the size are discretized.
Dunes move on the field in the decreasing y direction only
[Fig. 1(a)], with a speed v inversely proportional to their size:

v=2, 1)
w
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FIG. 1. Interactions between dunes. (a) Remote interaction and
definition of the neighborhood. (b) The four types of ideal collisions:
merging, exchange with s = 1, fragmentation, exchange with s < 1.

where « is a parameter which is related to the mobility of a
dune.

The field has alength L and a width £. We impose biperiodic
conditions at the borders of the field, ensuring that dunes
reaching the y = 0 limit (respectively x = 0) are going on
their ways at the y = L border (respectively x = £), and vice
versa.

The size of a single dune decreases in time according to the
following law:

w(t) = [w(ty) — (t — 1)1, )

where w(fy) is the initial size of the dune, #; is the time it
appears on the field, and & is the constant rate of volume
loss. This law is valid until the size of the dune reaches the
minimum value w,,, when it is then removed from the field.
To compensate for this outflux, dunes of size wy are injected
on the field, randomly in time and space, at a constant mean
rate A by units of time and surface.

Dunes interact with each other in two different ways. If two
dunes are closer than a distance dj along the y direction and
the overlap length o between them, along the x direction, is
not zero [see Fig. 1(a)], the downstream one catches a part Q¢
of the volume lost by the upstream one, proportional to the
ratio s between the overlap length ¢ and the upstream dune
size w':

o

s=—, 3)
w

Qo = 5®. @)

This defines an effective remote interaction of range dy be-
tween dunes. Dunes exchange continuous amounts of volume.
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If there are several dunes upstream within the distance dy, the
total caught volume is a sum over all these neighbors, taking
into account the screening effect of a dune before one another.

As the speed of a dune is inversely proportional to its size,
small dunes travel faster than big ones, and therefore dunes can
collide. A collision occurs when two dunes overlap along the
x direction, and the center of mass of the upstream dune passes
the center of mass of the downstream one in the y direction. We
emphasize that dunes of our model are cubic, so their physical
extents allow collisions on a continuous space. However time
is discretized. Therefore we need to test whether a collision
happens during a time step At or not. A collision is defined by
the fact that the ordinates of two dunes will be equal within At.
We fix the time step at Ar = 1. The mobility « [see Eq. (1)]
is used to tune the rate of the dynamics. In the following, the
system is studied for a given maximum time: 10° Az.

We impose that the total volume engaged during a collision
is conserved, and that a collision only modifies the volume
repartition between dunes. Collision phenomenology is en-
tirely determined by its local geometry. The overlap between
the two dunes defines sections of the downstream one. These
sections are considered separately for the resolution of the
collision. The ordinates of the dunes after collision are set to
the ordinate of the previous downstream dune. Their abscissas
are calculated as the barycenters of the sections they are made
of, which can lead to some effective lateral diffusion. We define
four types of binary collision [see Fig. 1(b)], depending on the
value of the parameters s [defined in Eq. (3)] and r defined
with the width w of downstream dune as follows:

o
r=—. (5)
w

When the overlap is complete (s = 1), we compare r to a
limit value ¢,. If r < ¢, the two dunes merge; if r > ¢, the
collision rearranges the total volume between the two dunes.
The overlapped section of the downstream dune becomes
independent, the remaining sections are merged with the
upstream dune. If the overlap is not complete (s < 1), we
compare r to another limit value ¢,. If r < ¢, the collision
splits the downstream dune into two dunes; if » > ¢, the
volume is rearranged between the two dunes as the (s = 1,r >
&) case. The quantitative effect on the volumes is summarized
in Eq. (6), where braces mark individual dunes and brackets
mark dune conformations:

H{w? + w?}]
3 2{‘7“}2]
o]~ [

2
[{wz(w{ilg)}-&- w’3}]

s=1,r <g

s<1,r<s,,' (6)

s=1,r > ¢
s<1l,r>g,

Depending on the volume ratio and on the relative distance
along the x direction, the interactions may smooth out the
volume difference, or increase it. They may shift the dunes
away, or align them toward the same axis [14].

Eight parameters control the phenomenology of the
model (see Table I): three length scales, three time
scales, and two dimensionless parameters. Thus, according
to Buckingham [20], we can build four dimensionless,
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TABLE I. Parameters of the model: symbols, physical dimen-
sions, significance, and reference values.

Wy, L minimum size 0.01
wo L injection size 0.1
dy L limit interaction distance 1
P L3T7! volume loss rate

A L72T! injection rate

a L?T™! dunes mobility 0.001
& (%} limit value for » when s = 1 0.5
&p (%) limit value for » when s < 1 0.5

independent control parameters. We first define two aspect
ratios:

Wiy
6 - (7)
Wo
A=20 8)
-2

We now explicitly denote the three time scales of the system.
According to Eq. (2), the lifetime t; of a single dune is

3 3
Wy — Wy,

Tg = T (9)

The typical time 7, between two dune nucleations on a typical
surface d? is

1

= —. 10
v (10)

Tn
The typical collision time 7, is defined as the time for the
quickest dune to reach the slowest one within the interaction
range dy, without considering any other phenomenology. If
there is no exchange of volume, the slowest dune is wy wide.

Therefore, 7. is
do [ 1 1\!
Tp=———— . (11)
a \w, w

Then we can build two control parameters that compare these
three times:

3 3
iz Wo — Wy, o
= — = ——-"M)d;, 12
§ . > 0 (12)
3 3
Ty o wy—w, a1 1
T O dO Wi Wo

The first one compares the relative importance of injection
and dissipation in the system. For low &, the volume loss
predominates; for high &, the injection is the main drive of
the system. The second one compares isolated and collisional
dynamics. For low 7, the dunes’ lifetime is low compared to
the typical collision time, therefore dunes hardly interact. For
high n, dunes experience lots of collisions before disappearing
from the field.

Dunes are made of a collection of sand grains under the
drive of the wind. And so their kinematics is really nontrivial
[see Eq. (1)]. There is no way to consider these objects
as isolated systems under classic conservation laws [14].
Even during collisions where the volume is locally conserved
[Egs. (6)], the effective kinetic energy and momentum are
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neither conserved. Because of the minimal size w,,, the dunes’
injection A, and the merging and fragmentation collision, the
number of dunes is not conserved either. Neither is the total
volume, as the injection rate X is constant and not tuned to
compensate the loss due to ® and the effect of the minimum
size w,,. This system thus follows no conservation law at
the scale of the field. Therefore, no prediction of its large
scale dynamics or phase diagram can be made on the basis
of conservation law arguments, as often done in statistical
physics. In this study, we focus on the numerical exploration
of its (&,n) phase diagram. All the other parameters are kept
constant (see Table I). The length scale is thus defined by
dy, and the time scale by t., through «. We tune £ and n by
changing the loss rate ® and the injection rate A.

III. ANALYSIS OF SYMMETRIES

One can first ask if there are some limits where the
dynamics falls onto a well-known class of universality. When
the dissipation is set to zero (& = 0), no more remote
interaction occurs. The only events are the binary collisions,
the nucleation, and the disparition of dunes, named A in the
following. Annihilation happens because collisions can split
dunes’ volume in a continuous manner, so the resulting volume
can be less than the minimal volume w,,. The dynamics of
Eq. (6) can be summarized as

245 A, (14)
24 % 34, (15)
AL g, (16)
g5 A (17)

The first three rules [(14)—(16)] embed this model in the
pair-contact-process class. However, the nucleation process
[Eq. (17)] makes the absorbing phase fluctuate around a
stationary state. In the Schlogel model [4,8], such a noise
is known to smooth out the transition. We would like to
understand how the nucleation acts on our peculiar model.

One can also consider a quasiconservative limit where the
nucleation is set to zero [A = 0 in our dune model or y =0
in Eq. (17)]. We call it quasiconservative because we suppress
the source of sand, but the persistence of dune annihilation still
leads to a global decrease of the total volume of sand. In that
version, our model has a true absorbing phase and is very close
to the pair contact process with diffusion (PCPD). The PCPD
model has two states [6,21-23]; one is an absorbing phase
where at most one particle diffuses. The second one is made
of patches of persistent activity. If the dynamics is figured on
a spatiotemporal scheme, those patches appear as percolated
clusters along the time direction. Since our dunes move in a
ballistic way along the y direction, one can wonder whether
dune aggregates percolate in this direction.

Another way to analyze the rules of our model is to
see each dune as a sand pile [see Figs. 2(a) and 2(c)].
Without dissipation, a single pile is stable and can be
destabilized by another pile in its neighborhood. This results
in a complex reorganization of sand. This is very similar to the
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FIG. 2. Definition of sand pile models. (a) BTW-Manna model:
a pile of more than one particle is unstable. Then the grains are
displaced (randomly) on neighboring sites. (b) Zero range process
(ZRP): each grain moves at a rate u which depends on the occupancy.
A variant, the misanthrope model, takes into account the occupancy
of the departure and arrival sites. (c) Variant of BTW model where a
site is activated by a neighbor. (d) Two configurations of remote sand
exchange in our dune model. The dunes are moving from left to right.
The shaded spaces figure out the sand which is collected by the wind.

Bak-Tang-Wiesenfeld (BTW) model [24], where piles of
grains are unstable above a threshold, but with a condition
on the neighborhood (see for instance [25]).

Such a comparison should come with many warnings.
In particular, we should discuss whether we are within the
framework of self-organized criticality (SOC) [24] as it has
been considered for BTW model. It has been shown that SOC
and APT are intrinsically linked [26,27]. In SOC, dissipation
and driving are equal in magnitude, such that the global
density is constant, but their rates are decoupled. The APT
counterpart studies a model at a given density and its critical
point corresponds to the fixed point of the SOC model.
This said, the way the sand is dispatched in our model is
deterministic. Deterministic or random input [28] is known to
change the stationary properties in a nontrivial way in sand
pile models [29,30].

Although all of those points could act on the detailed
dynamics, we skip this discussion to concentrate on general
aspects. The sand pile model is known to exhibit aggregates
which go through the system in avalanches or in multifractal
waves, and its transition has common features with critical
phenomena. Therefore we expect that our model exhibits a
transition to a phase where large aggregates propagate along
the wind direction.

These considerations emphasize the role of sand exchange
in contrast with reaction process. We can wonder if there is
another limit in which reactions are no more the main process
and are replaced as the key ingredient by the remote exchange
of sand [see Eq. (2) and Fig. 1(a)]. An obvious condition is to
set the loss of volume @ to a high level. This sand is lost forever
if there are no neighboring dunes, so the global density has also
to be sufficiently high to allow interactions. We will show that
these conditions are fulfilled at £ > 1 and n < 1. In this last
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part of the phase diagram, the misanthrope model [31] can be
a minimal model to understand our dynamics. In this model,
a variant of the zero-range process [see Fig. 2(b)], an element
of mass goes from a site i to the following one (in d = 1) with
a rate u(m;,m;41) which depends on the occupancy of both
sites [12,32,33]. Depending on the rate of exchange, the spatial
distribution of mass in the system may exhibit a transition. In
that case, a small global density will remain homogeneously
distributed. But, above a critical density, the excess of mass
condenses on a site. The condensate can move, and then the
dynamics of mass collection is explosive [32].

Although BTW-like models study unstable dynamics where
sudden rearrangements occur and spread like avalanches, the
question in MTM is rather to know what type of distribution
is reached if sites retain a part of the distributed mass. Indeed
it is the main difference. Other ingredients have been changed
to test many variants of the models. For instance, both models
can be found with a bias toward a direction [34,35], or with
nucleation and sinks of matter [12,26,27]. The mass can be
discretized, or can be a continuous variable [33,36]. Last, we
have pictured these models on one-dimensional space, but
they also exist in any dimension. On that peculiar point, even
if the motions of barchans occur along the y direction, the
interactions have true two-dimensional aspects as it is depicted
in Figs. 1(b) and 2(d).

IV. OUT-OF-EQUILIBRIUM STATIONARY STATES

We first focus on the low &, low n region. In this limit,
volume loss dominates both the dune injection and the collision
dynamics. As shown in [13], the system always reaches a
stationary, fluctuating, out-of-equilibrium state in which dunes
almost do not interact. The dynamical properties remain
normal, in the sense that macroscopic quantities such as
fluctuations of the number of dunes are Gaussian [14].

We then decrease the loss rate @, which means that we
travel along the diagonal of the (£,7n) diagram, to the high &,
high n limit. As ® decreases, the density in the field increases
and interactions appear. Thus, the phenomenology changes,
and clusters of dunes appear in the field. They are created by
the destabilization of local high densities through avalanches
of collisions. We measured that the fragmenting collisions
become dominant in these structures and this generates lots
of small dunes, which can then catch up on other dunes. The
dynamics of dune birth is no longer Gaussian and this fact
supports the idea of avalanche [14].

Inside a cluster, the density is high enough to prevent
volume loss: any volume lost by a single dune is caught by the
downstream ones. Definitive loss of volume happens mainly
at the downstream front of the cluster. Therefore, borders of
these structures are very well defined, as any dune put aside
by a collision loses volume and quickly vanishes.

Clusters are also responsible for a size selection in the
field. As they are very dense, dunes inside go through lots of
collisions, whose accumulation leads to the emergence of a
new typical size w. Whereas these dunes are small and would
disappear quickly in a diluted field, the effective conservation
of volume in the clusters stabilizes them. This selection is
directly due to the effective dynamics in the clusters and does
not happen in the rest of the field. It generates an anticorrelation
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between the local density of dunes and the local mean width
of dunes [13].

The crossover between dilute and dense dynamics is
smooth, and presents no sign that would mark the presence
of a phase transition. Quantities of the system evolve without
any discontinuity and their fluctuations do not diverge. Neither
does the spatial correlation along the y direction [14]. This
crossover is merely a simple, smooth change of dynamics,
due to the progressive densification of the system. This can
be seen as counterintuitive in the light of the analysis of
symmetries (Sec. III). One explanation is that the lifetime of
the aggregate is never long enough to allow a clear breaking
of symmetry. To stabilize them, one can make the dynamics
more conservative in lowering @ and A. Another possibility
is, at a given dissipation ®, to increase the volume injection A.
That is the subject of the next two sections.

V. PERCOLATION

In the out-of-equilibrium stationary states, a very high
activity emerges within the aggregates, although dunes barely
interact in the dilute regime. All these states are made of
fluctuating populations of objects as far as numbers and
volumes of the objects are concerned. However, the dilute
regime has some features of an absorbing phase and its
fluctuations are given by the nucleation A and the loss of
sand ®. Suppose now that we suppress those two stochastic
processes, then the dilute regime will become a true absorbing
phase: without direct collision there is no way to produce or
destroy dunes.

In the presence of collisions however (see Fig. 1), the
number of dunes may fluctuate whereas the total volume
is kept constant. So one can wonder whether it is possible
to get enough collisions to produce an active phase and
a phase transition to this new state. In the following, we
address this question first in a quasiconservative system where
(®,1) = (0,0). Then we increase the level of fluctuations of
the volume (®,A) # (0,0) to investigate the robustness and the
properties of the new phase.

A. Quasiconservative system

Increasing 7 as & is kept constant is equivalent to decreasing
both the loss rate @ and the injection rate A in the same manner,
and thus lowering the nonconservative aspect of the system.
We can even turn off the injection and dissipation. In that case,
& is not defined anymore, and 7 is infinite. Notice that the
existence of a minimal size w,, maintains a sink of matter.

When 7 is sufficiently high, the behavior changes: the
system becomes sensitive to the initial conditions and exhibits
a percolation threshold when the initial density increases
[Fig. 3(b)]. This transition is rather unusual, as it is a
percolation of polydisperse, moving, interacting dunes on
a continuous space. Some systems with equivalent features
have been previously studied: continuous isotropic percolation
of identical disks [37], or squares and other anisotropic
objects [38—40]. Some other models describe systems with
an infinite number of degrees of freedom [41].

PHYSICAL REVIEW E 94, 042101 (2016)

() (b)

lfpp

08—

04—

Po
\ \ \

0 0.03 0.06 0.09
d

2

4

-6

0 200 400 600 800 1000 0 2 4 6

FIG. 3. Percolation. (a) Diagram of a percolation event on the
field. Black areas are the proper surfaces of the dunes, gray areas
are their interaction surfaces. The surface surrounded in black shows
the cluster of dunes that percolates through the periodic boundaries.
(b) Probability p, for the system to percolate as a function of the
initial density pg, with ® = 0 and A = 0, at a fixed length L = 16,
for different widths of the field: ¢ = 32 (o), 128 (W), 1024 (©). The
continuous lines are given by Eq. (20) without any fitting parameter.
(c) In(1 — p,) vs £ for a fixed system length L = 16 and different
initial densities [py 2~ 0.0039 (e),0.0078 (H),0.0117 (¢),0.0156 (a),
0.0195 («)]. The continuous lines are given by Eq. (21) without any
fitting parameter. (d) Finite-size effects on the percolation transition.
We plot the initial density py needed to get a certain probability pg
for the system to percolate: when ¢ varies and pg =0.25 (o), 0.5
(M), 0.75 (¢), L = 16; when L varies and pg =0.978 and £ = 2 (A).
The black continuous line shows a power law of exponent —1/2, the
dashed (blue) line shows an exponent of 1.

1. Description

Each dune of size w defines an interaction area of length
dy and width w in front of itself. The surface of a dune
is defined as the reunion of the proper surface w? of the
dune and its interaction surface wdy. We call percolation
the onset of a path that connects the upper and the lower
border of the field through overlaps of dunes surfaces, and
whose extremities connect themselves through the periodic
boundaries [Fig. 3(a)].

We compute the probability of percolation in counting the
number of percolated events for a given computation time.
This probability p, evolves as the initial density po is changed
[see Fig. 3(b)]. We thus define numerically a threshold p when
the probability reaches a given value pg.

Studying this probability allows us to check the existence of
percolated clusters with a low numerical effort. It is however
not the classical order parameter. To investigate the properties
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of the phase transition, one has to study the probability for a
dune to be inside an infinite aggregate.

Finite-size effects show that when the width ¢ of the
field increases, the threshold tends to zero with a £71/2 law
[Figs. 3(b) and 3(d)]. If the length is increased, the threshold
vanishes as L' [Fig. 3(d)]. We emphasize that three very
different values of pg have been used to produce Fig. 3(d). So
the whole curve is going to be steeper and steeper as the width
is increased. Therefore, we could deduce that this percolation
could appear at a zero density for an infinite system.

This result is quite astonishing in the light of former
studies of percolation on a continuous space [37], and for
different shapes of objects [38—40]. Therefore, something
in this analogy must be misleading. Indeed, the process
which leads to a percolation event is the fruit of dynamical
interactions: there is no percolation without collisions.

In the limit of a quasiconservative system, we propose to
assume that a percolation event is the result of the interaction
of two dunes, which collide with each other and their daughters
many times because of the periodic boundary conditions,
generating many new dunes in their column and thus forming
the percolating cluster. Following this hypothesis, the system
is then entirely determined by its initial configuration, as there
is no nucleation. The probability for the system to percolate is
therefore simply the probability to find at least two dunes in
the same column.

2. Analytic arguments

Considering that an aggregate is the consequence of an
avalanche of fragmenting collisions, let us consider how many
interacting dunes are needed to create a percolation event.
Initially, the system is fed with a homogeneous distribution
of dunes with a mean size wy. For the system to percolate,
one must have at least two dunes of mean size wg in the
same column, colliding and then generating through multiple
collisions a minimal percolation structure, i.e., a column of
length L, of dunes of minimal size w,,, each separated from
the next downstream one by a length dj. So, to ensure that
the two initial dunes gather enough volume to generate the
minimal percolation structure, one has the mass balance:

—w) < 2wy, (18)

for a binary collision. Reversing this argument, we define
here the maximum size L, for a binary collision to create
a percolation event. For a longer system, one has to consider
collisions with a greater number of dunes. For a collision with
anumber N\ of similar dunes, the percolating cluster can reach
a length of

3
LNszo(ﬂ) : (19)
There is no other role of the length in the quasiconservative
system. Since dunes do not lose any sand when they are
isolated, the longitudinal distance delays the appearance of
the percolation, but does not prevent it in any other manner.
The width of the system might change the probability of
percolation since the type of collision changes according to
the relative lateral position of dunes. For two similar dunes of
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width wy, their relative distance along the x direction has to be
less than € ,wy [see Fig. 1 and Egs. (5) and (6)]. But collisions
are symmetric along the axis of motion. Therefore, the cross
section of this binary collision is d = 2¢,w,. Following
our hypothesis, the percolation probability p, might be the
probability to find at least two dunes of size wy in a column of
width d. We compute the complementary probability, namely
the probability to find no more than one dune in a column
p(n < 1). We also assume that there are only few dunes, so
that the number of dunes N = pgL£ issuchas N < £/d. We
define k = ¢/d, the number of cross-section wide columns
within the field, then we find

k(k—1)---(k=N+1) k!
kv KNk =N

In Fig. 3(b), we show the probabilities of percolation p,
obtained by changing N while keeping all the other parameters
constant, for different widths € of the system, and compare the
previous analytical result to these measures. We show that this
simple analytic argument models very well the data without
the need of any fitting parameter.

pn<1)=

(20)

3. Finite-size effects

We already have shown that the probability of percola-
tion changes from a system to another with different sizes
[Fig. 3(b)-3(d)]. Since the percolation happens in the axis of
motion, and while there is some lateral diffusion, length and
width act differently on the value of p,. So we look at the
finite-size effects in decorrelating width and length.

Keeping the length constant, we define x = pLd. Then,
remembering that k = £/d, we rewrite the denominator of
Eq. (20), k — N = k(1 — k) which can be taken arbitrarily
large for any k¥ < 1. So we use Stirling’s approximation in
Eq. (20) and we find the following scaling when k — oo:

In[p(n < D]~ —[(1 — k) In(1 — k) + k]k — L In(1 — ).
2D

We indeed observe that the percolation probability, p, =1 —
p(n < 1), tends to 1 exponentially as the width is increased,
see Fig. 3(c), following the exact scaling of Eq. (21).

The constraint k < 1 is reminiscent of the fact that a greater
number of dunes than the number of columns obviously leads
to a percolated system. So, if we keep £ constant and increase
the length L at a given density, the probability of percolation
increases to 1 where we expect k ~ 1:

p,,~l=>poo<%. 22)
We observe such a scaling on data, Fig. 3(d), for relatively
small system sizes (L < 64). Simulating larger systems is just
a matter of computation time. Let us also point out the fact that
our numerical systems were never long enough to test the mass
balance of a percolating cluster [Eq. (19)]. But one can have
an idea of the effect of L using our probability model: when
L < L,, only binary collisions occur. If L € [Lr—1; Las], one
has to consider collisions involving N dunes.
In other words, we have to study the probability to find at
least \V dunes in one column. We assume that the cross section
remains 2&,wy. To argue for this point, let us decompose the
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FIG. 4. Size effects in the probabilistic model. (a) Initial density
po which leads to a probability of percolation of p,, = 1/2 vs £ and for
different A" = 2 (o), 3 (M), and 4 (¥). The plain lines are fitting curves
which correspond respectively to an exponent ¢ of 0.5, 0.35, and 0.28
(in In - In scale). (b) Exponent ¢ for the number N\ of colliding dunes.
The plain line is the best algebraical fit: ¢ >~ 0.020 + 0.95/A.

interaction of three dunes into two collisions. In the first one, if
positions of dunes are homogeneous, the mean lateral position
is & ,wo /2, which leads to anew dune with a volume ¢, w8/2, or
awidthw; = wo(e,/2)"” [see Eq. (6)]. The latter bumps into a
dune of mean width wy, for which the maximum cross section
is £,,wo. We notice also that w; > £,wpassoonas e, < ﬁ/Z.
In our simulations ¢, = 0.5, therefore the cross section is the
maximal cross section. Considering the symmetry along the
axis of motion, we conclude that the discretization of the space
in 2¢,wo-wide columns is still valid.

We computed the probability p(n > A) to find at least
one column of width d with at least ' over a total number
N of dunes at a given width ¢. For small lengths, we
observe in Fig. 4 that the percolation threshold, defined as
p(n > N) = 1/2, vanishes as £¢. But the exponent decreases
with the number of dunes . The data are consistent with a
nonvanishing asymptotic value for ¢, which would mean that
the transition occurs at any density for any width and length
in this mean-field model.

B. Percolation with fluctuations

In the quasiconservative system, the control parameter of
the percolation is the initial density of dunes pg in the field.
The randomness is due to the initial conditions, that then
determine entirely the evolution of the system. On the contrary,
the stationary phase at low values of (£,n) is stochastic,
independent of the initial condition [14] and the stationary
density is set by the dynamics to p = é/dg. So, we now
question the existence of a percolation phase in a stochastic
nonconservative system, even though there are only few events
of nucleation per time step.

Indeed, the system still percolates. We scanned the (&,7)
diagram and measured the probability of percolation p, at a
given initial density py; see Fig. 5(a). We observe a zone where
the system never percolates, and a region where percolation
becomes likely. The probability to percolate seems to vary
linearly between both regions and become steeper as the
system size is increased. Finite-size effects thus confirm the
existence of two regions: with or without percolated cluster
even in the presence of dissipation and nucleation [Fig. 5(b)].
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FIG. 5. Percolation in nonconservative systems. (a) Phase dia-
gram for different sets of parameters (1,£) at a fixed system width
£ = 32 in log-log scale. The color map indicates the magnitude of
percolation probability: the probability decreases with increasing 7.
(b) Transitions at £ = 0.01 for varying n and for different system
widths £ = 32 (e), 64 (M), 128 (¢). The continuous lines are linear
fits of the data. In the inset, the same data in In-In curve, with
ij = 1 — n/n.. Other parameters of simulation: p = 1/8 and L = 32.

At rather small system sizes, the behavior of the system
turns out to depend on the initial density pp. As the density
increases, the percolation is more and more likely (data not
shown). But the transition line in the (&,7) diagram is not
shifted by the variation of the initial density. As we have shown
that percolation appears in a quasiconservative system even
at very low density for a very large system, we may think
that this dependency is a finite-size effect. We observe that
the percolation probability also increases when the system
size is increased. The number of nucleations increases with
the system size; it makes the system more stochastic, but it
also feeds the system with an amount of sand and makes the
percolation likely to appear. Hence, it allows the system to lose
the memory of its initial conditions.

C. Percolation dynamics

A percolation event is not a stationary pattern, even for a
quasiconservative system. Fragmenting collisions split dunes,
whatever their sizes, into smaller objects. They can thus
become smaller than the smallest possible dune, and disappear.
That is why an avalanche of collisions that created a percolated
cluster erodes it after a while. For any finite n, volume loss
occurs. However we expect it has little effect on a percolated
aggregate, since a cluster is a zone where sand is almost
a conserved quantity. The process which will dominate the
dynamics of percolation will thus be the nucleation.

Indeed, for high values of n, the system easily percolates for
any value of £. However, the temporal evolution of the system
differs a lot along the £ range. Percolation usually occurs the
first time during the transient regime. Then, the system can
rebuild a percolating situation through nucleation, and other
events can occur. This rebuilding takes a certain time, related
to the nucleation rate. Furthermore, not all clusters percolate,
which reduces again the probability for the system to present
such an event. In Fig. 6(a) we clearly see bursts of the number
of dunes, each signing the apparition of a cluster in the field,
but only one succession of percolation events. For low &, the
time between two series of percolation events is thus very

042101-7



MATHIEU GENOIS et al.

4000

3000

2000

ol Ly
12500 13000 ﬁ
| . | .

40000 60000

(b)

30000 ‘

1000

20000 [~ ]

10000 — —

| I | I | ! I
0 I T I T I T T

t

| | | |
0 20000 40000 60000 80000 let05

FIG. 6. Modes of percolation. Evolution of the number of dunes
in the field (top of each subfigure) and events of percolation (bottom)
at a given n = 10* and for two different £: £ = 0.01in (a) and & = 1
in (b). The inset shows a zoom of the only succession of percolation
events that occurs in (a). Other parameters of simulation: p = 1/8
and L = ¢ = 32.

large. For high & this time tends to become rather small as
the nucleation is more important and rapidly refills the field.
Indeed, in Fig. 6(b) we have percolation series along the whole
simulation.

There are thus two asymptotic modes for the percolable
phase, which are closely related to the two modes of the station-
ary phase: a dilute mode where percolation events are separated
by very long times, and a dense mode where percolation events
occur much more often. As for the stationary phase, a smooth
crossover connects these two modes. Moreover, in the (&,n)
space the two crossovers have the same structure, connected
above the phase transition line. This points out that there might
actually be only one dynamical crossover, coming on top of
the phase diagram (Fig. 8).

VI. GIANT DUNES INSTABILITY

We now focus on the opposite limit, where 1 is kept constant
at a low value and £ increases. In this limit, the volume loss
is kept at a high value by 5, and the nucleation rate increases
with &. This is therefore a limit of high forcing and dissipation.

When we increase the injection rate, the system is first
homogeneous and stationary. Then a critical £ appears beyond
which the steady state becomes unstable. After some time,
the sizes of several dunes begin to grow and never saturate
[Fig. 7(a)]. If the fixed value of n is very low, this instability
occurs in a rather diluted field, with few collisions. For higher
values of 5, a collisional stage occurs before the instability
starts [Fig. 7(b)]. As for both previous phases, this defines two
modes for the instability.
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FIG. 7. Giant dunes instability. (a) Size of the biggest dune in the
field, as a function of time, for§ = 2.15and n = 0.3. (b) Collision rate
as a function of time, for £ = 2.15 and n = 0.3 (black) and & = 2.73
and n =1 (gray). (c) Probability for the system to be unstable as
a function of &, for n = 1. (d) Mean density (p) at the end of the
simulation as a function of &, for = 1, calculated on 100 realizations.
For other parameters, see caption of Fig. 6.

In the noncollisional mode, the system reaches a metastable
state before the instability starts [Fig. 7(a)]. For both modes,
there is no precise, critical value for £ but a range of values
where the probability for the system to develop the instability
grows continuously from 0 to 1 [Fig. 7(c)]. Furthermore,
the mean values of physical observables—for example the
density—measured at the end of the simulation, present two
disconnected branches, for the stable and the unstable phase
[Fig. 7(d)]. The observation of metastability and hysteresis is
an indication of the fact that the instability is subcritical.

The instability can appear in a low collisional system,
therefore its origin is probably not the merging type of
collision. Indeed, a toy model where a dune of size w is
randomly impacted by dunes of size w’ shows that even
for very large w, no instability involving only collisions
can appear. Even though the coalescence could in theory
continuously increase the size of a dune, the fragmentation
is far more efficient at decreasing this size (Fig. 1).

The mechanism of the giant dunes’ instability rather
involves the remote interaction through volume exchange. The
field at low n and high & contains a high number of dunes,
whose lifetimes are very small due to the high volume loss.
There are thus lots and very important volume exchanges in
the field. Every dune loses a volume @ per unit of time, but also
gathers sand lost by any other upstream dunes. The balance of
sand strongly depends on the dune width [see Fig. 2(d)]. For
instance, let a dune of size w be followed by several dunes of
size w,, (which will disappear next time step). The maximum
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sand balance will be when dunes cover its whole size:

av w
— =—-b+Dd—. 23
dt + Wy 23)

The small dunes will feed the large one and disappear without
having the time to collide with it. So any local fluctuation of a
dune’s density behind a larger dune will make the latter grow,
thus increase its lifetime, and its ability to collect more sand.
If the injection rate is high enough, these collecting events are
numerous enough to make the size of some particles diverge,
and generate the instability.

The crossover from noncollisional to collisional instability
is smooth. As for the percolable phase, it is in fact the same
crossover that exists between dilute and dense stationary states.

VII. CONCLUSION
A. Summary

We explored in this paper the phase diagram of a nontrivial
system. The effective energy and momentum as well as the
number of dunes and the total volume of these dunes are
not conserved at the scale of the whole system. The model
has a peculiar phenomenology, inspired by the geophysical
problem of barchan fields. In particular, dunes interact with
each other through nontrivial collisions and remote volume
exchange. Dunes are injected in the field, while volume loss
at each one of them ensures they have a finite lifetime. Two
parameters, comparing forcing and dissipation for £, isolated
and interacting behavior for 7, define the phase diagram.

For standard values of the parameters, the system always
reaches a stationary state. Its dynamics range smoothly from
noninteracting to interacting as both parameters increase, and
are independent of the initial conditions.

When 1 becomes large, i.e., when the dissipation decreases,
the system becomes percolable, meaning that depending on the
initial density the system can exhibit a percolation transition.
This percolation is unusual, as it occurs on a continuous
space with polydisperse, moving, finite lifetime, interacting
objects. Indeed, we show that for a system with an infinite
width, percolated aggregates are likely to appear for any small
value of density. An analytic, mean-field, probabilistic model
reproduces well the behavior of the probability to percolate.
We extend the study of this model on the effects of the system
length, and it gives clues to suppose that percolation is robust
also when the length is increased. Similarly to the stationary
phase, dynamics range from dilute, where percolation events
are sparse in time, to dense, where they occur much more
often.

When & becomes large for low 1, i.e., when both dissipation
and forcing are large, the system becomes unstable. Trapped
in local high densities, the sizes of some of the dunes grow
without limit. The instability, characterized by a discontinuity
in the evolution of the system observables, by a range
of coexistence between stable an unstable phase, and by
a metastability before the beginning of the instability, is
subcritical. As for the previous phases, its dynamics smoothly
range from noncollisional, where the collision rate is low
before the instability, to collisional, where the instability
begins after a large increase of the collision rate.
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FIG. 8. Phase diagram of the system. S is the stationary phase, P
is the percolable one, U is the unstable one. The frontier between S
and P is marked by three isolines for the probability for the system
to percolate with py = 1: p, = 0.05 (o), p, = 0.5 (O), p, =0.95
(0). The frontier between S and U is marked by the isoline for the
probability for the system to be unstable, p; = 0.5 (e). The dashed
line marks the smooth crossover from noncollisional to collisional
dynamics. Other parameters are the same as in Fig. 6.

A smooth phase transition separates the stationary and the
percolable phase, a coexistence range separates the stationary
and the unstable phase, whereas the limit between percolable
and unstable remains unknown. In the end, the phase diagram
of the system seems to consist of the three previous proper
phases, plus a dynamical diagram on top of it. Indeed, the
smooth range of dynamics from noncollisional to collisional
is found on all three phases, and is connected through their
limits (Fig. 8). The parameters £ and n thus define both the
phase of the system, and the dynamics this phase is exhibiting.

B. Analogies and future work

Changing the relative values of £ and n changes the relative
weight of the exchange of volume in the remote interaction
[Egs. (2)—(4)] compared to the local collisions [Eq. (6)]. When
collisions dominate, we indeed found percolated clusters as
in absorbing phase transition models. When eolian transfer of
mass is more frequent, mass condensation occurs as in the
mass transfer model.

First, both regions are connected by a domain of the
phase diagram whose properties deserve to be studied. Next,
percolation seems to survive to fluctuations in contrast to
classical results on the Schlogel model. However this result
is not so much questioned. First fluctuations remain at a
low level (§ < 1) when percolation is likely. Second, when
fluctuations increase in comparison to dissipation, there is
a smooth crossover between noncollisional and collisional
dynamics and this crossover is not a phase transition. A last
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interesting test would be to modify the nucleation process in
order to have a true absorbing phase: for instance one can
nucleate a new dune close to a previously existing dune.

Obviously, one has to characterize the phase transition
of percolation in our model. In Egs. (14) and (15), rates of
reaction depend on 7 and & but also on thresholds ¢, and ¢;.
Therefore we could expect that the transition of percolation
should depend on them. But it is surprising that we do not
need &, in our mean-field approximation.

The last region of the phase diagram is reached when
the remote exchange of sand dominates. We then observe a

PHYSICAL REVIEW E 94, 042101 (2016)

first order phase transition of condensation. Mass transport
models exhibit also a phase with a condensate. Their stationary
solutions are usually made of two asymptotic phases: one
is a nearly homogeneous density, the second is made of a
condensation of the excess mass to the latter homogeneous
repartition [31]. In some cases the dynamics of condensation
can be explosive [32] and the condensate visits ballistically
the system. However, it seems to us that the existence of a
metastable state is an unusual feature of this class of model.
The explanation of this difference has probably to be found in
the nonconservative properties of our model.
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