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Modelling crack propagation due to growth stress release in round

wood

D. Jullien and J. Gril

Laboratoire de Mécanique et Génie Civil, Université Montpellier 2, UM2-LMGC-Bois, CC. 81,
place E. Bataillon, 34095 Montpellier cedex 5, France

Abstract. The propagation of heart cracks at log-ends due to growth stress release was simulated numerically based on
the application of Griffith theory. The elastic properties of the green wood were described through empirical
correlations with density distinguishing hardwoods and softwoods. Fixed levels of surface residual strains and a given
type of initial growth stress distribution were assumed. The propagation criteria was based on the maximisation of
elastic release energy rate (G). Perfect axisymmetry was compared to the case of a marked reaction wood sector : the
simulation confirmed the observed fact that in hardwoods, the presence of tension wood increases considerably the
cracking risk, while it is reduced with the compression wood of softwoods. By comparison of the calculated G to
experimental data of toughness (Ge), our calculations suggest that not only higher log diameter but also higher wood
density should result in more severe log-end cracks.

1. INTRODUCTION

Log-end cracks consecutive to tree felling and crosscutting are a clear demonstration of the existence of
residual stresses in living stems [1]. These so called growth stresses result from the cell-wall maturation

process, where newly formed wood swells transversally and, in normal wood, shrinks axially. In the case of
" reaction wood " production on one side of the stem, this axial strain differs : in the tension wood of
hardwoods, a much higher shrinkage is produced, whereas in the compression wood of conifers, it is a
swelling ; in all cases the dissymmetric growth stress allows the control of stem orientation. Crosscutting
can be analysed as the creation of a free surface in a prestressed volume ; the consecutive stress
redistribution is equivalent to the axial pulling of the heart and pressure of the periphery, which favours the
central splitting of the log ends. Subsequent sawing induces further transformation defects like board
deformation or further splitting along the pith. These phenomena, more considerable in the case of
hardwoods and tension wood occurrence, have been extensively reviewed [2], along with useful
considerations about their viscoelastic nature and hygrothermal activation. From the viewpoint of solid
mechanics, crack propagation under the action of a mechanical stress can be analysed using energetic
concepts derived from Griffith theory [3]. Our work aims at checking how well such mechanical analysis

can explain the observed patterns of log-end cracks. In a previous work, a method of numerical analysis has
been proposed and validated : the rate of release energy was computed based on a set of experimental data
obtained on Eucalyptus and compared to actual values of toughness measured on the same or similar
material [4-5]. In the present paper we will apply this method to a larger number of theoretical situations
covering the range of what can be expected from the various wood species, essentially differing by the level
of their anisotropy.

2. THEORY AND NUMERICAL METHOD

2. 1 Formulation of the mechanical problem

The analysis of crack propagation used here is based on the 2nd principle of thermodynamics, leading to the
incremental expression :

GCdA + dW &lt;O or-dW/dA &gt; Gc (1)

where dW is the variation of elastic energy stored in the body, when the crack area extends by dA, and Ge is
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the energy consumed per creation of a unit area of crack. The contribution of dynamic terms has been
neglected, and no external load is acting on the volume. According to Griffith theory, the toughness Ge is an
intrinsic property of the material, and can be determined experimentally for any orientation of crack surface
(and fracture mode). The quasi-fragile behaviour of wood loaded transversally to the fibres justify the
application of this theory originally designed for crack propagation in glass, and the observed dominance of
an opening mode (mode I) will allow to neglect the contribution from other fracture modes. Equation (1)

can be also written G &gt; Ge, where G =-8W/oA is the " elastic energy release rate ". G, in contrast to Ge,
depends on the geometry and behaviour of the whole structure, as well as on its formation and loading
history because the initial stress distribution in the log depends strongly on the way the successive wood
rings were deposited. The evaluation of G, therefore, requires a calculation based on a mechanical model.

To compute the energy release, additional assumption on the material behaviour is required. A linear
relationship is assumed between the stress a and the small strain e : e=So, where S is the compliance tensor.
The linearity of this expression allows to use as reference the initial state of the log just before felling (o') :

he = SAs (2)

where he is the deformation relative to the state before felling, and Ao the corresponding stress increase.
After propagation of a crack up to a given level of free surface (A), a condition of zero force has to be
written for all points of (A) :

0 = cr. n = 
(vi+Av). n or Acs. n =-6i. n (3)

where n is a unit vector perpendicular to the surface (A), which includes the free surface created by
crosscutting the log. Thus, the existence of the free surface has the same effect as applying a force opposed
to that existing in the standing log. Adding to (2) and (3) conditions of static equilibrium and kinematic

compatibility, we end up with a well-formulated mechanical problem having a single solution Ao and

associated strain As. The energy required for the calculation of G can be obtained as the elastic energy by
integration over the whole volume :

W 
=-*-f (o 

+ Ao). S. (o + Ao) dv (4)W =-Lf (o + Ao). S. (o + Ao) dv (4)

Assuming an initial stress field locked in a standing tree, we can calculate the corresponding amount of
elastic energy stored in a log crosscut off this tree. Assuming that a given heart crack appears in the pith of
this same log, we can calculate the amount of elastic energy released by the existence of this new surface.

L&lt;R L=R
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2. 2 Geometry and mesh L &lt; R L = R

Calculations are conducted using the finite'
element package MODULEF. The log is
assumed cylindrical, with radius R=O. lm and
height 2h=1. 4m, and contains a central pith H

represented by a hole of radius Ro=0. 002m. In,,
Crack with[5] it was verified that for this value of Ro this 2'y alaleral

was practically equivalent, in terms of global Q &lt; ooening D

energy computation, to having a filled pith, X Z L
while greatly simplifying the constitution of the x
mesh. The crack shape is shown on Figure 1 : it Figure 1. Description of the cracks (upper half of the log)

is quasi-triangular with a depth H at the pith
level and a radial length L on the log end. When the periphery has been reached (L=R) a lateral opening D

appears. Only the upper half of the log (0&lt;z&lt;h) is simulated, assuming a symmetrical behaviour of the log.

As suggested by observations [6], the crack propagates through a vertical translation, with a constant shape
ratio (s) called " crack slope " :

s = H/ (L-Ro) for L&lt;R ; s = (H-D)/ (R-Ro) for L=R (5)

For convenience, the extent of a crack will be described later by its " equivalent crack length " L'=L + D/s.
The elements constituting the mesh are hexaedral. Based on a previous study [4-5], we chose NR=10

elements along the radius and Ni=16 sectors around the periphery.

Figure 1. Description of the cracks (upper half of the log)
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2. 3 Constitutive equations

Wood can be reasonably considered as orthotropic, with the transverse plane RT (neglecting stem conicity)
and the radial plane RL constituting two orthogonal planes of material symmetry. A major simplifying
assumption made here is neglecting any occurrence of spiral grain or eccentric growth, that would produce

a rotation of the axes relative to the R and L direction, respectively : the local directions of orthotropy
coincide with the cylindrical coordinates (cylindrical orthotropy).

Guitard [7] proposed, based on a compilation of data from the literature, a set of empirical equations
giving each component S ; j of the compliance tensor as a function of the air-dry specific gravity of the wood
(p) and the moisture content (h), of the form :

e (in GPa) = [1-ejj (h-0. 12)] x S a ; j (p/0. 65) be for hardwoods

c ; j + djj (p-0. 45) for softwoods
(7)

where ajj... ejj are constants recalled in Table 1. Table 2 shows the various sets of rigidity values that will be
actually used in the following simulations. A fixed value of h=0. 3 has been used to account for the fact that
the wood of recently eut logs is generally saturated in bound water. Instead of the Sjj, we indicated the
"technical constants": Young's moduli, shear moduli, Poisson's ratios, together with three dimensionless
factors characterizing the level of anisotropy : E, jER, ER/ET, ET/GRT. It can be noted that for hardwoods, the
lower the density, the higher the anisotropy : this is due to the increasing contribution of the highly oriented
cellular structure of wood, when the cell wall thickness decreases. For softwoods varying over a small range
of density, the effect is small but opposite. Compared with hardwoods of the same density, softwoods have

a much lower GRT (their are much more anisotropic in the RT plane than hardwoods) as well as a higher EL.

Table 1. Parameters describing the dependence of compliance coefficients on density and humidity
ij 11 22 33 23 13 12 44 55 66

a ; 1. 81 1. 03 14. 4-31. 2-37. 3-2. 68 0. 971 1. 26 0. 366
bii 1. 3 1. 74 1. 03 1. 09 0. 913 1. 41 1. 26 1. 14 1. 74

Cii 1 0. 636 13. 1-30. 8-34. 2-2. 05 0. 745 0. 861 0. 0836
du'2. 37 1. 91 41. 7 101 117 5. 28 0. 989 2. 08 0. 228

en 3 3 1. 5 0 0 0 3 3 3

Table 2. Sets of elastic constants used for the simulation
Moduli (MPa) Poisson's ratios Anisotro factors Stress (MPa)

ER ET EL GRT GLR GTL VRT VTR VLR VRL VLT TL Et/EpER/ETET/GRT q P I

0. 1 73 18 1717 9 95 59 0. 83 0. 21 0. 25 0. 011 0. 38 0. 004 24 4. 0 2. 0-0. 027 1. 70
hard-0. 3 305 123 5325 61 334 235 0. 74 0. 30 0. 29 0. 017 0. 35 0. 008 17 2. 5 2. 0-0. 185 5. 23

wood 0. 5 592 300 9012 148 598 447 0. 70 0. 35 0. 31 0. 020 0. 34 0. 011 15 2. 0 2. 0-0. 457 8. 79

0. 9 1271 835 16510 413 1169 936 0. 65 0. 43 0. 33 0. 025 0. 33 0. 017 13 1. 5 2. 0-1. 289 15. 9

soft-0. 3 296 161 5613 32 351 382 0. 51 0. 28 0. 17 0. 009 0. 46 0. 013 19 1. 8 5. 1-0. 249 5. 50

wood 0. 4 405 249 9032 46 484 445 0. 49 0. 30 0. 27 0. 012 0. 45 0. 012 22 1. 6 5. 4-0. 388 8. 86

0. 5 515 336 12450 61 618 508 0. 48 0. 32 0. 36 0. 015 0. 44 0. 012 24 1. 5 5. 5-0. 527 12. 22

Although these expressions provide with reasonable estimates of the mean values of wood species,

within a given species the compliance of wood cannot be considered as only dependent on the density. For

instance, the longitudinal Young's modulus would be more adequately described as the product of density
and a function of the mean inclination of the crystalline cellulose in the cell wall (microfibrillar angle).

However, this complexity was not introduced in the present set of simulation, and density alone was used
for the description of wood anisotropy. In particular, the influence of tension wood occurrence on the
rigidity is not taken into consideration.

2. 4 Initial growth stress distribution

At stem periphery a state of plane stress can be assumed, so that the T and L components of the growth

stress a'are related to those of the residual strain a =-So', by :

0'L=-EL [aL+VTL&lt;XT]/ (I-VLTVTL) ; OT=-Er [aT+VLT&lt;XT]/ (l-VLTVTL) (8)
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Most available data relate to values of aL and a few to aT ; they do not vary much between species, being
more dependent on the growth condition of the tree than on wood density, for instance. We will assume
fixed reference values a°L=-0. 1% and a°T=0. 2%, meant to represent normal wood [1]. In a zone containing
tension or compression wood, aiL will become higher or lower, respectively, while aiR and aiT will be
unchanged.

To describe fully the initial stress distribution, a number of further assumptions will have to be made.
The initial growth stress, in the standing tree, is supposed independent of the axial coordinate z. The
transverse components are axisymmetric, obtained by generalization of Kübler's model [1, 2] which is
obtained when k tends towards 0, and given as a function of the relative distance to pith r/R, by :

ait (r) = 
q [(r/R) k-l]/k ; viT (r) = q [(l+k) (r/R) k-l]/k (9)

where q is the surface stress in T direction, and k a constant. In L direction, we have to take into account the

presence of reaction wood. An asymmetric term is added so as to fit with peripheral values of residual
stresses usually measured on standing trees [1] :

Cy L (r) = plf (r/R ; kl) + P2 f (r/R ; k2g [8 ; m]) g [e ; m] (10)

e-eo "'
with : f (x ; k) = (2+k) xk/k-2/k 

; g (6 ; m) = 2-ðij

where O is the angular position in the cylindrical system, 00 the peak direction, 2A6 the peak width, m a
shape factor of the peak, pi the level of the axisymmetric part, p2 that of the additional asymmetric part, kl,
k2 and m factors characterizing the shape of the radial profiles and circumferential distributions. For the
simulations, we will choose m=2 and k=kl=k2=l. q and pl are calculated in each case from equation (8) for

a = a°, while P2 will be taken as 0 to simulate the " axisymmetric " case of no reaction wood at all, and as 2p,
or-2pl to represent the occurrence of tension wood in hardwoods or compression wood in softwoods,
respectively. Values of q and p, for each wood type have been added to Table 2.

2. 5 Crack propagation

Only radial cracks are allowed, always starting from the pith : we know from experience that this is the most

common fracture mode in freshly cut stems (possible occurrence of ring shakes is not accounted for). We
further simplified the problem by allowing only 8 directions of crack propagation, every 45°. Initially, the
ends of the log are crack free : the effect of crosscutting only is computed. Then an initial crack of length
(R-Ro)/NR in each of the 8 possible directions is attempted ; the direction producing the maximum G is
selected. This process is repeated, producing either the prolongation of an existing crack or the apparition of

a new one until at least one crack has reached the periphery and run along the stem surface by a length kR/2.
Although the mesh is rather coarse, it is maintained fixed for all simulation, allowing to study the sole effect
of material properties. In a separate work [4], we verified that the use of a finer mesh would not influence
much the calculated values of energy release.

3. RESULTS AND DISCUSSION

Figure 2a shows, as an illustration, the result obtained in the case of a hardwood of density 0. 5, in the case
of a log containing a sector of tension wood and a crack progressing with a fixed slope of 1. The scatter
observed in the progression of G values is easily explained by the roughness of the mesh. While several
crack branches progress simultaneously in different directions, the calculation is only made for each branch
in turn. This is made clear by plotting in parallel the maximum equivalent crack length Lmax. In Figure 2b, G

is plotted against Lmax : the dots are the various values calculated, while the line is obtained by joining the

mean values of G for each Lmax. This parameter, however, does not contain all the important information. It
has to be completed by a detailed description of the cracking pattern.

This has been done in Table 3 showing, for each of the computed cases, the crack pattern at three stages
characterized by L'max/R=1/2, 1 and 3/2, while Figures 3 and 4 show curves of elastic energy release rate
constructed as explained in Figure 2b, for the 16 computed cases grouped in various ways to allow
comparisons. Figure 3 illustrates the effect of density and reaction wood, in the case of a crack slope s=l,

and Figure 4 compares a slope of 1 and 2 for a given density of 0. 5. In all cases the effect of having a sector
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of reaction wood, marked by filled symbols, is drastic but opposite for hardwoods and softwoods. In
hardwoods, tension wood generally increases the level of initial growth stress, whereas in the compression
wood of softwoods the absolute value of the initial stress was made lower in the simulation. For a given
biomechanical efficiency, characterized here by the stress difference between the two sides of the stem (2p}
at periphery), the amount of locked-in elastic energy should be much higher in hardwoods than in
softwoods. This difference would have been further amplified by taking into account the lower EL of
softwoods and higher EL of hardwoods. It is consistent with the observed fact that log-end cracks are not a
problem in softwood species, but cause severe damage in hardwoods especially in the case of tension wood
occurrence.

950 15 950 H 0. 5 T
H 0. 5 T (Hardood, d=0. 5

0 o with tension wno
'crack slope s=1)

N  CV o
o 0

X   o 0

J O 
O

Oo O o O
M  p V

350 0 350

1 Calculation steps 41 0 Lmax (cm) 1

a) b)
Figure 2. Example of result analysis. (a) step-by-step evolution of elastic energy release rate (G) and maximum equivalent crack
length (L) ; (b) Construction of a G vs L curve.

The effect of density can be seen very clearly on Figure 3 : denser woods are more rigid, so that they
release more energy. It is also interesting to observe the progressive change of cracking pattern with
density : in the axisymmetric case, the very low-density hardwood (p=0. 1) produced 4 cracks, then
for p=0. 3 we obtained 3 cracks and from 0. 5 upward only 2 opposite cracks ; for softwood the 4 cracks were
obtained for p=0. 3 but it falled to 2 cracks for 0. 4 and 0. 5. In the case of a reaction wood sector, not only the
number of cracks is of interest, but also their orientation relative to this sector. In hardwoods, the 4-cracks

pattern prevailed up to p=0. 5, with 2 opposite major crack branches running perpendicular to the tension
wood zone ; in softwoods also the cracks tend to avoid the compression wood sector. But for the hardwood
with p=0. 9, on the contrary, one of the two branches cuts the tension wood sector in two halves. The higher
crack slope produces markedly different cracking patterns compared to their equivalent for the same
density, for instance we obtained 3 branches for the axisymmetric hardwood or the softwood with a
compression wood sector.

The effect of density can be seen very clearly on Figure 3 : denser woods are more rigid, so that they
release more energy. It is also interesting to observe the progressive change of cracking pattern with
density : in the axisymmetric case, the very low-density hardwood (p=0. 1) produced 4 cracks, then
for p=0. 3 we obtained 3 cracks and from 0. 5 upward only 2 opposite cracks ; for softwood the 4 cracks were
obtained for p=0. 3 but it falled to 2 cracks for 0. 4 and 0. 5. In the case of a reaction wood sector, not only the
number of cracks is of interest, but also their orientation relative to this sector. In hardwoods, the 4-cracks

pattern prevailed up to p=0. 5, with 2 opposite major crack branches running perpendicular to the tension
wood zone ; in softwoods also the cracks tend to avoid the compression wood sector. But for the hardwood
with p=0. 9, on the contrary, one of the two branches cuts the tension wood sector in two halves. The higher
crack slope produces markedly different cracking patterns compared to their equivalent for the same
density, for instance we obtained 3 branches for the axisymmetric hardwood or the softwood with a
compression wood sector.
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Table 3. Patterns of log end cracks for each simulation, at three steps of the crack propagation (italic numbers refer to the
corresponding G value ; segments exceeding the circle represent cracks running along the lateral surface)

with no reaction wood (axisymmetric case) with a sector of reaction wood
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Figure 3. Effect of density and reaction wood occurrence on the evolution of elastic energy release rate versus maximum
equivalent crack length. (a) Hardwoods of density 0. 1 to 0. 9, (b) Softwoods of density 0. 3 to 0. 5. Empty symbols : no reaction
wood ; Filled symbols : sector of reaction wood.

1000  0, 5 N 1 500 
go,, oods  , 5 N 1
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a) b)
Figure 4. Effect of crack slope on the evolution of elastic energy release rate versus maximum equivalent crack length. (a)
Hardwoods (b) Softwoods. Density is 0. 5 in all cases. Empty symbols : no reaction wood ; Filled symbols : sector of reaction wood.

The curves of Figure 3 and 4 usually present a maximum Gmax at an early stage, which in some cases
seems to have been hidden by the roughness of the mesh, then fall to a minimum Gmin when the crack is

more or less reaching the periphery (Lmax=lOcm in the present case). When the material toughness GC lies
between these two values, it can be predicted that a crack will occur at log end with an extension so that
G=GC, assuming that defects around the pith to have allowed enough crack initiation. For Gmax&lt;Ge no crack
should propagate and for GC&lt;Gmin, considerable cracking is expected. In Figure Sa, we have compared our
Gmax and Gmin values for hardwoods to Ge values proposed by Beauchêne [8], based on an experimental
study on 10 tropical species of increasing density. According to this figure, low density hardwoods should
hardly crack unless they contain a lot of tension woods, while high density hardwoods should crack
considerably unless they contain very few tension wood.

However, this conclusion is only valid for the given case of log geometry that has been simulated. For

a higher log radius R, &gt;R, the elastic release energy would be multiplied by (Ri/R) 3 and the cracked surface
by (R,/R) 2, so that the G should increase like (R,/R) : In Figure Sb we have translated the G values to
account for a radius of 20 cm instead of 10 cm : we predict then a considerable cracking except in very low
density wood with no tension wood. This theoretical effect of the log radius is consistent with observed
facts : bigger logs crack relatively more than smaller ones. The effect of density, however, is not so
well-known and should be studied systematically by simultaneously measuring log end cracks and wood
toughness.
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3, 5

&lt;9

hardwood
diametre 0, 1 m

a Gmin, NW
° Gmin, TW
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a) b)
Figure 5. Influence of density on the crack propagation risk, evaluated by comparing the range of calculated values between
minima (empty plots) and maxima (filledplots) of Gto typical values ofthe toughness G,. (a) Presentsimulations forR=IOcm ; (b)
extrapolation for R=20cm by a vertical translation in a logarithmic scale.

4. CONCLUSION

The propagation of heart cracks due to growth stress release could be interpreted by a classical mechanistic
formulation. Applying Griffith theory, the possibility of the propagation is expressed by the elastic energy
release rate (G) exceeding the intrinsic toughness of the wood material in the observed direction and mode
of propagation (Gc). The computation of G was done by using the finite-elements method, for a given

geometry and a fixed mesh. Assuming that the evolution of the cracks is governed, at each step, by the
direction of propagation producing the greatest G, we obtained schematic crack patterns for 16 cases
combinations of wood type and density, initial growth stress distribution and internal crack shape. To
reduce the number of necessary calculations we had to limit to 8 possible directions of radial propagation ;
this restrictive condition ought to be removed, and calculations be performed again with a refined mesh to

ensure the quality of the predictions. However, for the simple purpose of studying the influence of density
(and associated level of anisotropy) and reaction wood occurrence, it can be reasonably assumed that the
general trends obtained here are valid. A number of generally observed facts have been confirmed by the
simulation, such as the considerable increase of cracking risk in the case of tension wood occurrence in an
angular sector of the log, the few problems encountered with softwood species at the crosscutting stage, or
the fact that large diameter logs tend to crack more, in relative terms, than small diameter logs. Other
predictions by the simulation, like the number of cracks and orientation relative to the reaction wood zones,
or the increase of cracking risk with wood density, ought to be verified experimentally.
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