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Ferrage, Loïc  and Bertrand, Ghislaine  and Lenormand, Pascal  and Grossin, 

David  and Ben-Nissan, Besim A review of the additive manufacturing (3DP) of 

bioceramics: alumina, zirconia (PSZ) and hydroxyapatite. (2017) Journal of the 

Australian Ceramic Society, 53 (1). 11-20. ISSN 2510-1560  

Official URL: https://doi.org/10.1007/s41779-016-0003-9 

mailto:tech-oatao@listes-diff.inp-toulouse.fr
http://www.idref.fr/233576002
http://www.idref.fr/122284445
http://www.idref.fr/059738952
http://www.idref.fr/113106505
https://doi.org/10.1007/s41779-016-0003-9


Commentary

Journal of Cardiology Case Reports

J Cardio Case Rep , 2018                doi: 10.15761/JCCR.1000103  Volume 1(1): 1-3

ISSN: 2631-9934

Biophysical methods to characterize cardiovascular tissues
Valérie Samouillan1*, Jany Dandurand1, Colette Lacabanne1, Michel Spina2, Aleyda B Amaro3 and Vicenta Llorente-Cortes3

1CIRIMAT, Université de Toulouse, Université Paul Sabatier, Physique des Polymères, France
2Department of Biomedical Sciences, University of Padova, Italy
3Institute of Biomedical Research of Barcelona (IIBB) - Spanish National Research Council (CSIC), Spain

Abstract
The main constitutive macromolecules of cardio-vascular tissues, essential to the cohesion and resiliency, are also active components which evolve with the physiology 
and pathology. Their functionality is connected to their internal dynamics over various scales of time and length, in close correlation with water. Vibrational, thermal 
and dielectric techniques, which have showed their ability to characterize synthetic polymers, deserve to be adapted to the study of proteins and biological tissues. 
Through some examples, we will show how these techniques are concretely used to answer cardio-vascular problematics.
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Introduction 
Fourier Transform Infrared (FTIR) spectroscopy is a powerful 

technique that has provided accurate results with a high reproducibility 
in many areas including cardiovascular research [1-3]. Fast analyses 
can be performed directly on tissues, without the need of staining. 
Another suitable technique to characterize biological tissues at the 
submicronic scale is Differential Scanning calorimetry (DSC). It allows 
to evaluate the hydric organization of tissues [4], as well as proteins 
thermal stability [3,5,6] directly in aortic tissues [7] or biomaterials 
[8,9]. It has been also successfully applied to characterize protein 
components of muscle tissues, such as myosin, actin and sarcoplasmic 
proteins [10-12] . 

Due to the polar character of biological tissues, dielectric techniques 
are well suited to the analysis of their various levels of organization 
in interaction with water or in the freeze-dried stat tissues [13]. The 
molecular mobility of proteins in tissues can be scanned from the 
nanometer range to some tens of nanometers. In the very low frequency 
region, Thermo Stimulated Current (TSC) gives information on the 
molecular origin of the relaxation modes, while Dynamic Dielectric 
Spectroscopy (DDS) follows protein/water dynamics over a very broad 
frequency range. 

The combination of FTIR, DSC, TSC and DDS on the pure 
components of cardio-vascular tissues has allowed us to establish 
a set of structural, dynamic and chemical indicators on the main 
macromolecules constitutive of these tissues [14,15] . These vibrational, 
thermal and dielectric markers were then successfully used to determine 
the evolution of these main proteins produced by lipid- loading smooth 
vascular cells [16] and cardiomyocytes in culture [3]. 

In the next section, we will focus on the application of these biophysical 
techniques to characterize cardio-vascular tissues themselves.

Characterization of cardio-vascular tissues in animal 
models
Left ventricle remodeling post-myocardial infarction

Adverse cardiac remodeling after Myocardial Infarction 
(MI) causes impaired ventricular function and heart failure. If 

histopathology is commonly used to detect the location, size and shape 
of MI sites, information about chemical composition and physical 
structure of infarct zones post-MI is limited. FTIR/ATR can evidence 
alteration of key cardiac components post-MI in a mice model [17] . As 
shown in figure 1, the FTIR spectra of freeze-dried mice left ventricles 
shows amide I and II as major absorptions bands. Moreover, collagen 
possesses a specific band at 1338 cm-1 [18] that can be used to compile a 
collagen/proteins indicator. Finally, the sur-resolution of FTIR spectra 
by the Fourier Self Deconvolution (FSD) method in the amide I/II 
zone is useful to determine the secondary structure of proteins [19]. 
The increase of collagen indicator associated with the predominance 
of triple helical conformation of proteins in infarcted myocardium 
evidences the deep remodeling of post-MI tissues (collagen deposition 
in the scar maturation of infarcted zones). 

Ventricular remodeling in tachycardia-induced dilated 
cardiomyopathy

In non-ischemic Dilated Cardiomyopathy (DCM), the main 
clinical manifestations are progressive heart failure, ventricular and 
supraventricular arrhythmias, thromboembolisms and sudden death. 
It also constitutes the most common cause of heart failure reported for 
cardiac transplantation. Biophysical markers can be used to identify 
molecular and conformational alterations of cardiac remodeling in a 
pig model of DCM [20]. Using FTIR, it is shown that the myofiber/
collagen ratio is reduced in ventricles from dilated hearts, while the 
carbohydrate/lipid ratio is upregulated in left and right ventricles 
(in a greater extent in the right ventricle). Additional information 
is provided from calorimetric analysis; in peculiar the depression of 
the onset melting temperature of freezable water, is indicative of an 
alteration in the tissue architecture of dilated ventricles, while the shift 
of the protein denaturation temperature evidences newly synthesized 
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collagen and protein of lower stability. The combination of these data 
supports that both accumulation of collagen and thermal instability 
of myofibers and ECM proteins contribute to the imbalance in the 
myofiber/collagen ratio and to the accumulation of unorganized and 
agglomerated collagen in dilated ventricles.

Characterization of human cardio-vascular tissues in 
clinical cases
Abdominal aortic aneurysms (AAA)

The pathogenesis of AAA, responsible for 2% of human deaths in 
industrialized nations, remains uncertain, and the lack of definitive 
insight suggests a complex, multifactorial process. For this thermal/
dielectric study [21] , specimens were collected from the anterior aspect 
of the infrarenal abdominal aorta during operation for non-specific 
Abdominal Aortic Aneurysms (AAA) in 4 patients. DSC thermograms 
of freeze-dried atheroma plaques are plotted in figure 3A. It is 
noteworthy that in contrast with safe aortic wall which is characterized 
by both elastin and collagen thermal answers (elastin glass transition 
at 205°C and collagen denaturation at 230°C), in atheroma plaques the 

collagen signal is predominant. Moreover, the collagen denaturation 
signal is multiple in 3/4 of pathologic tissues, what can be explained by 
the accumulation of neo synthesized collagen as evidenced by Gargiulo 
et al. [22]  and sharp increase of C-telopeptide fragments in AAA wall 
[23]  associated with collagen degradation by cysteine proteases. 

To get insight the dynamics of atheroma plaque, the TSC spectra of 
rich control tissue and aneurysmal tissue have been compared (Figure 
3B): an enhanced molecular mobility is evidenced for pathological 
tissue, corroborating the accumulation of neo synthesized or 
fragmented collagen.

Cardiomyopathies

In this last case biophysical techniques are used to characterize 
right and left ventricles from patients suffering from cardiomyopathy. 
This current study involves 16 patients, and the objective of this study is 
to compare thermal/vibrational indicators according to the localization 
(right/left ventricles, remote or infarcted zone) and the pathology 
(control/non-ischemic/ischemic cardiomyopathy). The feasibility of 
vibrational and thermal techniques to analyse such human cardiac 
tissues has been demonstrated and relevant markers can be extracted. 
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Figure 1. Vibrational characterization (FTIR/ATR) of remote and infarcted zones in mice ventricles

Figure 2. Thermal characterization (DSC) of healthy and dilated pig ventricles (A: hydrated state; B: freeze-dried state)
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Multivariate data analysis is now in progress to correlate biochemical 
and biophysical markers in this clinical study.

Conclusion
The molecular, conformational and physical characterization of 

the cardio-vascular tissues (aortic wall, pericardium, myocardium) has 
emerged as a novel approach to study remodeling in diseased tissues. 
The vibrational FTIR spectra of cardiovascular tissues can be correlated 
to the vibrational answer of the different components, allowing to 
quantify them and to discriminate the different secondary structures 
of proteins. Using calorimetry and dielectric techniques, the thermal 
transitions and dynamics of free water, elastin, collagens or muscle 
proteins can be detected in cardiovascular tissues, evidencing a strong 
correlation between chain architecture and mesophase organization. 
The evolution of these indicators with pathology (cardiomyopathy, 
infarction, atherosclerosis) completes biochemical analysis and 
contributes to a better knowledge of the involved mechanisms. It is also 
promising to optimize the conception of substitutive biomaterials in 
the cardiovascular research. 
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Figure 3. Thermal (A: DSC) and dielectric (B: TSC) characterization of human atheroma plaquesA
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