
HAL Id: hal-02001080
https://hal.science/hal-02001080v1

Preprint submitted on 31 Jan 2019 (v1), last revised 4 Apr 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accurate Complex Multiplication in Floating-Point
Arithmetic

Vincent Lefèvre, Jean-Michel Muller

To cite this version:
Vincent Lefèvre, Jean-Michel Muller. Accurate Complex Multiplication in Floating-Point Arithmetic.
2019. �hal-02001080v1�

https://hal.science/hal-02001080v1
https://hal.archives-ouvertes.fr

Accurate Complex Multiplication in
Floating-Point Arithmetic

Vincent Lefèvre
Univ Lyon, Inria,

CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP

Jean-Michel Muller
Univ Lyon, CNRS,

ENS de Lyon, Inria, Université Claude Bernard Lyon 1, LIP

January 31, 2019

Abstract

We deal with accurate complex multiplication in binary floating-point
arithmetic, with an emphasis on the case where one of the operands in a
“double-word” number. We provide an algorithm that returns a complex
product with normwise relative error bound close to the best possible one,
i.e., the rounding unit 𝑢.

Keywords. Floating-point arithmetic, Complex multiplication, Rounding
error analysis.

1 Introduction and notation
This paper deals with accurate (from a normwise point of view) complex multi-
plication in binary floating-point (FP) arithmetic, with an emphasis on the case
where one of the operands in a “double-word” number. This is of interest, for
instance, when that operand is a root of one (which is the case in fast Fourier
transforms), precomputed and stored in higher precision than standard FP pre-
cision. This can also be of interest for computing iterated products of several
complex numbers accurately. In the following, we assume a radix-2, precision-𝑝
FP arithmetic, with correctly-rounded (to nearest) arithmetic operations. We
assume that an FMA (Fused Multiply-Add) instruction is available and, to sim-
plify our study, we also assume an unbounded exponent range. This means that
the results presented in this paper apply to “real-life” IEEE 754 Floating-Point
arithmetic [6] as long as underflows and overflows do not occur.

We will denote 𝑢 = 2−𝑝 the “rounding unit”. For instance in the binary64
format of the IEEE 754 Standard (a.k.a. “double precision”), 𝑢 = 2−53. RN is
the round-to-nearest function (with any choice in case of a tie). For instance,

1

when performing the operation 𝑎+ 𝑏, where 𝑎 and 𝑏 are floating-point numbers,
the obtained result is RN(𝑎+ 𝑏), and it satisfies:

|RN(𝑎+ 𝑏)− (𝑎+ 𝑏)| 6 𝑢

1 + 𝑢
· |𝑎+ 𝑏| < 𝑢 · |𝑎+ 𝑏|.

Assuming one wishes to compute an approximation 𝑧𝑅 + 𝑖𝑧𝐼 to 𝑧𝑅 + 𝑖𝑧𝐼 =
(𝑥𝑅 + 𝑖𝑥𝐼) · (𝑦𝑅 + 𝑖𝑦𝐼), where 𝑥𝑅, 𝑥𝐼 , 𝑦𝑅, 𝑦𝐼 , 𝑧𝑅, and 𝑧𝐼 are FP numbers, one
may consider the following “naive” formulas:

∙ if no FMA instruction is available{︂
𝑧𝑅 = RN(RN(𝑥𝑅𝑦𝑅)− RN(𝑥𝐼𝑦𝐼)),
𝑧𝐼 = RN(RN(𝑥𝑅𝑦𝐼) + RN(𝑥𝐼𝑦𝑅)).

(1)

∙ if an FMA instruction is available{︂
𝑧𝑅 = RN(𝑥𝑅𝑦𝑅 − RN(𝑥𝐼𝑦𝐼)),
𝑧𝐼 = RN(𝑥𝑅𝑦𝐼 + RN(𝑥𝐼𝑦𝑅)).

(2)

When trying to minimize the relative error, one may be interested in mini-
mizing the componentwise error

max

{︂⃒⃒⃒⃒
𝑧𝑅 − 𝑧𝑅

𝑧𝑅

⃒⃒⃒⃒
;

⃒⃒⃒⃒
𝑧𝐼 − 𝑧𝐼

𝑧𝐼

⃒⃒⃒⃒}︂
,

or the normwise error ⃒⃒⃒⃒
𝑧 − 𝑧

𝑧

⃒⃒⃒⃒
.

Our goal here is to obtain small normwise relative errors, i.e., small values
of |(𝑧 − 𝑧)/𝑧|, where 𝑧 is the exact product and 𝑧 is the computed product.
Note that getting small componentwise relative errors would be a completely
different problem: formulas (1) and (2), as well as the algorithm we give in
this paper (Algorithm 3), can lead to large componentwise relative errors, and
to obtain small componentwise errors, one needs to use significantly different
algorithms, such as an algorithm attributed to Kahan by Higham [5, p. 65],
analyzed in [8], or Cornea et al’s algorithm for 𝑎𝑏 + 𝑐𝑑 presented in [2]. We
will give anyway a componentwise error bound for our algorithm (in Lemma 1,
below), but only because this will be an intermediate step for establishing our
main result (Theorem 1).

An algorithm that would always return the best possible result (i.e., a real
part equal to the FP number nearest to the exact real part, and an imaginary
part equal to the FP number nearest to the exact imaginary part) would have
worst case relative error 𝑢/(1 + 𝑢) ≈ 𝑢: this is therefore the best error bound
achievable by an algorithm that returns the real and imaginary part of the result
in floating-point. Asymptotically optimal bounds on the normwise relative error
of formulas (1) and (2) are known: Brent et al. [1] show a bound

√
5 · 𝑢 for (1),

and Jeannerod et al. [7] show a bound 2 · 𝑢 for (2).

2

We aim at obtaining smaller normwise relative errors, closer to the best
possible one, at the cost of more complex algorithms. We consider the product

𝜔 × 𝑥,

with
𝑥 = 𝑥𝑅 + 𝑖 · 𝑥𝐼 ,

where 𝑥𝑅 and 𝑥𝐼 are floating-point numbers, and

𝜔 = 𝜔𝑅 + 𝑖 · 𝜔𝐼 ,

where 𝜔𝑅 and 𝜔𝐼 are either “double-word” numbers (frequently called “double-
double” in the literature, because the underlying floating-point format is, in
general, the binary64 format) [9, 4] or floating-point numbers. We will first
consider the “double-word” case, i.e.,

𝜔 = 𝜔𝑅 + 𝑖 · 𝜔𝐼 = (𝜔𝑅
ℎ + 𝜔𝑅

ℓ) + 𝑖 · (𝜔𝐼
ℎ + 𝜔𝐼

ℓ),

where 𝜔𝑅
ℎ , 𝜔𝑅

ℓ , 𝜔𝐼
ℎ, and 𝜔𝐼

ℓ are floating-point numbers that satisfy:

∙ |𝜔𝑅
ℓ | 6 (1/2)ulp(𝜔𝑅) 6 𝑢 · |𝜔𝑅|;

∙ |𝜔𝐼
ℓ | 6 (1/2)ulp(𝜔𝐼) 6 𝑢 · |𝜔𝐼 |.

In Section 3.2, we deal with the case where 𝜔𝑅 and 𝜔𝐼 are floating-point
numbers (i.e., 𝜔𝑅

ℓ = 𝜔𝐼
ℓ = 0).

We will need two well-known algorithms of the floating-point literature: Al-
gorithm 2Sum (Algorithm 1 below), that takes two FP numbers 𝑎 and 𝑏 as input
and returns two FP numbers 𝑠 and 𝑡 such that 𝑠 = RN(𝑎+ 𝑏) and 𝑡 = 𝑎+ 𝑏− 𝑠
(that is, 𝑡 is the error of the floating-point addition of 𝑎 and 𝑏), and Algorithm
Fast2Mult (Algorithm 2 below), that requires the availability of an FMA in-
struction, and takes two FP numbers 𝑎 and 𝑏 as input and returns two FP
numbers 𝜋 and 𝜌 such that 𝜋 = RN(𝑎𝑏) and 𝜌 = 𝑎𝑏− 𝜋 (that is, 𝜌 is the error
of the floating-point multiplication of 𝑎 and 𝑏).

ALGORITHM 1: 2Sum(𝑎, 𝑏). The 2Sum algorithm [12, 11].
𝑠← RN(𝑎+ 𝑏)
𝑎′ ← RN(𝑠− 𝑏)
𝑏′ ← RN(𝑠− 𝑎′)
𝛿𝑎 ← RN(𝑎− 𝑎′)
𝛿𝑏 ← RN(𝑏− 𝑏′)
𝑡← RN(𝛿𝑎 + 𝛿𝑏)

3

ALGORITHM 2: Fast2Mult(𝑎, 𝑏). The Fast2Mult algorithm (see for
instance [10, 14, 13]). It requires the availability of a fused multiply-add
(FMA) instruction for computing RN(𝑎𝑏− 𝜋).

𝜋 ← RN(𝑎𝑏)
𝜌← RN(𝑎𝑏− 𝜋)

2 The multiplication algorithm
For performing the complex multiplication 𝜔 · 𝑥, we introduce Algorithm 3
below. The real part (lines 1 to 9) and the imaginary part (lines 10 to 18) can
obviously be computed in parallel, and within these parts, additional parallelism
is possible. For instance lines 3 and 5 can run in parallel with line 1, and line
7 can run in parallel with line 6. This parallelism is easily exploited by recent
compilers. This explains the good performance we obtain (see Section 4).

ALGORITHM 3: Accurate complex multiplication 𝜔 · 𝑥, where the real
and imaginary parts of 𝜔 = (𝜔𝑅

ℎ + 𝜔𝑅
ℓ) + 𝑖 · (𝜔𝐼

ℎ + 𝜔𝐼
ℓ) are double-word

numbers, and the real and imaginary parts of 𝑥 are FP numbers.
1: 𝑡𝑅 ← RN(𝜔𝐼

ℓ𝑥
𝐼)

2: 𝜋𝑅
ℓ ← RN(𝜔𝑅

ℓ 𝑥
𝑅 − 𝑡𝑅)

3: (𝑃𝑅
ℎ , 𝑃𝑅

ℓ)← Fast2Mult(𝜔𝐼
ℎ, 𝑥

𝐼)
4: 𝑟𝑅ℓ ← RN(𝜋𝑅

ℓ − 𝑃𝑅
ℓ)

5: (𝑄𝑅
ℎ , 𝑄

𝑅
ℓ)← Fast2Mult(𝜔𝑅

ℎ , 𝑥
𝑅)

6: 𝑠𝑅ℓ ← RN(𝑄𝑅
ℓ + 𝑟𝑅ℓ)

7: (𝑣𝑅ℎ , 𝑣
𝑅
ℓ)← 2Sum(𝑄𝑅

ℎ ,−𝑃𝑅
ℎ)

8: 𝛾𝑅
ℓ ← RN(𝑣𝑅ℓ + 𝑠𝑅ℓ)

9: return 𝑧𝑅 = RN(𝑣𝑅ℎ + 𝛾𝑅
ℓ) (real part)

10: 𝑡𝐼 ← RN(𝜔𝐼
ℓ𝑥

𝑅)
11: 𝜋𝐼

ℓ ← RN(𝜔𝑅
ℓ 𝑥

𝐼 + 𝑡𝐼)
12: (𝑃 𝐼

ℎ , 𝑃
𝐼
ℓ)← Fast2Mult(𝜔𝐼

ℎ, 𝑥
𝑅)

13: 𝑟𝐼ℓ ← RN(𝜋𝐼
ℓ + 𝑃 𝐼

ℓ)
14: (𝑄𝐼

ℎ, 𝑄
𝐼
ℓ)← Fast2Mult(𝜔𝑅

ℎ , 𝑥
𝐼)

15: 𝑠𝐼ℓ ← RN(𝑄𝐼
ℓ + 𝑟𝐼ℓ)

16: (𝑣𝐼ℎ, 𝑣
𝐼
ℓ)← 2Sum(𝑄𝐼

ℎ, 𝑃
𝐼
ℎ)

17: 𝛾𝐼
ℓ ← RN(𝑣𝐼ℓ + 𝑠𝐼ℓ)

18: return 𝑧𝐼 = RN(𝑣𝐼ℎ + 𝛾𝐼
ℓ) (imaginary part)

Our main result is

Theorem 1. The normwise relative error 𝜂 of Algorithm 3 satisfies

𝜂 6 𝑢+ 33𝑢2 +𝒪(𝑢3).

The higher order terms hidden in the “𝒪(𝑢3)” term of Theorem 1 can be
made totally explicit: Eq. (18) below gives a bound on 𝜂2 with all higher order

4

terms, and one easily shows from (18) that as soon as 𝑢 6 1/16 (i.e., the
precision 𝑝 is larger than or equal to 4, which always holds in practice), 𝜂 6
𝑢 + 34𝑢2. For instance, in binary64 arithmetic, (18) implies an error bound
1.0000000000000037𝑢, and in binary32 arithmetic, the obtained error bound is
1.000002𝑢.

Note that Algorithm 3 can easily be transformed into an algorithm that
returns the real and imaginary parts of the product as double-word numbers:
it suffices to replace the floating-point additions of lines 9 and 18 by a call to
2Sum (or to the somehow simpler Fast2Sum algorithm, see for instance [13]).
We deal with this solution in Section 3.1.

Let us now prove Theorem 1.

Proof. In the following, to simplify the notation, we will write

𝑁𝑅 = |𝜔𝑅𝑥𝑅|+ |𝜔𝐼𝑥𝐼 |,

and
𝑛𝑅 = |𝜔𝑅𝑥𝑅 − 𝜔𝐼𝑥𝐼 |.

Later on, we will need similar notation for the imaginary part, i.e.,

𝑁 𝐼 = |𝜔𝑅𝑥𝐼 |+ |𝜔𝐼𝑥𝑅|,

and
𝑛𝐼 = |𝜔𝑅𝑥𝐼 + 𝜔𝐼𝑥𝑅|.

We will focus on the calculation of the real part of the complex product
(i.e., lines 1 to 9 of the algorithm), since the results for the real part hold for the
imaginary part through a simple symmetry argument (namely, the imaginary
part of (𝑎+ 𝑖𝑏) · (𝑐+ 𝑖𝑑) is equal to the real part of (𝑏− 𝑖𝑎) · (𝑐+ 𝑖𝑑)).

2.1 Lines 1-2 of Algorithm 3: computation of an approxi-
mation 𝜋𝑅

ℓ to (𝜔𝑅
ℓ 𝑥

𝑅 − 𝜔𝐼
ℓ𝑥

𝐼).
We have

|𝑡𝑅 − (𝜔𝐼
ℓ𝑥

𝐼)| 6 𝑢2 · |𝜔𝐼𝑥𝐼 |, (3)

and |𝑡𝑅| 6 (𝑢+ 𝑢2) · |𝜔𝐼𝑥𝐼 |, so that

|𝜔𝑅
ℓ 𝑥

𝑅 − 𝑡𝑅| 6 𝑢 · |𝜔𝑅𝑥𝑅|+ (𝑢+ 𝑢2) · |𝜔𝐼𝑥𝐼 |
6 (𝑢+ 𝑢2) · (|𝜔𝑅𝑥𝑅|+ |𝜔𝐼𝑥𝐼 |)
= (𝑢+ 𝑢2) ·𝑁𝑅,

a consequence of which is

|𝜋𝑅
ℓ − (𝜔𝑅

ℓ 𝑥
𝑅 − 𝑡𝑅)| 6 (𝑢2 + 𝑢3) ·𝑁𝑅, (4)

and
|𝜋𝑅

ℓ | 6 (𝑢+ 2𝑢2 + 𝑢3) ·𝑁𝑅.

5

From (3) and (4), we obtain⃒⃒
𝜋𝑅
ℓ − (𝜔𝑅

ℓ 𝑥
𝑅 − 𝜔𝐼

ℓ𝑥
𝐼)
⃒⃒
6 𝜖1, (5)

with
𝜖1 = (2𝑢2 + 𝑢3) ·𝑁𝑅.

2.2 Line 3.
We have

𝑃𝑅
ℎ + 𝑃𝑅

ℓ = 𝜔𝐼
ℎ𝑥

𝐼 ,

with
|𝑃𝑅

ℓ | 6 𝑢 · |𝜔𝐼
ℎ𝑥

𝐼 | 6 𝑢(1 + 𝑢) · |𝜔𝐼𝑥𝐼 |,

and
|𝑃𝑅

ℎ | 6 (1 + 𝑢)2 · |𝜔𝐼𝑥𝐼 |.

2.3 Line 4.
From

|𝜋𝑅
ℓ − 𝑃𝑅

ℓ | 6 (𝑢+ 𝑢2) · |𝜔𝐼𝑥𝐼 |+ (𝑢+ 2𝑢2 + 𝑢3) ·𝑁𝑅

6 (2𝑢+ 3𝑢2 + 𝑢3) ·𝑁𝑅,

we obtain
|𝑟𝑅ℓ − (𝜋𝑅

ℓ − 𝑃𝑅
ℓ)| 6 𝜖2, (6)

with
𝜖2 = (2𝑢2 + 3𝑢3 + 𝑢4) ·𝑁𝑅,

and
|𝑟𝑅ℓ | 6 (2𝑢+ 5𝑢2 + 4𝑢3 + 𝑢4) ·𝑁𝑅, (7)

and, using (5) and (6), ⃒⃒
𝑟𝑅ℓ − (𝜔𝑅

ℓ 𝑥
𝑅 − 𝜔𝐼

ℓ𝑥
𝐼 − 𝑃𝑅

ℓ)
⃒⃒

6 (4𝑢2 + 4𝑢3 + 𝑢4) ·𝑁𝑅.
(8)

2.4 Lines 5 and 6.
We have

𝑄𝑅
ℎ +𝑄𝑅

ℓ = 𝜔𝑅
ℎ 𝑥

𝑅,

and
|𝑄𝑅

ℓ | 6 𝑢(1 + 𝑢) · |𝜔𝑅𝑥𝑅|.

From this bound on |𝑄𝑅
ℓ | and (7), we obtain⃒⃒

𝑄𝑅
ℓ + 𝑟𝑅ℓ

⃒⃒
6 (3𝑢+ 6𝑢2 + 4𝑢3 + 𝑢4) ·𝑁𝑅,

from which we deduce ⃒⃒
𝑠𝑅ℓ − (𝑄𝑅

ℓ + 𝑟𝑅ℓ)
⃒⃒
6 𝜖3, (9)

6

with
𝜖3 = (3𝑢2 + 6𝑢3 + 4𝑢4 + 𝑢5) ·𝑁𝑅,

and ⃒⃒
𝑠𝑅ℓ

⃒⃒
6 (3𝑢+ 9𝑢2 + 10𝑢3 + 5𝑢4 + 𝑢5) ·𝑁𝑅. (10)

All this gives

(𝑄𝑅
ℎ − 𝑃𝑅

ℎ + 𝑠𝑅ℓ) = (𝑄𝑅
ℎ − 𝑃𝑅

ℎ +𝑄𝑅
ℓ + 𝑟𝑅ℓ)

+𝜉3
= (𝑄𝑅

ℎ +𝑄𝑅
ℓ − 𝑃𝑅

ℎ + (𝜋𝑅
ℓ − 𝑃𝑅

ℓ))
+𝜉3 + 𝜉2

= (𝜔𝑅
ℎ 𝑥

𝑅 − 𝜔𝐼
ℎ𝑥

𝐼 + 𝜔𝑅
ℓ 𝑥

𝑅 − 𝜔𝐼
ℓ𝑥

𝐼)
+𝜉3 + 𝜉2 + 𝜉1,

with
|𝜉3| 6 𝜖3 = (3𝑢2 + 6𝑢3 + 4𝑢4 + 𝑢5) ·𝑁𝑅,
|𝜉2| 6 𝜖2 = (2𝑢2 + 3𝑢3 + 𝑢4) ·𝑁𝑅,
|𝜉1| 6 𝜖1 = (2𝑢2 + 𝑢3) ·𝑁𝑅.

This implies ⃒⃒
(𝑄𝑅

ℎ − 𝑃𝑅
ℎ + 𝑠𝑅ℓ)− (𝜔𝑅𝑥𝑅 − 𝜔𝐼𝑥𝐼)

⃒⃒
6 (7𝑢2 + 10𝑢3 + 5𝑢4 + 𝑢5) ·𝑁𝑅.

(11)

2.5 Lines 7 to 9.
We have

|𝑄𝑅
ℎ − 𝑃𝑅

ℎ | = |𝜔𝑅
ℎ 𝑥

𝑅 − 𝜔𝐼
ℎ𝑥

𝐼 −𝑄𝑅
ℓ + 𝑃𝑅

ℓ |
6 𝑛𝑅 + (2𝑢+ 𝑢2) ·𝑁𝑅,

hence,
|𝑣𝑅ℓ | 6 𝑢 · 𝑛𝑅 + (2𝑢2 + 𝑢3) ·𝑁𝑅,

and
|𝑣𝑅ℎ | 6 (1 + 𝑢) · 𝑛𝑅 + (2𝑢+ 3𝑢2 + 𝑢3) ·𝑁𝑅.

Therefore, using (10),

|𝑣𝑅ℓ + 𝑠𝑅ℓ | 6 𝑢 · 𝑛𝑅 + (3𝑢+ 11𝑢2 + 11𝑢3 + 5𝑢4 + 𝑢5) ·𝑁𝑅,

so that ⃒⃒
𝛾𝑅
ℓ − (𝑣𝑅ℓ + 𝑠𝑅ℓ)

⃒⃒
6 𝑢2 · 𝑛𝑅

+(3𝑢2 + 11𝑢3 + 11𝑢4 + 5𝑢5 + 𝑢6) ·𝑁𝑅,
(12)

and ⃒⃒
𝛾𝑅
ℓ

⃒⃒
6 (𝑢+ 𝑢2) · 𝑛𝑅

+(3𝑢+ 14𝑢2 + 22𝑢3 + 16𝑢4 + 6𝑢5 + 𝑢6) ·𝑁𝑅.

This gives ⃒⃒
𝑣𝑅ℎ + 𝛾𝑅

ℓ

⃒⃒
6 (1 + 2𝑢+ 𝑢2) · 𝑛𝑅

+(5𝑢+ 17𝑢2 + 23𝑢3 + 16𝑢4 + 6𝑢5 + 𝑢6) ·𝑁𝑅,

7

so that the error of the final addition 𝑣𝑅ℎ + 𝛾𝑅
ℓ is bounded by

(𝑢+ 2𝑢2 + 𝑢3) · 𝑛𝑅

+(5𝑢2 + 17𝑢3 + 23𝑢4 + 16𝑢5 + 6𝑢6 + 𝑢7) ·𝑁𝑅.
(13)

The bound on the total error (i.e., |𝑧𝑅 −ℜ(𝑤𝑥)|) is obtained by adding the
bounds (11), (12), and (13), i.e.,

(𝑢+ 3𝑢2 + 𝑢3) · 𝑛𝑅

+(15𝑢2 + 38𝑢3 + 39𝑢4 + 22𝑢5 + 7𝑢6 + 𝑢7) ·𝑁𝑅.
(14)

We therefore deduce,

Lemma 1 (Componentwise absolute error of Algorithm 3). We have

|𝑧𝑅 −ℜ(𝑤𝑥)| 6 𝛼𝑛𝑅 + 𝛽𝑁𝑅,
|𝑧𝐼 −ℑ(𝑤𝑥)| 6 𝛼𝑛𝐼 + 𝛽𝑁 𝐼 ,

(15)

with
𝛼 = 𝑢+ 3𝑢2 + 𝑢3

and
𝛽 = 15𝑢2 + 38𝑢3 + 39𝑢4 + 22𝑢5 + 7𝑢6 + 𝑢7.

Lemma 1 gives a bound on the componentwise absolute error of Algorithm 3.
However, it does not allow one to infer a useful bound on the componentwise
relative error, since |𝑁𝑅/𝑛𝑅| and |𝑁 𝐼/𝑛𝐼 | can be arbitrarily large. However,
the normwise relative error is always small, as we are going to see.

The square of the normwise relative error 𝜂 is

𝜂2 =
(𝑧𝑅 −ℜ(𝜔𝑥))2 + (𝑧𝐼 −ℑ(𝜔𝑥))2

(ℜ(𝜔𝑥))2 + (ℑ(𝜔𝑥))2
.

From (15), we have

(𝑧𝑅 −ℜ(𝜔𝑥))2 + (𝑧𝐼 −ℑ(𝜔𝑥))2

6 𝛼2
(︁(︀

𝑛𝑅
)︀2

+
(︀
𝑛𝐼

)︀2)︁
+ 2𝛼𝛽

(︀
𝑛𝑅𝑁𝑅 + 𝑛𝐼𝑁 𝐼

)︀
+𝛽2

(︁(︀
𝑁𝑅

)︀2
+
(︀
𝑁 𝐼

)︀2)︁
.

We also have

(ℜ(𝜔𝑥))2 + (ℑ(𝜔𝑥))2 =
(︀
𝑛𝑅

)︀2
+

(︀
𝑛𝐼

)︀2
=

(︀
𝜔𝑅𝑥𝑅

)︀2
+
(︀
𝜔𝐼𝑥𝐼

)︀2
+
(︀
𝜔𝑅𝑥𝐼

)︀2
+

(︀
𝜔𝐼𝑥𝑅

)︀2
.

Hence,

𝜂2 6 𝛼2 + 2𝛼𝛽
𝑛𝑅𝑁𝑅 + 𝑛𝐼𝑁 𝐼

(𝑛𝑅)
2
+ (𝑛𝐼)

2

+𝛽2

(︀
𝑁𝑅

)︀2
+
(︀
𝑁 𝐼

)︀2
(𝑛𝑅)

2
+ (𝑛𝐼)

2 .

(16)

8

We can notice that

𝑛𝑅𝑁𝑅 + 𝑛𝐼𝑁 𝐼

(𝑛𝑅)
2
+ (𝑛𝐼)

2 6

(︀
𝑁𝑅

)︀2
+

(︀
𝑁 𝐼

)︀2
(𝑛𝑅)

2
+ (𝑛𝐼)

2 ,

and (︀
𝑁𝑅

)︀2
+
(︀
𝑁 𝐼

)︀2
(𝑛𝑅)

2
+ (𝑛𝐼)

2

= 1 +
4 ·

⃒⃒
𝜔𝑅𝑥𝑅𝜔𝐼𝑥𝐼

⃒⃒
(𝜔𝑅𝑥𝑅)

2
+ (𝜔𝐼𝑥𝐼)

2
+ (𝜔𝑅𝑥𝐼)

2
+ (𝜔𝐼𝑥𝑅)

2 .

(17)

In the denominator of the right-hand part of (17), the sum of the two terms(︀
𝜔𝑅𝑥𝑅

)︀2 and
(︀
𝜔𝐼𝑥𝐼

)︀2 is larger than or equal to 2 ·
⃒⃒
𝜔𝑅𝑥𝑅𝜔𝐼𝑥𝐼

⃒⃒
, since(︀

𝜔𝑅𝑥𝑅
)︀2

+
(︀
𝜔𝐼𝑥𝐼

)︀2 − 2 ·
⃒⃒
𝜔𝑅𝑥𝑅𝜔𝐼𝑥𝐼

⃒⃒
= (|𝜔𝑅𝑥𝑅| − |𝜔𝐼𝑥𝐼 |)2 > 0.

The same holds for the sum of the two terms
(︀
𝜔𝑅𝑥𝐼

)︀2 and
(︀
𝜔𝐼𝑥𝑅

)︀2. This
immediately gives

1 +
4 ·

⃒⃒
𝜔𝑅𝑥𝑅𝜔𝐼𝑥𝐼

⃒⃒
(𝜔𝑅𝑥𝑅)

2
+ (𝜔𝐼𝑥𝐼)

2
+ (𝜔𝑅𝑥𝐼)

2
+ (𝜔𝐼𝑥𝑅)

2 6 2.

Combined with (16), this gives

𝜂2 6 𝛼2 + 4𝛼𝛽 + 2𝛽2.

From which we obtain

𝜂2 6 𝑢2 + 66𝑢3 + 793𝑢4 + 2958𝑢5 + 5937𝑢6

+7696𝑢7 + 6982𝑢8 + 4596𝑢9 + 2216𝑢10

+772𝑢11 + 186𝑢12 + 28𝑢13 + 2𝑢14
(18)

Theorem 1 immediately follows from (18).

3 Two special cases

3.1 Obtaining the product as a double-word number
As explained above, one may wish to obtain the real and imaginary parts of the
product 𝜔 · 𝑥 as double-word numbers, by replacing the floating-point addition
𝑧𝑅 = RN(𝑣𝑅ℎ + 𝛾𝑅

ℓ) of line 9 of Algorithm 3 by a call to 2Sum(𝑣𝑅ℎ , 𝛾
𝑅
ℓ), and by

replacing the floating-point addition 𝑧𝐼 = RN(𝑣𝐼ℎ + 𝛾𝐼
ℓ) of line 18 by a call to

2Sum(𝑣𝐼ℎ, 𝛾
𝐼
ℓ). The resulting componentwise error bound is obtained by adding

(11) and (12), so that the values 𝛼 and 𝛽 of Lemma 15 must be replaced by

𝛼′ = 𝑢2

9

and
𝛽′ = 10𝑢2 + 21𝑢3 + 16𝑢4 + 6𝑢5 + 𝑢6.

With these new values, the square 𝜂′2 of the normwise error now satisfies

𝜂′2 6 241𝑢4 + 924𝑢5 + 1586𝑢6

+1608𝑢7 + 1060𝑢8 + 468𝑢9 + 136𝑢10

+24𝑢11 + 2𝑢12,
(19)

so that the normwise relative error becomes less than
√
241 · 𝑢2 +𝒪(𝑢3) ≈

15.53𝑢2 +𝒪(𝑢3).
That variant is of interest if one wishes to accurately evaluate the product

𝑧1 × 𝑧2 × · · · × 𝑧𝑛

of 𝑛 complex numbers. One can evaluate that product iteratively, keeping the
real and imaginary parts of the partial product of all already considered terms as
double-word numbers, and just using the unmodified Algorithm 3 (i.e., a simple
FP addition and not a 2Sum at lines 9 and 18) for the last multiplication. Still
assuming that overflow or underflow do not occur (which may become unlikely
if 𝑛 is very large and the 𝑧𝑖 are arbitrary numbers), the total relative error is
bounded by

(1 + 𝜂′)𝑛−2 · (1 + 𝜂)− 1.

For instance, assuming binary64 arithmetic (𝑢 = 2−53), one can multiply 1000
numbers and still have a normwise relative error bounded by 1.000000000001724𝑢.

3.2 If 𝜔𝐼 and 𝜔𝑅 are floating-point numbers
If 𝜔𝐼 and 𝜔𝑅 are floating-point numbers (i.e., if 𝜔𝐼

ℓ = 𝜔𝑅
ℓ = 0), Algorithm 3

becomes simpler, and we obtain Algorithm 4 below. Each separate part (com-
putation of the real part, lines 1 to 6, or computation of the imaginary part,
lines 7 to 12) in Algorithm 4 is similar to Cornea et al’s algorithm for 𝑎𝑏 + 𝑐𝑑
presented in [2] (with an addition replaced here by a call to 2Sum), and to
Algorithm 5.3 in [15] (with an inversion in the order of summation of 𝑃𝑅

ℓ , 𝑄𝑅
ℓ ,

and 𝑣𝑅ℓ for the real part, and of 𝑃 𝐼
ℓ , 𝑄𝐼

ℓ , and 𝑣𝐼ℓ for the imaginary part).
Of course the error bounds given by (18) and Theorem 1 still apply. How-

ever, one can redo the calculations taking into account the zero terms, and
obtain new error bounds with smaller higher-order terms, more precisely, we
find

𝜂2 6 𝑢2 + 38𝑢3 + 299𝑢4 + 782𝑢5

+1025𝑢6 + 768𝑢7 + 336𝑢8 + 80𝑢9 + 8𝑢10 (20)

which gives
𝜂 6 𝑢+ 19𝑢2 +𝒪(𝑢3),

and one easily shows from (20) that as soon as 𝑢 6 1/16 (i.e., the precision 𝑝 is
larger than or equal to 4, which always holds in practice), 𝜂 6 𝑢+ 20𝑢2.

10

ALGORITHM 4: Accurate complex multiplication 𝜔 · 𝑥, where the real
and imaginary parts of 𝜔 and the real and imaginary parts of 𝑥 are FP
numbers, derived from Algorithm 3.

1: (𝑃𝑅
ℎ , 𝑃𝑅

ℓ)← Fast2Mult(𝜔𝐼 , 𝑥𝐼)
2: (𝑄𝑅

ℎ , 𝑄
𝑅
ℓ)← Fast2Mult(𝜔𝑅, 𝑥𝑅)

3: 𝑠𝑅ℓ ← RN(𝑄𝑅
ℓ − 𝑃𝑅

ℓ)
4: (𝑣𝑅ℎ , 𝑣

𝑅
ℓ)← 2Sum(𝑄𝑅

ℎ ,−𝑃𝑅
ℎ)

5: 𝛾𝑅
ℓ ← RN(𝑣𝑅ℓ + 𝑠𝑅ℓ)

6: return 𝑧𝑅 = RN(𝑣𝑅ℎ + 𝛾𝑅
ℓ) (real part)

7: (𝑃 𝐼
ℎ , 𝑃

𝐼
ℓ)← Fast2Mult(𝜔𝐼 , 𝑥𝑅)

8: (𝑄𝐼
ℎ, 𝑄

𝐼
ℓ)← Fast2Mult(𝜔𝑅, 𝑥𝐼)

9: 𝑠𝐼ℓ ← RN(𝑄𝐼
ℓ + 𝑃 𝐼

ℓ)
10: (𝑣𝐼ℎ, 𝑣

𝐼
ℓ)← 2Sum(𝑄𝐼

ℎ, 𝑃
𝐼
ℎ)

11: 𝛾𝐼
ℓ ← RN(𝑣𝐼ℓ + 𝑠𝐼ℓ)

12: return 𝑧𝐼 = RN(𝑣𝐼ℎ + 𝛾𝐼
ℓ) (imaginary part)

4 Implementation and experiments
Algorithm 3, implemented in binary64 arithmetic (i.e., 𝑝 = 53 and 𝑢 = 2−53),
was compared with other solutions, using a loop over 𝑁 random inputs, itself
inside another loop doing 𝐾 iterations. The goal of the external loop is to get
precise timings without having to choose a large value of 𝑁 , with input data
that would not fit in the cache: we do not want to include memory transfers in
the timings. For each test, we chose (𝑁,𝐾) = (1024, 65536), (2048, 32768) and
(4096, 16384).

The other considered solutions were: use of the naive formula (1) in binary64
arithmetic; use of (1) in binary128 (a.k.a. “quad precision”) arithmetic; use of
GNU MPFR [3] with precision ranging from 53 to 106 bits either with fused
multiplications/subtractions fmma/fmms (thus implementing the formulas, cor-
rectly rounded) or with separate additions, subtractions and multiplications.

The tests were run on two machines with a hardware FMA:

∙ an x86_64 machine with Intel Xeon E5-2609 v3 CPUs, under Linux (De-
bian/unstable), with GCC 8.2.0 and a Clang 8 preversion, using -march=native;

∙ a ppc64le machine with POWER9 CPUs, under Linux (CentOS 7), with
GCC 8.2.1, using -mcpu=power9.

The following optimization options were used: -O3 and -O2. With GCC, -O3
-fno-tree-slp-vectorize was also used in order to avoid a loss of performance
with some vectorized codes. In all the cases, -static was used to avoid the
overhead due to function calls to dynamic libraries.

The tests were run on several random data sets, giving a range of timings
and a range of ratios. The smallest 10 % values and largest 10 % values have
been excluded to take into account inaccuracies in the timings.

11

Table 1: Summary of the timings on an x86_64 machine (in seconds, for
𝑁𝐾 = 226 operations). “a3” stands for “Algorithm 3” (in binary64 arithmetic),
“sw” corresponds to the naive formula (1) in binary64 arithmetic, “dw” cor-
responds to (1) in binary128 arithmetic, “cr” is GNU MPFR with fused mul-
tiplications/subtractions fmma/fmms, and “na” is GNU MPFR with separate
additions, subtractions and multiplications.

minimums maximums
𝑁 → 1024 2048 4096 1024 2048 4096

gcc
-O3

a3 0.94 0.97 0.97 0.96 1.02 1.02
sw 0.61 0.62 0.62 0.61 0.62 0.62
dw 21.02 21.17 21.20 21.18 21.25 21.28
cr 15.76 15.99 16.08 21.48 21.63 21.66
na 12.46 12.88 12.99 23.16 23.23 23.22

gcc
-O3
-f...

a3 0.92 0.97 0.97 0.95 1.02 1.02
sw 0.61 0.61 0.62 0.61 0.62 0.62
dw 21.32 21.44 21.46 21.43 21.53 21.54
cr 15.87 16.11 16.16 21.54 21.73 21.78
na 12.59 13.01 13.12 22.72 22.85 22.80

gcc
-O2

a3 0.91 0.97 0.97 0.95 1.02 1.02
sw 0.61 0.62 0.62 0.61 0.62 0.62
dw 20.90 21.03 21.08 21.01 21.10 21.13
cr 15.93 16.17 16.26 21.57 21.70 21.75
na 12.31 12.74 12.85 23.11 23.20 23.18

clang
-O3

a3 0.86 1.09 1.10 0.96 1.15 1.15
sw 0.39 0.61 0.63 0.47 0.65 0.66
dw 21.65 21.77 21.81 21.74 21.87 21.88
cr 16.00 16.24 16.32 21.46 21.69 21.71
na 12.24 12.63 12.72 22.91 22.94 22.97

clang
-O2

a3 0.88 1.08 1.10 0.96 1.14 1.15
sw 0.40 0.61 0.63 0.48 0.65 0.66
dw 21.33 21.45 21.50 21.49 21.57 21.59
cr 15.38 15.62 15.70 21.62 21.79 21.87
na 12.15 12.54 12.65 23.15 23.21 23.21

12

Table 2: Summary of the timings on a POWER9 machine (in seconds, for
𝑁𝐾 = 226 operations). “a3” , “sw”, “dw”, “cr”, and “na” have the same meaning
as in Table 1.

minimums maximums
𝑁 → 1024 2048 4096 1024 2048 4096

gcc
-O3

a3 0.97 0.97 0.97 0.99 0.99 1.00
sw 0.47 0.47 0.51 0.48 0.48 0.52
dw 2.22 2.22 2.22 2.24 2.24 2.24
cr 19.44 19.56 19.62 23.94 24.07 24.06
na 16.41 16.60 16.66 30.07 30.34 30.63

gcc
-O3
-f...

a3 0.97 0.97 0.97 0.98 0.99 1.00
sw 0.47 0.47 0.51 0.48 0.48 0.52
dw 2.22 2.22 2.22 2.24 2.24 2.24
cr 19.45 19.59 19.61 24.11 24.08 24.07
na 16.42 16.59 16.66 30.06 30.39 30.44

gcc
-O2

a3 0.98 0.98 0.98 0.99 1.01 1.01
sw 0.47 0.47 0.51 0.47 0.47 0.51
dw 2.22 2.22 2.22 2.24 2.24 2.24
cr 19.50 19.66 19.68 24.14 24.11 24.05
na 16.36 16.58 16.63 30.29 30.29 30.49

13

We checked that the various timings were globally consistent, in particular
between the three chosen parameters for (𝑁,𝐾), and rejected some anoma-
lies manually: for Algorithm 3, (𝑁,𝐾) = (2048, 32768) and (4096, 16384) with
Clang gave running times larger than those obtained with GCC, affecting the
comparison with GNU MPFR. The timings are given in Table 1 (x86_64) and
Table 2 (Power9). Note that reading the inputs is included in the timings (thus
the ratios will be closer to 1 than one could expect), but these inputs are already
in the right format for each implementation.

As a summary from the tables:

∙ Implementation based on the naive formula (1) in binary64 (in-
lined code): It is about two times as fast as our implementation of Algo-
rithm 3, but it is significantly less accurate.

∙ Implementation based on the naive formula in binary128, using
the __float128 C type (inlined code): On the x86_64 platform, it is
from 19 to 25 times as slow as our implementation of Algorithm 3, the
reason being that this format is implemented in software. The case of the
POWER9 platform is particularly interesting as it has binary128 support
in hardware. Here, the implementation is about 2.3 times as slow. This
shows that even though one has hardware support for binary128, there is
still interest in algorithms using a mix of binary64 and double-binary64.

∙ Implementation based on GNU MPFR, using precisions from 53
(corresponding to binary64) to 106 (roughly corresponding to double-
binary64). Both codes based on fmma/fmms (thus implementing the for-
mulas, correctly rounded) and based on separate additions, subtraction
and multiplication operations were tested. This is from 11 to 26 times as
slow as our implementation of Algorithm 3 on x86_64, and from 17 to 31
times as slow on POWER9.

Algorithm 3 has also been tested on random inputs to search for large norm-
wise relative errors. For binary32, the input values (in ISO C99 / IEEE 754-2008
hexadecimal format) and the corresponding largest error found until now are

𝜔𝑅 = 0x1.3ec518p−37 + 0x1.371ep−64
𝜔𝐼 = 0x1.38c03ap−1 +−0x1.265e7ep−26
𝑥𝑅 = 0x1.a31812p−1
𝑥𝐼 = 0x1.59cdcap−17
𝜂 ≃ 0.9999991420274016184𝑢,

and for binary64, we have obtained

𝜔𝑅 = 0x1.d1ef9ea4aa013p−1 + 0x1.ae88ba2a277ep−56
𝜔𝐼 = 0x1.f5c28321df365p−81 + 0x1.c4c3e7b506d06p−135
𝑥𝑅 = 0x1.194f298b4d152p−1
𝑥𝐼 = 0x1.5c1fdca444f7cp−14
𝜂 ≃ 0.99999900913907117123𝑢.

This corroborates the bound given by Theorem 1.

14

Conclusion
We have given algorithms for complex multiplication in floating-point arith-
metic, that either return the real and imaginary parts of the product as floating-
point numbers with a normwise relative error bound close to the best one that
one can guarantee, namely 𝑢/(1 + 𝑢), or as double-word numbers. Our im-
plementation is only twice as slow as a significantly less accurate naive imple-
mentation. It is much faster than an implementation based on binary128 or
multiple-precision software.

References
[1] R. P. Brent, C. Percival, and P. Zimmermann. Error bounds on complex

floating-point multiplication. Mathematics of Computation, 76:1469–1481,
2007.

[2] M. Cornea, J. Harrison, and P. T. P. Tang. Scientific Computing on
Itanium R○-based Systems. Intel Press, Hillsboro, OR, 2002.

[3] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. MPFR:
A multiple-precision binary floating-point library with correct rounding.
ACM Transactions on Mathematical Software, 33(2), 2007. 15 pages. Avail-
able at http://www.mpfr.org/.

[4] Y. Hida, X. S. Li, and D. H. Bailey. C++/fortran-90 double-double and
quad-double package, release 2.3.17, March 2012. Accessible electronically
at http://crd-legacy.lbl.gov/~dhbailey/mpdist/.

[5] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
Philadelphia, PA, 2nd edition, 2002.

[6] IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic.
IEEE Standard 754-2008, August 2008. Available at https://doi.org/
10.1109/IEEESTD.2008.4610935.

[7] Claude-Pierre Jeannerod, Peter Kornerup, Nicolas Louvet, and Jean-Michel
Muller. Error bounds on complex floating-point multiplication with an
FMA. Mathematics of Computation, 86(304):881–898, 2017.

[8] Claude-Pierre Jeannerod, Nicolas Louvet, and Jean-Michel Muller. Fur-
ther analysis of Kahan’s algorithm for the accurate computation of 2× 2
determinants. Mathematics of Computation, 82(284):2245–2264, October
2013.

[9] Mioara Joldeş, Jean-Michel Muller, and Valentina Popescu. Tight and
rigourous error bounds for basic building blocks of double-word arithmetic.
ACM Transactions on Mathematical Software, 44(2), October 2017.

15

[10] W. Kahan. Lecture notes on the status of IEEE-754. Available at http:
//www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF, 1997.

[11] D. E. Knuth. The Art of Computer Programming, volume 2. Addison-
Wesley, Reading, MA, 3rd edition, 1998.

[12] O. Møller. Quasi double-precision in floating-point addition. BIT, 5:37–50,
1965.

[13] Jean-Michel Muller, Nicolas Brunie, Florent de Dinechin, Claude-Pierre
Jeannerod, Mioara Joldes, Vincent Lefèvre, Guillaume Melquiond, Nathalie
Revol, and Serge Torres. Handbook of Floating-Point Arithmetic.
Birkhäuser Boston, 2018. ACM G.1.0; G.1.2; G.4; B.2.0; B.2.4; F.2.1.,
ISBN 978-3-319-76525-9.

[14] Y. Nievergelt. Scalar fused multiply-add instructions produce floating-point
matrix arithmetic provably accurate to the penultimate digit. ACM Trans-
actions on Mathematical Software, 29(1):27–48, 2003.

[15] T. Ogita, S. M. Rump, and S. Oishi. Accurate sum and dot product. SIAM
Journal on Scientific Computing, 26(6):1955–1988, 2005.

16

