
HAL Id: hal-02001134
https://hal.science/hal-02001134

Submitted on 31 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CUDA-Accelerated Feature-Based Egomotion
Estimation

Safa Ouerghi, Rémi Boutteau, Xavier Savatier, Fethi Tlili

To cite this version:
Safa Ouerghi, Rémi Boutteau, Xavier Savatier, Fethi Tlili. CUDA-Accelerated Feature-Based Egomo-
tion Estimation. Computer Vision, Imaging and Computer Graphics – Theory and Applications, 12th
International Joint Conference, VISIGRAPP 2017, Porto, Portugal, February 27 – March 1, 2017,
Revised Selected Papers, 2019. �hal-02001134�

https://hal.science/hal-02001134
https://hal.archives-ouvertes.fr

CUDA-accelerated Feature-based Egomotion
Estimation

Safa Ouerghi1, Remi Boutteau2, Xavier Savatier2, and Fethi Tlili1

1 Carthage Univ, SUP’COM, GRESCOM, 2083 El Ghazela, Tunisia
{safa.ouerghi,fethi.tlili}@supcom.tn

2 Normandie Univ, UNIROUEN, ESIGELEC, IRSEEM, 76000 Rouen, France
{Remi.Boutteau,Xavier.Savatier}@esigelec.fr

Abstract. Egomotion estimation is a fundamental issue in structure
from motion and autonomous navigation for mobile robots. Several cam-
era motion estimation methods from a set of variable number of image
correspondences have been proposed. Seven- and eight- point methods
have been first designed to estimate the fundamental matrix. Five-point
methods represent the minimal number of required correspondences to
estimate the essential matrix. These feature-based methods raised special
interest for their application in a hypothesize-and-test framework to deal
with the problem of outliers. This algorithm allows relative pose recovery
at the expense of a much higher computational time when dealing with
higher ratios of outliers. To solve this problem with a certain amount of
speedup, we propose in this work, a CUDA-based solution for the essen-
tial matrix estimation from eight, seven and five point correspondences,
complemented with robust estimation. The mapping of these algorithms
to the CUDA hardware architecture is given in detail as well as the
hardware-specific performance considerations. The correspondences in
the presented schemes are formulated as bearing vectors to be able to
deal with all camera systems. Performance analysis against existing CPU
implementations is also given, showing a speedup 4 times faster than the
CPU for an outlier ratio ε = 0.5 which is common for the essential ma-
trix estimation from automatically computed point correspondences, for
the five-point-based estimation. More speedup was shown for the seven
and eight- point based implementations reaching 76 times and 57 times
respectively.

Keywords: Egomotion · visual odometry · robotics · CUDA · GPU.

1 Introduction

Accurate localization is a fundamental issue in autonomous navigation that has
been extensively studied by the Robotics community. First advancements have
emerged within the Simultaneous Localization And Mapping (SLAM) approach
-the process of generating an internal map using sensor observations while mov-
ing through an environment- has received a great deal of attention [1]. Many
sensory devices have been used in SLAM systems including lidar scanners and

2 F. Author et al.

cameras that have become very popular due to their low-cost, wide availability,
passive nature and modest power requirements [2, 3]. Vision-based SLAM sys-
tems coined Visual SLAM (or v-SLAM) [4–6] may include several modules to
concurrently perform the tracking and mapping tasks such as a visual odometry
module (VO) [7, 8]. This latter is derived from Structure from Motion (Sfm)
and refers to the process of incrementally estimating the egomotion of an agent
(e.g., vehicle, human and robot) using only the input of a single or multiple
cameras attached to it. The feature-based VO for the monocular scheme con-
sists mainly in finding corresponding features in consecutive frames in the video
sequence and using the scene’s epipolar geometry to calculate the position and
orientation changes between the two images. A common way of determining
the relative pose using two images taken by a calibrated camera is based on
the estimation of the essential matrix that has been studied for decades. The
first efficient implementation of the essential matrix estimation is proposed by
Nister in [9] and uses only five point correspondances. The work of Stewenius
built upon the work of Nister uses the Gröbner Basis to enhance the estimation
accuracy [10]. Although the essential matrix expresses the epipolar geometry
between two views taken by a calibrated camera, a more general relationship
can be derived in the case of a non-calibrated camera expressed by the fun-
damental matrix which is is the algebraic representation of epipolar geometry
[11]. However, in a real application, wrong matches can lead to severe errors
in the measurements, which are called outliers and that occurs during the de-
scriptors matching step. The typical way of dealing with outliers consists of
first finding approximate model parameters by iteratively applying a minimal
solution in a hypothesize-and-test scheme. This procedure allows us to iden-
tify the inlier subset, and then, a least-squares result is obtained by minimizing
the reprojection error of all inliers via a linear solution or a non-linear opti-
mization scheme, depending on the complexity of the problem. This scheme is
called RANdom Sample Consensus (RANSAC) and has been first proposed by
Fischler and Bolles [12]. RANSAC can often find the correct solution even for
high levels of contamination. However, the number of samples required to do
so increases exponentially, and the associated computational cost is substantial.
Especially for robotics systems, the challenges are more acute, due to their strin-
gent time-response requirements. To solve these problems with a certain amount
of speedup, the usage of GPU computation is a popular topic in the community.
Researchers and developers have become interested in harnessing the Graphics
Processing Units (GPUs) power for general-purpose computing, an effort known
collectively as GPGPU (for General-Purpose computing on the GPU). The Com-
pute Unified Device Architecture (CUDA) has enabled graphics processors to be
explicitly programmed as general-purpose shared-memory multi-core processors
with a high level of parallelism [13]. In fact, recently, many problems are being
solved using programmable graphics hardware including feature matching and
triangulation [14], feature detectors [15], large non-linear optimization problems
such as bundle adjustment [16] and learning algorithms [17]. In this paper, we fo-
cus on an efficient implementation of a state-of-the-art relative pose estimation

CUDA-accelerated Feature-based Egomotion Estimation 3

based on the computation of the Essential matrix from five correspondances.
We consider single GPU implementation and we describe the strategies to map
the problem to CUDA architecture. Futhermore, new Kepler and Maxwell ar-
chitecture features are used and analyzed, such as CUDA Dynamic Parallelism
and new CuBLAS batched interfaces. The outline of this paper is as follows:
we briefly present the theory underlying the essential and fundamental matrices
estimation in Section 2. Section 3 details the CUDA based implementation of
the essential matrix estimation algorithm within RANSAC from five, seven and
eiht points. Afterwards, section 4 shows several experiments as examples of the
speedup results obtained with our implementation. Finally section 6 gives the
conclusion of the paper.

2 Background

The geometric relations between two images of a camera are described by the
fundamental matrix and by the essential matrix in case the camera is calibrated.
The essential matrix directly holds the parameters of the motion undergone. In
this section, we provide an overview of the important background underlying the
robust essential matrix estimation as well as the main feature-based methods
used to derive the essential matrix and consequently the camera motion.

2.1 Fundamental and Essential matrices

The epipolar geometry exists between any two camera systems. For a point ui
in the first image, its correspondence in the second image, u

′

i , must lie on the
epipolar line in the second image. This is known as the epipolar constraint. Al-
gebraically, for ui and u

′

i to be matched, the following equation must be satisfied

u
′T
i F ui = 0, (1)

where F is the 3× 3 fundamental matrix that has seven degrees of freedom
because it is of rank 2 (i.e. det(F) = 0) and is defined only up to a scale.
Therefore, at least seven point correspondences are required to calculate it. In
fact, each point match gives rise to one linear equation in the unknown entries
of F . From all the point matches, we obtain a set of linear equations of the form

AF = 0, (2)

where A is a 7 × 9 constraint matrix. If rank(A) = 8 when using 8 corre-
spondences, the solution is unique (up to a scale) and can be found by linear
methods. However, least squares methods are preferred because of the presence
of image noise and quantization effects.

The essential matrix is a 3 × 3 matrix as well, and can be considered as a
special case of the fundamental matrix, satisfying the following relationship

x
′T
i E xi = 0, (3)

4 F. Author et al.

where xi and x
′

i are normalized image point correspondences (i.e. xi = K−1ui
and x′i = K−1u′i with K the intrinsic calibration matrix).

The fundamental and the essential matrices are, therefore, related by

E = K−1 F K, (4)

where K is the intrinsic calibration matrix.
Furthermore, if the two views have relative pose [R|t] then

E = [t]×R, (5)

where [t]×is the skew-symmetric matrix with the property that [t]×x = t×x.
However, from two images alone, the length of t cannot be determined as E

is only determined up to a scale.
To direcly compute the essential matrix, expanding Equation 3 is, generally,

done which gives a single linear constraint in the nine elements of E for every
correspondence. From N correspondences, these equations can be stacked to
form a 9×N matrix which null space obtained by singular value decomposition
(SVD) gives a basis for the space in which E lies. The points within this vector
space which are essential matrices are those which can be decomposed into a
rotation and a translation. E can be decomposed in this way using an SVD
decomposition

E = U

 s 0 0
0 s 0
0 0 0

V T , (6)

which is equivalent to the following constraint providing an efficient test
whether a matrix is approximately an essential matrix

EETE − 1

2
trace(EET)E = 0. (7)

2.2 Essential matrix Computation from feature correspondences

Computing E from eight correspondences F can only be determined up to
a scale, there are, thus, 8 unknowns and at least 8 point matchings are used by
the 8-point algorithm. The constraint matrix A obtained according to Equation 2
is, therefore, 9×8. The least square solution is the singular vector corresponding
the smallest singular value of A, i.e. the last column of V in the SVD where
A = U DV T .

Computing E from seven correspondences The matrix of constraints
A is constructed from n = 7 correspondences and will therefore have a two-
dimensional null-space. This latter is derived from the use an SVD decompo-
sition resulting in two independent vectors f1 and f2. Taking f as the vector
containing the coefficients of the fundamental matrix F ,

f = (F11 F12 F13F21 F22 F23F31 F32 F33)T , (8)

CUDA-accelerated Feature-based Egomotion Estimation 5

f can be written as f = (1− t) f1 + t f2 with t ∈ R, solution of Af = 0.
The corresponding F-matrices are therefore,

F = (1− t)F1 + t F2. (9)

The condition det(F) = 0 leads to the equation,

det((1− t)F1 + t F2) = 0, (10)

that is a 3rd degree polynomial in t having at most 3 real roots, i.e. one or
three solutions are possible. The correct one is obtained after disambiguation
to check for the correct fundamental matrix. In our case, we are dealing with
normalized data and would , therefore, directly obtain the essential matrix E =
F . In fact, the essential and fundamental matrices are related as follows:

E = K
′T F K. (11)

Computing E from five correspondances Several algorithms have been de-
veloped to estimate the essential matrix, including, the seven- and eight-point
algorithms that are relatively fast [11]. However, for their use within RANSAC,
essential matrix computations have relied on minimal subsets, which for essential
matrix is five correspondences. Furthermore, Essential matrix estimation from
five correspondances have shown a better accuracy than other faster algorithms
with more correspondances. In essential matrix estimation, given five correspon-
dences, four basis vectors satisfying Equation 1 can be computed by SVD. All
linear combinations of these basis vectors satisfying Equation 3 are essential ma-
trices that provide nine cubic constraints in the elements of E. The methods of
Nister [9], and Stewenius et al. [10] both work by solving these nine equations.
Stewenius et al. first showed that the equations can be written as

M X = 0, (12)

where M is a 10× 20 matrix.
After gauss-jordan elimination, the system can be written

[I B]X = 0, (13)

where I is a 10× 10 identity matrix and B a 10× 10 matrix.
Stewenius et al. used, subsequently, the action matrix concept to solve the

systems in which a Gröbner basis is found. The 10×10 action matrix real eigen-
values and eigenvectors contain, hence, the solutions of polynomial equations.

2.3 Relative pose computation from Essential matrices solutions

Once the essential matrices solutions are computed, they have to be decomposed
into rotation and translation. In fact, the decomposition follows the normal pro-
cedure for the general case [9], giving two possible solutions for the rotation, Ra

6 F. Author et al.

and Rb, and two solutions for the translation as well, ta and tb, which have the
same direction t̂ determined up to a scale.

Thus, if E ∼ USV T is the SVD of E, a matrix D is defined as

D =

 0 1 0
−1 0 0
0 0 1

 . (14)

Then, Ra = UDV T and Rb = UDTV T . The solution for the translation
direction is t̂ = [U13U23U33]T .

Four pose configurations are, therefore, obtained for each essential matrix
namely, (Ra, ta), (Rb, ta), (Ra, tb) and (Rb, tb). Consequently, a disambiguation
has to be performed to output the correct movement undergone by the camera.

2.4 Robust estimation of the Essential matrix

Even if the underlying dataset is contaminated with outliers, RANSAC esti-
mator can be used to robustly estimate the model parameters. RANSAC uses
a randomly chosen subset of the entire dataset to compute a hypothesis. The
remaining datapoints are used for validation. Repeating the hypothesis computa-
tion and validation with different subsets, the probability of finding a hypothesis
that fits the data well increases. For a data set with a given proportion ε of out-
liers, the number of trials N required to give sufficiently high probability p to
pick an outlier-free subset consisting of k point correspondences is

N =
log(1− p)

log(1− (1− ε)k)
(15)

Since the confidence p is generally chosen to be p ≥ 0.99, the number of
required RANSAC iterations N only depends on the number of parameters k
and the assumed ratio of outliers ε. Usually, the ratio of outliers ε is unknown.
Hence, we resort to an adaptive version of RANSAC, where, after each iteration,
the number of inliers γ is counted and the outlier ratio is updated according to

ε = 1− γ

n
, (16)

with n equal to the size of the dataset. The number of iterationsN is therefore
updated based on ε.

3 CUDA-based relative motion estimation from 2-D to
2-D correspondences

The complexity of implementing existing algorithms on the GPU depends heav-
ily on control flow of the algorithm. In fact, some algorithms (such as basic
image processing) can be classified as embarrassingly parallel when little effort
is required to split up the process into parallel tasks and are often easily ported

CUDA-accelerated Feature-based Egomotion Estimation 7

to the GPU. In contrast, other algorithms are inherently sequential which im-
plies unexpected scheduling difficulties that prohibit parallelization on the one
hand and greatly increases the effort required to implement an efficient CUDA
solution on the other hand. As has been explicited in the previous section, rela-
tive motion estimation algoritms generally execute within RANSAC to deal with
the problem of outliers. Our parallelization approach is based on performing the
required RANSAC iterations in parallel on CUDA to achieve a certain amount
of speedup. This level of parallelism suggests the consideration of RANSAC it-
erations as a batch of parallel computations, each processing a small subset of
data. However, RANSAC is iherently sequential which puts an additional com-
plexity on the development process. Furthermore, we have relied on the use
of CuBLAS, a high-performance implementation of BLAS-3 routines, for lin-
ear algebra computations [18]. As the matrices sizes in our problem are below
32 × 32, we have particularly exploited the batched interface of the CuBLAS
library where many small dense matrices factorizations, to be performed simul-
taneously, are provided. In this section, we present the implementation details
of relative pose estimation from five, seven and eight correspondences using the
CUDA programming model.

3.1 CUDA-based Relative Motion Estimation from five
Correspondences

In this section, we present the implementation details of the essential matrix
estimation from five correspondences within RANSAC presented first in [20]. As
has been stated before, the eigenvalues of the action matrix contain the essen-
tial matrices solutions according to Stewenius’s method [10]. However, a device
based eigenvalue computation on CUDA doesnt exist yet. Hence, we have relied
on the Matlab code provided by Chris Engels, based on the reduction to a single
polynomial [21]. This is done through the computation of the action matrix char-
acteristic polynomial roots, equivalent to the action matrix eigenvalues. In total,
four kernels have been employed operating at different levels of parallelism. The
first, exploits the CuBLAS library batched interface, manages algebraic com-
putations. It employs, therefore, a thread level parallelism and a nested warp
level parallelism as it uses dynamic parallelism to call CuBLAS functions from
within device. The second employs a straightforward parallelization and works
at a thread-level parallelism where each thread manages the remainder compu-
tations after the completion of the first kernel, i.e. one thread per RANSAC
iteration. The third kernel is used to rate the models outputted by the previ-
ous kernel and works at a block level parallelism where each block validates a
model relative to one RANSAC iteration. Finally, an additional kernel is used
to compute RANSAC’s best model and it simply performs a reduction to find
the model with maximum number of inliers which represents the best model.

CuBLAS based kernel This kernel is launched with one block and a number of
threads equal to the number of required RANSAC iterations. In fact, according

8 F. Author et al.

to Equation 15, for a probability of success of 0.99 and a rate of outliers equal
to 0.5 the number of RANSAC trials required for a robust estimation based
on five points is equal to 145. We assume that the data is contaminated with
0.5% of outliers which is quite common for the essential matrix estimation from
automatically computed point correspondences. 145 threads belonging to one
block are therefore used. The high level interface exposed by all implementations
in this kernel is CuBLAS batched interface for solving a batch of N different
systems. Besides the batch size and the matrix dimensions, the functions expect
pointers to array of matrices. All arrays are assumed to be stored contiguously
with a column major layout and accessed to in global memory through the handle
of an array of pointers that we statically allocate as follows:

__device__ double* PointersArray[MaxBatchSize]

Firstly, a 9×5 hypothesis A[i], i = 0...batchSize−1 is computed from each ran-
dom five correspondances by each thread. The computed hypotheses are written
to global memory and referenced by an array of pointers as indicated above.

Secondly, the null-space of each hypothesis have to be computed by SVD.
However, due to the absence of a GPU-based implementation of SVD decom-
position, we use instead a QR decomposition to derive the null space. In fact,
standard methods for determining the null-space of a matrix are to use a QR
decomposition or an SVD. If accuracy is paramount, the SVD is preferred but
QR is faster. Using a QR decomposition, if AT = QR, and the rank of A is r,
then the last n−r columns of Q make up the null-space for A. This is performed
through a call to the cuBLAS built-in function cublasDqrfBatched performing
a QR factorization of each A[i] for i = 0, ..., batchSise− 1. The decomposition
output is presented in a packed format where the matrix R is the upper triangu-
lar part of each A[i] and the vectors v on the lower part are needed to compute
the elementary reflectors. the matrix Q is, hence, not formed explicitly, but is
represented as a product of these elementary reflectors.

As CuBLAS dosen’t provide a built-in routine to retrieve Q as Lapack does,
we designed a child kernel called from the main kernel to simulaneously calculate
the different reflectors and compute their product to retrieve Q.

The number of Thread-blocks in the launch configuration of the child ker-
nel is equal to the batchSize, i.e. iterations. Each Thread-block computes a
single matrix Q and a block-level parallelism is hence applied. The Thread-
blocks are designed to be three-dimensional, where the x-dimension refers to
the number of rows of each reflector, the y-dimension to the number of columns
and the z-dimension to the number of reflectors. This allows each thread to
handle one element in shared memory and consequently, ensure a parallel com-
putation of the different reflectors. It is worth noting that this configuration is
possible because the matrix sizes in our problem are small (5 refrectors, each
of size 9 × 9) and consequently, all reflectors fit at once in shared memory.
The computation consists in loading, first, the A[blockIdx.x], and the array of
scalars Tauarray[blockIdx.x] exited by cublasDqrfBatched into shared mem-
ory where the matrix Q is also allocated. The vector vi relative to each reflector
qi is then putted in the required form, where vi(1 : i− 1) = 0 and vi(i) = 1 with

CUDA-accelerated Feature-based Egomotion Estimation 9

vi(i+ 1 : m) on exit in A[blockIdx.x][i+ 1 : m, i]. Each reflector qi has the form
qi = I − Tau[i].v.transpose(v), computed for all reflectors by the pseudocode
explicited in Figure 1 and finally, the product of all reflectors is computed to
retrieve Q.

Pseudocode1: Q computation in shared memory

int tidx=threadIdx.x;

int tidy=threadIdx.y;

int tidz=threadIdx.z;

int index_A=tidz*9+tidy;

int index_q=tidx*9+tidy+9*9*tidz;

Q[index_q]=A[index_A];

__syncthreads();

double alpha;alpha=-1;

int index=tidx*9+tidy+9*9*tidz;

Q[index]= (-Tau[tidz]*Q[index]

*(Q[tidxx*9+tidy+9*9*tidz]));

__syncthreads();

Fig. 1. Pseudocode of reflectors computation in shared memory.

Once the null-space determined, the second step is to compute a 10 × 20
matrix M that is accelerated in the provided openSource code, through a sym-
bolic computation of the expanded constraints. The matrix columns are then
rearranged according to a predefined order. To save execution time and mem-
ory usage, we use to rearrange the matrix columns beforehand and to write it
in column major for subsequent use of cuBLAS functions. We hence output a
permuted 20× 10 matrix M .

Subsequently, the Reduced Row Echelon Form (RREF) of M have to be
computed through a gauss-jordan elimination, i.e. M = [I B]. Instead of carry-
ing out a gauss-jordan elimination on M , a factorization method may be used
to find directly the matrix B from the existant matrix M . In fact, cuBLAS
provides several batched interfaces for linear systems factorizations. We exploit
the batched interface of LU factorization performing four GPU kernel calls for
solving systems in the form (MX = b) as follows:

1. LU decomposition of M (P M = LU).
2. Permutation of the array b with the array of pivots P (y = P b).
3. Solution of the triangular lower system (Lc = y).
4. Solution of the upper system to obtain the final solution (U x = c)

With putting b as an array of pointers to null vector, cuBLAS directly provides
cublasDgetrfBatched for the first step and cublasDgetrsBatched for the three
other steps. We finally obtain the matrix B in exit of cublasDgetrsBatched,
solution of the system MX = 0.

10 F. Author et al.

RANSAC models computation kernel At this level, the kernel is launched
with one CUDA block and iterations number of threads. We only use global
memory where the computations of the previous kernel are stored and small per
thread arrays using registers and local memory.

Each thread computes a 10th degree polynomial using local variables. This
is done by extracting from the RREF in global memory the coefficients of two
3rd degree polynomials and a 4th degree polynomial represented by private local
arrays for each thread. These polynomials are afterwards convoluted then sub-
stracted and added to generate a single 10th degree polynomial for each thread
as explicited in the original Matlab code and which refers to the computation of
the determinant of the characteristic polynomial. The convolution is performed
in our implementation through a special device function presented as a symbolic
computation of three polynomials of 3rd, 3rd and 4th degrees respectively.

The key implementation of this kernel is the resolution of a batch of 10th

degree polynomials. In fact, we used a batched version of the Durand-Kerner
Method in which we assign to each polynomial a thread. We start by giving a
brief overview of the Durand-Kerner method, followed by our implementation
details.

Durand-Kerner Method The Durand Kerner Method allows the extraction
of all roots ω1, ..., ωn of a polynomial

p(z) =

n∑
i=0

aiz
n−i, (17)

where an 6= 0, a0 = 1, ai ∈ C.
This method constructs a sequence, H(zk) = zk+1 in CN with Z(0)being any

initial vector and H is the Weierstrass operator making Z
(k)
i tends to the root

ωi of the polynomial, defined as:

Hi(z) = zi −
P (zi)∏

j 6=i(zi − zj)
i = 1, ..., n (18)

The iterations repeat until
|Zk

i −Z
k+1
i |

Zk
i

or |P (zki)| is smaller than the desired
accuracy.

GPU version of batched Durand-Kerner The implementation of the Durand-
Kerner on GPU, is basically sequential where each thread computes the ten
complex roots of the 10th degree polynomial. We defined the type COMPLEX
denoting structs of complex numbers. We started from an initial complex guess
z randomly chosen, and the vector of complex roots R of size the number of
roots (10 in our problem) where, R[i] = zi, i = 1..n − 1. The functionpoly
evaluates at z a polynomial of the form of Equation 17 where the vector A =
a1, a2, a3, ..., a(n− 2), a(n− 1), a(n) denotes the coeffecients of our polynom.

CUDA-accelerated Feature-based Egomotion Estimation 11

As we are dealing with complex numbers, complex arithmetic has been em-
ployed denoted by compsubtract for complex numbers substraction and compdiv
for complex division. As explicited in the following piece of code, we iterate until
obtaining the desired accuracy expressed as a relative error of estimated roots
below a predefined value as depicted in Figure 2.

Pseudocode2: GPU Version of Durand-Kerner method

double maxDiff = 0; int iter=0; int maxIters =30;

for(iter = 0; iter < maxIters; iter++) {

maxDiff = 0;

for (int j = 0; j < n; j ++) {

COMPLEX B = poly(A, n, R[j]);

for (int k = 0; k < n; k++) {

if (k != j)

B = compdiv(B,compsubtract(R[j] , R[k]));

}

R[j] = compsubtract(R[j],B);

maxDiff = max(maxDiff, abs(B.x));

}

if(maxDiff <= 1e-10)

break;

}

Fig. 2. Pseudocode of batched Durand-Kerner method on CUDA.

As explicited in Section 2.3, an SVD decomposition of the directly obtained
essential matrices which are up to 10 (real solutions of 10th degree polynomial)
is used to decompose each solution into rotation and translation. This operation
can take a significant portion of the computation time and we use, therefore, a
specifically tailored singular value decomposition for essential matrices according
to Equation 6, that is proposed in [9] (Appendix B). In our implementation,
each thread computes up to 10 essential matrices, and for each, four movement
configurations are obtained.

However, in order to deal with all central camera models including perspec-
tive, dioptric, omnidirectional and catadioptric imaging devices, image measure-
ments are represented as 3D bearing vectors: a unit vector originating at the
camera center and pointing toward the landmark. Each bearing vector has only
two degrees of freedom, which are the azimuth and elevation inside the camera
reference frame as formulated in [19]. Because a bearing vector has only two de-
grees of freedom, we frequently refer to it as a 2D information and it is normally
expressed in a camera reference frame.

The disambiguation step that has, finally, to be performed by each thread
consists in calculating the sum of reprojection error of the triangulated 3D points
relative to the corresponding bearing vectors used to compute the model. Finally,

12 F. Author et al.

a single 4 × 3 transformation into the world reference frame matrix is returned
by each thread referring to the lowest score of reprojection error between all
essential matrices and pose configurations (up to 40). The transformation matrix
is directly obtained from the already calculated rotation and translation.

Indeed, the triangulation method used in our implementation follows the
general scheme employed in [19]. The reprojection error of 3D bearing vectors
was proposed in [19] as well, and is computed by considering the angle between
the measured bearing vector fmeas and the reprojected one frepr. In fact, the
scalar product of fmeas and frepr directly gives the angle between them, which
is equal to cos θ as illustrated in Figure 3. The reprojection error is, therefore,
expressed as

ε = 1− fTmeasfrepro = 1− cos θ. (19)

Fig. 3. Reprojection error computation in Opengv (Source: [19]).

RANSAC Rating Kernel In order to validate each estimated model, we com-
pute a loss value for each datapoint of the dataset. The loss value is used to verify
the model by computing the reprojection error of all triangulated bearing vectors
of the dataset. Outliers are subsequently found by thresholding the reprojection
errors, and the best model refers to the one with the maximum number of in-
liers. As the entire operation is in 3D, we use the thresholding scheme adopted
in the Opengv library [19]. This latter uses a threshold angle θthreshold to con-
strain frepr to lie within a cone of axis fmeas and of opening angle θthreshold as
depicted in Figure 3. The threshold error is given by

εthreshold = 1− cos θthreshold = 1− cos(arctan
ψ

l
), (20)

where ψ refers to the classical reprojection error threshold expressed in pixels
and l to the focal length.

CUDA-accelerated Feature-based Egomotion Estimation 13

The model validation process considers multiple accesses to global memory
to evaluate whether each correspondence of the dataset is an inlier or an outlier
which is a very time consuming. The shared memory is, hence, used as a cache
to accelerate computations. The RANSAC rating kernel employs a block level
parallelism and is lauched with iterations blocks to make each block handle a
RANSAC model and 8×warpsize threads. Since warpsize = 32, a total of 256
threads are launched per block and each thread in the block evaluates a point.
To load datapoints in shared memory, a buffer is allocated of size 256×s where s
refers to the size of each datapoint. In case of bearing vectors, s = 6. Each thread
triangulates bearing vector correspondances into a 3D point and computes its
reprojection error according to Equation 19. This latter is, thereafter, compared
to the precalculated threshold according to Equation 20 to decide whether the
correspondance refers to an inlier or to an outlier. In our implementation, the
number of inliers for 256 values is automatically returned via:

inlier_count=__syncthreads_count(

reproj_error[threadIdx.x]<threshold);

The process of loading data into buffer and evaluating 256 reprojection errors is
repeated ceil(datasetCount/256) times.

RANSAC Best Model Computation Kernel This kernel is launched with
one block and itearations threads and performs a reduction in shared memory
to derive the best model which refers to the one with the maximum number of
inliers.

3.2 CUDA-based Relative Motion Estimation from Seven
Correspondences

The implementation of the seven-point method relies on many common compo-
nents with the five-point method presented above. Our parallelization strategy
relies on performing the RANSAC iterations in parallel, as well. This suggests
redesigning the sequential code as has been done for the five point case. In this
section, we will only present the key steps that are different from the previ-
ous implementation. We recall that, as has been stated before, the fundamental
matrix has 7 degrees of freedom and requires seven correspondences to be esti-
mated. As we are working with normalized bearing vectors on the unit sphere,
our data is, therefore, normalized, and we directly obtain the essential matrix.
As has been presented in Section 2.2, the algorithm requires the computation
of the null-space of the constraint matrix formed from 7 correspondences ran-
domly chosen. The null-space is two-dimensional resulting in two independant
vectors. These latters lead to a 3rd degree polynomial that has at most 3 real
root representing the possible fundamental matrices solutions (or the essential
matrices in the calibrated case). This requires the rcovery of the null-space and
the resolution of a 3rd degree polynomial.

14 F. Author et al.

Null-space recovery The constraint matrix, constructed from 7 correspon-
dences is of size 7× 9. The null-space recovery is, generally, performed by SVD.
We use instead the same method presented in Section 3.1 based on a QR de-
composition and use as well the batched interface of the CuBLAS library to
simultaneously find the null-spaces of a batch of small matrices, each referring
to a RANSAC iteration.

Cubic Polynomial Root Solver In the 7-point algorithm, finding the fun-
damental matrices solutions or the essential matrices for the calibrated case is
reduced to solving a 3rd degree polynomial in the form of Equation 10. Several
state of the art methods can be used to solve a general polynomial including
Durand-kerner method presented in Section 3.1. However, as we are dealing
with only a cubic degree, we have opted for a direct solver, namely Cardano’s
Formula [22].

Robust Pose estimation on GPU The advantage of the GPU is gained
through the execution of the RANSAC iterations in parallel. The RANSAC
estimation process consists in two major steps executed by two separate kernels
namely, hypotheses computation kernel and loss values computation kernel.

Hypotheses computation kernel This kernel is executed on the CUDA de-
vice with a given number of CUDA threads T and CUDA blocks B depending
on the number of required iterations as N = T.B We take in general the number
of threads T as multiple of warp size. This kernel consists of the steps explained
below.

1. At the beginning of each iteration, each thread performs the computation of
7 random numbers that are used to choose the subset for further steps. In
our implementation, Marsaglia’s random numbers generator has been used
to generate random numbers on GPU [23].

2. The second step consists in simultaneously computing the different hypothe-
ses including finding up to 3 possible essential matrices, solutions of the 3rd

degree polynomial. Each solution is decomposed, then, into rotation R and
translation t and a disambiguation is ,subsequently, performed to pick up
the right solution. At the end of this stage, transformation matrices (with
the form [R|t]) are contiguously written in the device’s global memory at the
number of RANSAC iterations.

RANSAC Rating Kernel In order to validate each estimated hypothesis ob-
tained on exit of the hypotheses computation kernel, we compute a loss value
for each datapoint of the dataset. The loss value is used to verify the hypothesis
by computing the reprojection error of all triangulated bearing vectors of the
dataset as presented in Section 3.1. Outliers are subsequently found by thresh-
olding the reprojection errors, and the best model refers to the hypothesis with
the maximum number of inliers.

CUDA-accelerated Feature-based Egomotion Estimation 15

An additional kernel is, finally, used aiming at determing the best model
which refers to the one that has the maximum number of inliers by performing
a reduction in shared memory.

3.3 CUDA-based Relative Motion Estimation from Eight
Correspondences

The egomotion estimation using the eight-point algorithm on CUDA follows
the same scheme presented in the previous section dealing with seven correspon-
dences. The null-space is obtained via a QR deomposition as has been previously
discussed and is one dimensional which gives one essential matrix solution. The
implementation mainly involves two kernels, the first for hypotheses computa-
tion that is launched with T threads and B blocks to simultaneously compute N
RANSAC iterations where N = T.B. The second is for rating the RANSAC hy-
potheses ans is launched with N blocks and 256 threads and involves the bearing
vectors rating scheme. Finally, an additional kernel is used to determine the best
model which refers to the one that has the maximum number of inliers. However,
to avoid the costly iterative SVD, the null-space is determined via QR instead
of SVD and the rank 2 constraint that has to be enforced according to Equation
6 is directly implemented using an SVD computation for 3× 3 matrices.

4 Results

In this section we evaluate the speed and accuracy of our CUDA based essential
matrix solver within RANSAC and compare it against the CPU based imple-
mentation for general relative camera motion provided in the OpenGV library.
This latter is an openSource library that operates directly in 3D and provides
implementations to solve the problems of computing the absolute or relative
pose of a generalized camera [19].

4.1 Random Problem Generation

To make synthetic data for our tests, we used the automatic benchmark for
relative pose included in the Matlab interface of the OpenGV library. We used
the provided experiment to create a random relative pose problem, that is, cor-
respondences of bearing vectors in two viewpoints using two cameras at the
number of 1000 correspondences. In fact, the number of 1000 correspondences
has been chosen based on an averaged number obtained from real images. The
experiment returns the observations in two viewpoints plus the ground truth
values for the relative transformation parameters.

4.2 Timing

We have measured the mean time while running on the GPU and CPU (us-
ing OpenGV library). To compute the mean time, each estimation is repeated

16 F. Author et al.

20 times. The repetition rate is required since a single estimation can be much
slower or much faster than the mean due to the randomization. We only present
results of computations for single-precision datatype as the precision loss due to
single precision dosen’t really affect the localization estimation in a real scenario.
In addition, visual odometry is generally used with an optimization process to
reduce the drift caused by the run-time accumulation error. The system on which
the code has been evaluated is equipped with an i7 CPU running at up to 3.5
GHz, the intel i7 CORE. The CUDA device is an NVIDIA GeForce GTX 850M
running at 876 MHz with 4096 MB of GDDR5 device memory. The evaluation
has been performed with CUDA version 7.5 integrated with VisualStudio 2012.
At the first execution of the estimation, memory allocations have to be per-
formed. This is required only once and takes about 6 ms. To evaluate our im-
plementation, 10 outlier ratios from ε = 0.05 to ε = 0.5 in steps of ε = 0.05 are
evaluated. Figure 4 shows the number of required RANSAC iterations for the
essential matrix estimation from 5, 7 and 8 correspondences for the 10 outlier
ratios.

Fig. 4. Required RANSAC iterations vs outlier ratio.

In Figure 5, we show the performance results of estimating camera relative
pose from sets of five 2D bearing vectors correspondences. Firstly, in Figure 5(a),
we compare the mean computation time of CPU and GPU implementations, in
single precision. We show a mean computation time even more important for
CPU reaching 86 ms for an outlier ratio ε = 0.5 against 18 ms for GPU. With an
outlier ratio of ε = 0.5 which is common for the essential matrix estimation from
automatically computed point correspondences, we show in Figure 5(b) that the

CUDA-accelerated Feature-based Egomotion Estimation 17

speedup is above 4× compared to the CPU implementation. Furthermore, it is
useful to visualize the intersection between each CPU and GPU evaluation, i.e.
the outlier ratio where the speedup is equal to one. Figure 5(b) shows that there
is no speedup for lower outlier ratios ε ≤ 0.2. This is because the needed number
of iterations for ε = 0.2 is only 12 iterations. However, the minimum number
of iterations used in GPU based implementation is 32 iterations referring to the
warp size.

In Figure 6, we show the performance results of estimating camera relative
pose from sets of seven 2D bearing vectors correspondences. In Figure 6(a), we
compare the mean computation time of CPU and GPU implementations, in
single precision. We show a mean computation time for CPU reaching 266 ms
for an outlier ratio ε = 0.5 against 3.5 ms for GPU allowing a highly important
speedup of 76× as depicted in Figures 6(a) and 6(b) for mean time in ms and
speedup respectively.

In Figure 7, we show the performance results of estimating camera relative
pose from sets of eight 2D bearing vectors correspondences. As shown in Figure
7(a), a speedup of almost 57× is achieved for an outlier ratio of ε = 0.5. In fact,
the seven point scheme achieves more speedup as for ε = 0.5, 588 iterations are
required to attain a probability of 0.99 that the subset is outlier-free against
1177 iterations when relying on eight correspondences.
In a second series of experiments, a fixed number of RANSAC iterations equal

to 1024 is used to evaluate the performance of the three egomotion estimation
schemes. In fact, a high number of iterations is sometimes needed, priorily de-
termined, in order to estimate the covariance of the data as for instance in [24].
In Figure 8, we evaluate the time in ms and the speedup of our CUDA-based im-
plementations of essential matrix estimation within RANSAC from five, seven
and eight correspondences. Due to the implementations complexities, we only
launch 256 parallel threads in the case of 5-pt algorithm and the kernels are
therefore launched 4 times serially by the CPU to perform the 1024 iterations.
In the case of the 7-pt algorithm and 8-pt algorithm, 512 threads are issued in
parallel and the kernels are serially launched 2 times. Figure 8(a) shows an even
more important CPU time reaching 464 ms, 303 ms and 269 ms for the 5-pt
algorithm, 7-pt algorithm and the 8-pt algorithm respectively against 50.34 ms,
6.31 ms and 5.5 ms for the CUDA-based implementations. This allows to achieve
almost 9× speedup for the 5-pt algorithm and almost 48× speedup for both the
7-pt algorithm and 8-pt algorithm.

5 Conclusion

In this paper we presented a CUDA-accelerated 2D-2D feature-based egomo-
tion estimation from five, seven and eight correspondences. Feature-based ego-
motion is typically used within RANSAC in order to deal with erroneous feature
correspondences known as outliers. We presented our parallelization strategy,
based mainly on performing the required RANSAC iterations in parallel on the

18 F. Author et al.

(a) timing

(b) speedup

Fig. 5. Performance of essential matrix estimation with RANSAC from 5 correspon-
dences.

CUDA-accelerated Feature-based Egomotion Estimation 19

(a) timing

(b) speedup

Fig. 6. Performance of essential matrix estimation with RANSAC from 7 correspon-
dences.

20 F. Author et al.

(a) timing

(b) speedup

Fig. 7. Performance of essential matrix estimation with RANSAC from 8 correspon-
dences.

CUDA-accelerated Feature-based Egomotion Estimation 21

(a) timing

(b) speedup

Fig. 8. Performance of essential matrix estimation with RANSAC from 5, 7 and 8
correspondences.

22 F. Author et al.

CUDA GPU. We, hence, designed a mapping of the five-point essential ma-
trix using Gröbner basis to CUDA ressources and programming model as well
as the seven-point and eight-point schemes. Our hardware-specific implementa-
tions dealt with multiple CUDA features such as the the batched interface of
the cuBLAS library and the dynamic parallelism. In addition, in order to deal
with all central camera models including perspective, dioptric, omnidirectional
and catadioptric imaging devices, we used a novel scheme based on representing
feature measurements as bearing vectors. This representaion suggested a spe-
cific rating measure for RANSAC which is based on the computation of the
reprojection error of triangulated 3D points from corresponding bearing vectors.
An evaluation of our implementation was presented and the mean computation
time of RANSAC for different outlier ratios was measured. For an outlier ratio
ε = 0.5, common for the essential matrix estimation from automatically com-
puted point correspondences, a speedup of 4 times faster than the CPU counter-
part was achieved for the five-point version. Higher speedups were shown for the
seven-point and the eight-point versions reaching 76 times and 57 times respec-
tively. The five-point version is known to have a better accuracy at the expense
of complexity, whereas the faster seven and eight point versions are preferred
when integrating an optimization process aiming at reducing the accumulated
run-time error.

References

1. Thrun, S., Leonard, J.J.: Simultaneous 37. Simultaneous Localization and Mapping.
Springer Handbook of Robotics. 19 (2008).

2. Hager, G., Hebert, M., Hutchinson, S.: Editorial: Special issue on vision and robotics,
parts i and II. International Journal of Computer Vision. 74, 217218 (2007).

3. Neira, J., Davison, A.J., Leonard, J.: Guest Editorial Special Issue on Visual SLAM.
24, 929931 (2008).

4. Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: MonoSLAM: Real-Time Single
Camera SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence.
29, 10521067 (2007).

5. Williams, B., Klein, G., Reid, I.: Real-time SLAM relocalisation. In: Proc. Interna-
tional Conference on Computer Vision (2007).

6. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: Dense tracking and map-
ping in real-time. Presented at the November (2011).

7. Scaramuzza, D., Fraundorfer, F.: Visual Odometry [Tutorial]. IEEE Robotics &
Automation Magazine. 18, 8092 (2011).

8. Fraundorfer, F., Scaramuzza, D.: Visual Odometry: Part II: Matching, Robustness,
Optimization, and Applications. IEEE Robotics & Automation Magazine. 19, 7890
(2012).

9. Nister, D.: An efficient solution to the five-point relative pose problem. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence. 26, 756770 (2004).

10. Stewnius, H., Engels, C., Nistr, D.: Recent developments on direct relative orien-
tation. ISPRS Journal of Photogrammetry and Remote Sensing. 60, 284294 (2006).

11. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, Second
Edition. Cambridge Univ. Press, Cambridge U.K.

CUDA-accelerated Feature-based Egomotion Estimation 23

12. Fischler, M.A., Bolles, R.C.: Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography. Commun.
ACM. 24, 381395 (1981).

13. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: NVIDIA Tesla: A Unified
Graphics and Computing Architecture. IEEE Micro. 28, 3955 (2008).

14. Li, B., Zhang, X., Sato, M.: Pitch angle estimation using a Vehicle-Mounted monoc-
ular camera for range measurement. In: 2014 12th International Conference on Sig-
nal Processing (ICSP). pp. 11611168 (2014).

15. Yonglong, Z., Kuizhi, M., Xiang, J., Peixiang, D.: Parallelization and Optimization
of SIFT on GPU Using CUDA. In: 2013 IEEE 10th International Conference on High
Performance Computing and Communications 2013 IEEE International Conference
on Embedded and Ubiquitous Computing. pp. 13511358 (2013).

16. Wu, C., Agarwal, S., Curless, B., Seitz, S.M.: Multicore bundle adjustment. In:
CVPR 2011. pp. 30573064 (2011).

17. Chang, C.-C., Lin, C.-J.: LIBSVM: A Library for Support Vector Machines. ACM
Trans. Intell. Syst. Technol. 2, 27:127:27 (2011).

18. NVIDIA documentation, cuBLAS, http://docs.nvidia.com/cuda/cublas/index.html.
19. Kneip, L., Furgale, P.: OpenGV: A unified and generalized approach to real-time

calibrated geometric vision. In: 2014 IEEE International Conference on Robotics
and Automation (ICRA). pp. 18 (2014).

20. Ouerghi, S., Boutteau, R., Savatier, X., Tlili, F.: CUDA Accelerated Visual Ego-
motion Estimation for Robotic Navigation. In Proceedings of the 12th International
Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and
Applications - Volume 4: VISAPP, 107-114, (2017).

21. Stewenius, H. and Engels, C. Matlab code for solving the fivepoint problem. http:
//vis.uky.edu/œstewe/FIVEPOINT/. Online (2008).

22. Cardano formula - Encyclopedia of Mathematics, https://www.

encyclopediaofmath.org/index.php/Cardano_formula. Online.
23. Marsaglia, G.: Random Number Generators. Journal of Modern Applied Statistical

Methods. 2, (2003).
24. Ouerghi, S., Boutteau, R., Savatier, X., Tlili, F.: Visual Odometry and Place Recog-

nition Fusion for Vehicle Position Tracking in Urban Environments. Sensors. 18, 939
(2018).

