Benchmarking the HRP-2 humanoid robot during locomotion
Olivier Stasse, Kevin Giraud-Esclaes, Edouard Brousse, Maximilien Naveau, Rémi Régnier, Guillaume Avrin, Philippe Souères

To cite this version:
Olivier Stasse, Kevin Giraud-Esclaes, Edouard Brousse, Maximilien Naveau, Rémi Régnier, et al.. Benchmarking the HRP-2 humanoid robot during locomotion. Frontiers in Robotics and AI, 2018, 5, 10.3389/frobt.2018.00122 ; hal-02001008

HAL Id: hal-02001008
https://hal.science/hal-02001008
Submitted on 6 Feb 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Benchmarking the HRP-2 humanoid robot during locomotion

Olivier Stasse¹*, Kevin Giraud-Esclasse¹, Edouard Brousse², Maximilien Naveau³, Rémi Régnier², Guillaume Avrin², and Philippe Souères¹

¹Laboratoire d’Analyse et d’Architecture des Systèmes, (LAAS) CNRS, Université de Toulouse, France
²Laboratoire Nationale de Métrologie et d’essais (LNE), Paris, France
³Max-Planck Institute (MPI), Tuebingen, Germany

Correspondence*: Corresponding Author
ostasse@laas.fr

ABSTRACT

In this paper we report results from a campaign of measurement in a laboratory allowing to put a humanoid robot HRP-2 in a controlled environment. We have investigated the effect of temperature variations on the robot capabilities to walk. In order to benchmark various motions modalities and algorithms we computed a set of performance indicators for bipedal locomotion. The scope of the algorithms for motion generation evaluated here is rather large as it spans analytical solutions to numerical optimization approaches able to realize real-time walking or multi-contacts.

Keywords: benchmarking, bipedal locomotion, humanoid robot HRP-2, controlled environment, numerical optimization, walking

1 INTRODUCTION

Figure 1. General architecture to generate motion for a humanoid robot. In this paper the boxes in orange are the one benchmarked, whereas the blue boxes are not benchmarked
From the seminal work of Chestnutt (2010) to the recent methods proposed in the frame of the Darpa Robotics Challenge (DRC) [Tsagarakis et al. (2017); Lim et al. (2017); Radford et al. (2015); Johnson et al. (2017); Marion et al. (2017); DeDonato et al. (2017)], humanoid robots are moving using a control architecture following the general framework depicted in Fig. 1. Based on an internal representation of the environment and the localization of the robot (\(\hat{r}_b\) and \(\hat{\theta}_b\) being respectively the base position and orientation), the Motion Planner (MP) plans a sequence of reference end-effector contact positions (\(f_{\text{ref}}\), or a reference center of mass linear velocity combined with a reference waist angular velocity (\(V_{\text{ref}}\)). These references are then provided to a Model-Predictive Whole-Body Controller (MPWBC) which generates a motor command for each joint (joint torques (\(\tau_{\text{ref}}\)), positions (\(q_{\text{ref}}\)), velocities (\(\dot{q}_{\text{ref}}\)) and accelerations (\(\ddot{q}_{\text{ref}}\)). This block is critical in terms of safety as it maintains the dynamics feasibility of the control and the balance of the robot. The Model-Predictive Whole-Body Controller (WBC) can be expressed as a unique optimal control problem but at the cost of efficiency in terms of computation time or solution quality. This is why this controller is usually divided in two. First trajectories for the robot center of mass \(c_{\text{ref}}\) and the positions of contacts with the environment \(f_{\text{ref}}\) are found using a Centroidal Dynamics Pattern Generator (CDPG). And, in turn a WBC computes an instantaneous controller that tracks these trajectories. More details about the CDPG can be found in the next paragraph. The whole body reference is in turn sent to the Robot Hardware, which can be either the simulation or the real robot. The feedback terms are based upon the measurements of the different sensors. The encoders evaluate the joint position (\(\tilde{q}\)). The inertial measurement unit (IMU) measures the angular velocity (\(\tilde{\omega}_{\text{IMU}}\)) and the linear acceleration (\(\tilde{a}_{\text{IMU}}\)) of the robot torso, which give us information about the orientation of the robot with respect to the gravity field. Finally the interaction with the environment is provided by the force sensors classically located at the end-effectors (\(F_{\text{EE}} \in \{F_{\text{RF}}, F_{\text{LF}}, F_{\text{RH}}, F_{\text{LH}}\}\) where the subscripts have the following meaning \(\text{EE}:\) end-effector, \(\text{RF}:\) right foot, \(\text{LF}:\) left foot, \(\text{RH}:\) right hand, \(\text{LH}:\) left hand). All these information are treated in an Estimator to extract the needed values for the different algorithm. Finally the Localization block is dedicated to locate as precisely as possible the robot in its 3D environment. Various implementations of this architecture have been proposed with various levels of success from the highly impressive Boston Dynamics System, to robots widely available such as Nao.

An open question is the robustness and the repeatability of such control system as well as its performance. In this paper we propose a benchmarking of the HRP-2 robot in various set-ups and provide performance indicators in scenarios which are possibly interesting for industrial scenarios.

The paper is structured as follows, first the paragraph 2 presents the related work on control and benchmarking for humanoid robots, then paragraph 3 depicts our precedent contribution in the Koroibot project and how it relates to this work, to continue, paragraph 4 lists the materials and different methods used to perform the benchmarking, in turn the paragraph 5 shows the experimental results using the indicators from paragraph 4 and finally the conclusion 6 summarizes the contributions and results from this paper.

2 RELATED WORK

In this paragraph we present the work that has been done relative to the control and the benchmarking of humanoid robots.

2.0.1 Motion generation for humanoid robots

The different benchmarks included in this paper relate to MPWBC sketched in Fig. 1 so this section is dedicated to its related work. Several techniques are used to mathematically formulate this problem.
For instance hybrid-dynamics formulations as proposed by Grizzle et al. (2010) or Westervelt et al. (2007) are efficient but difficult to generalize. The approaches used in this paper are based on mathematical optimization which is broadly used in the humanoid robotics community. More precisely, the problem of the locomotion can be described as an **Optimal Control Problem** (OCP). The robot generalized configuration \(q^{ref} \) and velocity \(\dot{q}^{ref} \) usually compose the state \(x \). The future contact points can be precomputed by a **Motion Planner** or included in the state of the problem. The control of this system \(u \), can be the robot generalized acceleration \(\ddot{q}^{ref} \), the contact wrench \(\phi_k \) with \(k \in \{0, \ldots, \text{Number of Contact} \} \), or the motor torques \(\tau^{ref} \). We denote by \(x \) and \(u \) the state and control trajectories. The following optimal control problem (OCP) represents a generic form of the locomotion problem:

\[
\begin{align*}
\min_{x, u} & \sum_{s=1}^{S} \int_{t_s}^{t_s+\Delta t_s} \ell_s(x, u) \, dt \\
\text{s.t.} & \quad \forall t \; \dot{x} = \text{dyn}(x, u) \\
& \quad \forall t \; \phi \in \mathcal{K} \\
& \quad \forall t \; x \in B_x \\
& \quad \forall t \; u \in B_u \\
& \quad x(0) = x_0 \\
& \quad x(T) \in X_x \\
\end{align*}
\]

where \(t_{s+1} = t_s + \Delta t_s \) is the starting time of the phase \(s \) (with \(t_0 = 0 \) and \(t_S = T \)). Constraint (1b) makes sure that the motion is dynamically consistent. Constraint (1c) enforces balance with respect to the contact model. Constraints (1d) and (1e) impose bounds on the state and the control. Constraint (1f) imposes the trajectory to start from a given state (estimated by the sensor of the real robot). Constraint (1g) imposes the terminal state to be viable Wieber (2008). The cost (1a) is decoupled \(\ell_s(x, u) = \ell_x(x) + \ell_u(u) \) and its parameters may vary depending on the phase. \(\ell_x \) is generally used to regularize and to smooth the state trajectory while \(\ell_u \) tends to minimize the forces. The resulting control is stable as soon as \(\ell_x \) comprehends the \(L_2 \) norm of the first order derivative of the robot center of mass (CoM). Wieber et al. (2015).

Problem (1) is difficult to solve in its generic form. And specifically (1b) is a challenging constraint. Most of the time the shape of the problem varies from one solver to another only by the formulation of this constraint. The difficulty is due to two main factors: 1) There is a large number of degrees of freedom.
In practice we need to compute 36 DoF for the robot on a preview window with 320 iterations (1.6 s) to take into account the system inertia. 2) The system dynamics is non linear. Fig. [3] depicts the structure of the problem. To be able to solve the whole problem, represented by the full rectangle in Fig. 2, researchers used nonlinear optimization. In this paper we evaluated a resolution of the MPWBC based on the formulation given by Eq. [1]. In this approach described in Koch et al. (2014), the authors computed a dynamical step over motion with the HRP-2 robot, but this process can take several hours of computation. So simplifications are necessary, for example Tassa et al. (2014), Koenemann et al. (2015) uses simplifications on the contact model. This method is very efficient but is not suitable for complex contacts during walking for example.

Seminal works (Orin et al. (2013) [Kajita et al. (2003b)]) show that (1b) can be divided in two parts, the non-convex centroidal dynamics (horizontal gray rectangle in Fig. 2) (Orin et al. (2013)) with few DoF and the convex joint dynamics (vertical gray rectangle in Fig. 2). Kuindersma et al. (2014) and Sherikov (2016) chose to deal the two gray part of Fig. 2 at once. They optimize for the centroidal momentum on a preview horizon and then the whole body control. Qiu et al. (2011), Rotella et al. (2015), Perrin et al. (2015) decouple the two separated gray rectangles in Fig. 2. They solve first for the centroidal momentum and then for the whole body control. In general the centroidal momentum is still difficult to handle due to its non-convexity. Finally Kajita et al. (2003a), Herdt et al. (2010), Sherikov et al. (2014) linearize the centroidal momentum which provides a convex formulation of the locomotion problem. In Deits and Tedrake (2014), the problem was formulated as a mixed-integer program (i.e. having both continuous and discrete variables) in case of flat contact. In Mordatch et al. (2012), the same problem was handled using a dedicated solver relying on a continuation heuristic, and used to animate the motion of virtual avatars.

2.1 Benchmarking

Different methods exist to benchmark robot control architectures, in del Pobil et al. (2006) the authors argue that robotic challenges are an efficient way to do so. For example, the results of the DARPA Robotics Challenge published in the Journal of Field Robotics special issues Iagnemma and Overholt (2015) and Spenko et al. (2017), show the different control architecture in a determined context. Each behavior successfully accomplished grants point to the team and the best team won the challenge. This benchmarking was however costly as the robots had no system to support them in case of fall. In addition, as it is mostly application driven it is necessary in evaluating the system integration but not the independent subparts.

For the specific case of motion generation, it has been recently proposed by Brandao et al. (2017) to use a scenario called "Disaster Scenario Dataset". It allows benchmarking posture generation (solved by the WBC) and trajectory generation (MPWBC) using optimization. A set of problems is proposed by means of foot steps locations(F_{RF}, F_{LF}). From this it is possible to compare algorithms realizing the two functionnalities (WBC and MPWBC). The evaluation is realized in simulation using the Atlas robot and the ODE dynamic simulator. This first step is necessary but one step further is to benchmark a real humanoid platform. For this paper we used a more systematic decomposition of the humanoid bipedal locomotion Torricelli et al. (2015). Further description can be found in paragraph 4.7. This paper focuses on evaluating the MPWBC and WBC on the Robot Hardware. The Estimator used in this context is important but it is reflected in the stabilization process. The Motion Planning is not evaluated here as the planned motion is always the same or solved at the MPWBC level. The Localization is provided by a motion capture system.
3 THE KOROIBOT PROJECT AND OUR PRIOR CONTRIBUTIONS

The work presented in this paper takes its root in the context of the European project Koroibot (http://www.koroibot.eu/).

3.0.1 General purpose

The goal of the Koroibot project was to enhance the ability of humanoid robots to walk in a dynamic and versatile way, and to bring them closer to human capabilities. As depicted in Fig. 3-(left), the Koroibot project partners had to study human motions and use this knowledge to control humanoid robots via optimal control methods. Human motions were recorded with motion capture systems and stored in an open source database which can be found at https://koroibot-motion-database.humanoids.kit.edu/. With these data several possibilities were exploited:

- Criteria that humans are assumed to minimize using Inverse optimal control.
- Transfer from human behaviors to robots was done with walking alphabets and learning methods (Mandery et al. 2016).
- These human behavior was safely integrated in robots applying optimal controllers.
- Design principles were derived for new humanoid robots (Mukovskiy et al. 2017; Clever et al. 2017).

3.0.2 The robot challenges

In order to evaluate the progress of the algorithms at the beginning and at the end of the project, a set of challenges were designed focusing specifically on walking (see Fig. 3, Fig. 4). Fig. 3-(right) shows all the robot hosted by the various partners. All the team owning a robot had to perform some of these challenges considering the current and potential state of their robots and controllers.
In this context and in collaboration with the H2R project, a detailed set of key performance indicators (KPI) have been proposed. Torricelli et al. (2015). These KPI try to capture all the bipedal locomotion patterns. Specific sub-functions of the global motor behaviors were analyzed (see Fig. 5-(right)). The results are expressed as two different sub-function sets. First, the sub-functions associated to body posture task with no locomotion. And second the same sub-functions but including the robot body transport. The initial condition may vary depending on the experiment to perform. This is the idea of the intertrial variability. The sub-functions are also classified by taking into account the changes in the environment or not. Each of these functions can be evaluated for different robots using the criteria depicted in Fig. 5-(left). The performance are classified in two sub-categories, quantitative performance and human likeness. In addition there are indications on the last two columns if the criteria is applicable on a standing task or on a locomotion task. Again, all the team owning a robot had had to perform an evaluation of these KPI, considering the current and potential state of their robots and controllers.

3.1 The work done in the Koroibot context

In the Koroibot context the gepetto team evaluated the KPI one the robot HRP-2 (second robot from the left in (Fig. 3-(right)). Among the challenges presented in Fig. 4 we considered the following ones:

- walking on a flat ground,
- walking on an uneven ground,
- walking on a mattress,
- walking on a beam without handrail,
- climbing a stair case with/without handrail,
- walking on stepping stones,
- going down a stair case without handrail,

They are depicted by red circles in Fig. 4. In addition to these challenges we added the perturbation rejection. Considering the selected challenges we picked the following KPI sub-function:
Performance

<table>
<thead>
<tr>
<th>Performance</th>
<th>Description</th>
<th>Benchmark</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stability</td>
<td>Ability to Maintain Equilibrium Within a Single Trial</td>
<td>Time Until Falling</td>
<td>X</td>
</tr>
<tr>
<td>Stability</td>
<td>Ability to Maintain the Equilibrium Across Different Trials</td>
<td>Success Rate Across Different Trials</td>
<td>X</td>
</tr>
<tr>
<td>Gross Body Equilibrium</td>
<td>Ability to Maintain Equilibrium Over the Base of Support</td>
<td>Maximum Acceptable Quotient Amplitude</td>
<td>X</td>
</tr>
<tr>
<td>Gross Body Equilibrium</td>
<td>Ability to Maintain Equilibrium Over the Base of Support</td>
<td>Maximum Acceptable Stability Frequency</td>
<td>X</td>
</tr>
</tbody>
</table>
| Energy Consumption | Ability to Transport Body with Low Energy Costs | Specific Energetic cost of Transport C
X
| Energy Consumption | Ability to Transport Body with Low Energy Costs | Specific Mechanical Cost of Transport C
X
| Passivity | Ability to Minimize Joint Torques During Walking | Passive Gait Measure (PGM) | X |
| Reaction Time | Ability to Promptly React to Disturbances or External Command | Time from Input and Initiation of Motor Action | X |

Environmental Indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Description</th>
<th>Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td>Gross Body Motion</td>
<td>Motion of the Whole Body Expressed by Global Variables</td>
</tr>
<tr>
<td>Environment</td>
<td>Individual Joint Motion</td>
<td>Motion of the Single Joints or Limbs Taken Separately</td>
</tr>
<tr>
<td>Environment</td>
<td>Interlimb Coordination</td>
<td>Ability to Coordinate Between Different Body Parts</td>
</tr>
<tr>
<td>Environment</td>
<td>Intertrial Variability</td>
<td>Ability to Move Multiple Joints of the Same Leg During the Movement</td>
</tr>
<tr>
<td>Environment</td>
<td>Single Joint Motion</td>
<td>Force Exerted Between the Whole Body and the Environment</td>
</tr>
<tr>
<td>Environment</td>
<td>Single Joint Motion</td>
<td>Force Exerted Among Limbs</td>
</tr>
<tr>
<td>Environment</td>
<td>Dynamic Symmetry</td>
<td>Ability of Moving Leg Pattern Closely Similar to Root-Legged Animals</td>
</tr>
<tr>
<td>Environment</td>
<td>Dynamic Synergy</td>
<td>Ability to Store and Release Energy</td>
</tr>
<tr>
<td>Environment</td>
<td>External Compliance</td>
<td>Ability to Respond Relatively to External Disturbance</td>
</tr>
<tr>
<td>Environment</td>
<td>Internal Compliance</td>
<td>Ability to Store and Release Energy</td>
</tr>
</tbody>
</table>

Kinematic Indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Description</th>
<th>Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinematics</td>
<td>Gross Body Motion</td>
<td>Motion of the Whole Body Expressed by Global Variables</td>
</tr>
<tr>
<td>Kinematics</td>
<td>Individual Joint Motion</td>
<td>Motion of the Single Joints or Limbs Taken Separately</td>
</tr>
<tr>
<td>Kinematics</td>
<td>Interlimb Coordination</td>
<td>Ability to Coordinate Between Different Body Parts</td>
</tr>
</tbody>
</table>

Dynamics

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Description</th>
<th>Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamics</td>
<td>Gross Body Kinetics</td>
<td>Forces Exerted Between the Whole Body and the Environment</td>
</tr>
<tr>
<td>Dynamics</td>
<td>Single Joint Kinetics</td>
<td>Force Exerted Among Limbs</td>
</tr>
<tr>
<td>Dynamics</td>
<td>Dynamic Symmetry</td>
<td>Ability of Moving Leg Pattern Closely Similar to Root-Legged Animals</td>
</tr>
<tr>
<td>Dynamics</td>
<td>Dynamic Synergy</td>
<td>Ability to Store and Release Energy</td>
</tr>
</tbody>
</table>

Passivity

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Description</th>
<th>Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passivity</td>
<td>Ability to Minimize Joint Torques During Walking</td>
<td>Passive Gait Measure (PGM)</td>
</tr>
</tbody>
</table>

Reactiveness

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Description</th>
<th>Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactiveness</td>
<td>Reaction Time</td>
<td>Ability to Promptly React to Disturbances or External Command</td>
</tr>
</tbody>
</table>

Figure 5

(left) Performances indicators (right) The motor skills considered in the benchmarking scheme. This scheme is limited to bipedal locomotion skills. The concept of intertrial variability represent modifications of the environment between trials. (dashed) Motor skills evaluated in Naveau (2016) (not dashed) Motor skills evaluate in this paper.

- Horizontal ground at constant speed,
- Stairs,
- Bearing constant weight (the robot’s own weight)
- Success rate across N different trials,
- Mechanical energy,
- Mechanical plus electrical energy,
- All these choices are shown in Fig. 5 by red ellipses on the table. The mathematical details and results are presented below in paragraph 4.7

4 MATERIALS AND METHODS

In this paragraph the experimental setups used to compute each of the performance indicators given in 4.7 are described. It also presents the motor skills given in Fig. 5 and their implementation. In addition to this, the algorithms used to perform the different test are depicted in paragraph 4.8

4.1 Different temperatures

LNE is equipped with temperature varying rooms which allowed us to quantify some of the performance indicators between $5^\circ C$ and $45^\circ C$. In this way, we evaluated the robustness and limits of our robot for all...
Figure 6. Pictures of the experimental setup at LNE (a) the robot hang up to walk on a slope (b) the translational plate (c) the temperature controlled chamber (end of the robot climbing 15 cm at 10°C)

the performance indicators. It appeared that the robot behavior deteriorates at low temperatures. At 5°C it was not possible to perform the calibration procedure as the robot could not move. At 10°C the friction are sufficiently low such that the robot could move. Another phenomena occurs above 40°C: thermal protection prevents the robot from moving if the temperature is too high. This happens at 40°C after few motions due to internal temperature build up. In this room, apart from these extreme cases, the motions and indicators measurements have be performed as expected on a flat ground or on the stairs from the Koroibot project. This staircase is made of 4 stairs and a platform with each stair separated by 15 cm height. The dimension of one stair case is 1 m × 0.25 m × 0.05 cm.

4.2 Tilted surfaces

In the context of the body skills in motion, we considered tilting surfaces. This was tested with the stabilizer commercially available with HRP-2. The setup is a platform which can be tilted upward and downward on one side with an hydraulic actuator. The surface was tilted continuously until the robot fell off. On the other hand, we tested walking algorithms with different angles (pointing up or down) until the robot fell down. Tests were realized with the robot pointing down, pointing up and across the slope. In Fig. 5 this corresponds to Body Posture - Continuous Surface Tilts.

4.3 Horizontal translations

We used a mobile plate controlled in the horizontal plane to perform continuous oscillating surface translations at various frequencies and various amplitudes. The platform was using a hydraulic actuator. The aim was to find the frequency and the amplitude that the controlled robot is able to sustain. In Fig. 5 this corresponds to Body Posture - Continuous Surface translations.

4.4 Bearing

In order to test bearing weights with the robot, we added bags of 5 kgs to 15 kgs in such way that the robot balance is maintained. This approach is a bit limited as they are several ways to bear a weight. Indeed it can be done with a backpack, in collaboration with someone, by holding the object against its chest. Each
of this approach comes with its own specific constraint. In order to avoid such constraints, we decided to take the most simplest choice and hang soft weights on the front and the back of the chest. In Fig. 5 this corresponds to Body Transport - Bearing Constant Weight.

4.5 Pushes

This paragraph presents the pushes experiments. We tried to find the sufficient force to make the robot fall down. This was achieved by using a stick on top of which was fixed a force sensor displaying the maximum force measured during a physical interaction. The experience was realized while the robot was standing and walking. The force was applied in the sagittal and frontal planes until making HRP-2 fall. The force was applied behind the waist of the robot. This part of HRP-2 was made specifically soft to support impacts. The walking part is the most difficult in terms of repeatability as the robot might be in different foot support and therefore be less stable depending on the situation. In Fig. 5 this corresponds to Body Posture - Pushes and Body Transport - Pushes.

4.6 Data

A CAD model of this staircase used is available on the github repository where all the log of the experiments are also present: https://github.com/laas/koroibot_KPI. All the computation performed on the logs and implementing the key performance indicators are available here: https://github.com/laas/EnergyComputation.

4.7 Key Performance indicators (KPI)

In this section the performance indicators used to evaluate the humanoid robot HRP-2 are described. They are mostly based on the work proposed in [Torricelli et al., 2015](https://example.com). In the Koroibot project we used key performance indicators (KPI) to analyze the behavior of the robot at the beginning and at the end of the project. These results lead us toward the improvements to be made. In 2013 the algorithm mostly used and implemented on HRP-2 in LAAS-CNRS where the walking pattern generators described in [Morisawa et al., 2007](https://example.com) and in [Herdt et al., 2010](https://example.com). The performance indicators chosen were:
The execution time $T_M = t_{end} - t_{begin}$, where t_{begin} is found when the sum of the norm of the motor axis velocities reaches 6 rad s^{-1} for the first time in the log and t_{end} is when the sum of the norm of the motor axis velocities is below 0.5 rad s^{-1}.

The walked distance, being the distance between the final base position and the first one. The base pose is reconstructed using an odometry with the joint positions only. The drift of this odometry is 8cm over a 3.6m during a straight walk.

The success rate, being the number of time a specific task could be performed without fall, over the total number of trial of the task.

The maximum tracking error from the planned trajectory,

$$\text{TrackingError}(t) = \int_t^{t+0.1} |q^{\text{ref}} - \ddot{q}| dt / 0.1$$

$$\text{MaxTrackingError} = \max_t (\text{TrackingError}(t))$$

with TrackingError being the average normed difference between the desired joint trajectory (q^{ref}) and the joint pose measured from the encoder (\ddot{q}) during 0.1s starting at time t. And MaxTrackingError being the maximum value of the TrackingError function.

The mechanical energy consumed normalized over the walking distance D and the execution time T_M.

$$E_{\text{mechanical}} = \int_{t_{\text{begin}}}^{t_{\text{end}}} |\tau \omega| dt / (T_M D)$$

with $E_{\text{mechanical}}$ being the integral over time of the mechanical power, τ being the torques applied at the robot joints and ω being the velocity of the robot joints.

The electrical energy dissipated by the motor resistance normalized over the walking distance D and the execution time T_M,

$$E_{\text{motor resistance}} = \int_{t_{\text{begin}}}^{t_{\text{end}}} R i^2 dt / (T_M D) = \int_{t_{\text{begin}}}^{t_{\text{end}}} R k_c^2 \tau^2 dt / (T_M D)$$

with $E_{\text{motor resistance}}$ being the integral over time of the electric power dissipated, R being the motor resistances, k_c being the electric motor torque constant and τ being again the torques applied at the robot joints.

The total energy consumed during the walking distance D and the execution time T_M,

$$E_{\text{total}} = E_{\text{mechanical}} + E_{\text{motor resistance}} + E_{\text{electronics}}$$

with E_{total} being the sum of the energy consumed by the system normalized over the walking distance D and the execution time T_M, and $E_{\text{electronics}}$ being the energy consumed by the on-board electronic cards. $E_{\text{electronics}}$ is neglected in this study so:

$$E_{\text{total}} = E_{\text{mechanical}} + E_{\text{motor resistance}}$$
The mechanical cost of transport and the total cost of transport,

\[E_{\text{mechanical cost transport}} = \int_{t_{\text{begin}}}^{t_{\text{end}}} |\tau \omega| \, dt / (m \, g \, D) \]

\[E_{\text{total cost transport}} = \left(\int_{t_{\text{begin}}}^{t_{\text{end}}} |\tau \omega| \, dt + \int_{t_{\text{begin}}}^{t_{\text{end}}} R \, k_c^2 \, \tau^2 \, dt \right) / (m \, g \, D) \]

with \(E_{\text{mechanical cost transport}} \) and \(E_{\text{total cost transport}} \) being the respectively the mechanical and total cost of transport, \(m \) being the total mass of the robot, and \(g = 9.81 \, ms^{-2} \) the gravity constant.

The Froude number,

\[F_r = \frac{v}{\sqrt{gl}} \]
\[v = \frac{D}{T_M} \]

where \(v \) is the robot center of mass mean velocity along the horizontal plane,, and \(l \) is the leg length. This number represents the ratio between the kinetic energy and the potential energy. It can also be interpreted as an indicator on the stepping frequency.

The trajectories were generated off line and repeatedly played on the robot to analyze their robustness. Views of the experimental setups can be seen in Fig. 7.

4.8 Motion generation for humanoid robots locomotion

This section explains the links between the motion generation architecture depicted in Fig. 1 and the Key Performance Indicators given in the paragraph 4.7. The set of function entitled body posture depicted in Fig. 1-(right) represents the behavior which is provided by what is called a whole-body controller. It consists in two parts:

- an estimator, which provides the orientation of the robot with respect to the gravity field and the positions of the end-effectors in contact with the environment.
- a whole-body controller which guarantee that the robot balance is maintained with respect to \(e^{\text{ref}}, f^{\text{ref}} \) and possibly a \(q^{\text{ref}} \).

In this paper we have evaluated independently only one whole body motion controller. It is the stabilizer provided by Kawada Inc. We give detailed performances evaluation of this controller in the experimental part of this paper. It was described in various paper such as Kajita et al. (2007) and Kajita et al. (2001).

The set of function entitled body transport depicted in Fig. 1-(right) in this paper are four CDPG and one MPWBC. The four CDPG evaluated in this paper are the following ones: Carpentier et al. (2016), a multi-contact centroidal dynamic pattern generator used to climb stairs with given contact positions, Kajita et al. (2003a) the original walking pattern generator implemented by Shuji Kajita with given foot steps, Morisawa et al. (2007) an analytical walking pattern generator allowing immediate foot step modifications, Naveau et al. (2017) a real time non linear pattern generator able to decide autonomously foot-steps positions. In each case the goal of the CDPG is to generate a center of mass trajectory and the foot-steps trajectories. For Kajita et al. (2003a), Naveau et al. (2017), and Morisawa et al. (2007) a dynamical filter is used to correct the center of mass trajectory to improve the dynamical consistency of
the motion. In each case, a whole-body motion generator (not to be confused with a whole body motion controller) is used without feedback to generate the reference position q^{ref}, and the desired z^{ref} which is then send to the stabilizer. For [Naveau et al. (2017) and Morisawa et al. (2007)] we used the stack of task described in [Mansard et al. (2009)] as a Generalized Inverse Kinematics scheme. In [Carpentier et al. (2016)] a Generalized Inverse Dynamics was used to generate the reference value for q^{ref} and c^{ref}. The MPWBC provides directly the controls. The one used is from [Koch et al. (2014)] using the Muscod-II Diehl et al. (2001) nonlinear solver.

5 EXPERIMENTS

In this paragraph we present the numerical results obtained from the computation of the KPI explained in details in paragraph 4.7 for each set of experiments. As a reminder here the list of the KPI:

- walked distance,
- success rate,
- max tracking error,
- duration of the experiment,
- mechanical joint energy,
- actuators energy,
- cost of transport,
- mechanical cost of transport,
- Froude number.

A video displaying a mosaic of all the experiments is available at the following URL: https://www.youtube.com/watch?v=djWGsb44JmY&feature=youtu.be.

5.1 Climbing stairs

5.1.1 Stairs of 10 cm

In this experiment, the humanoid robot HRP-2 is climbing stairs of 10 cm height without any handrail. The difficulty of this task is that the robot has to do quite large steps and to perform vertical motion. Because of the large motion issue the robot is climbing one stair at a time. Which means that the robot put one foot on the next stair and the other on the same stair. This avoid a too large joint velocity that the robot could not track.

[Morisawa et al. (2007)] CDPG was evaluated at the beginning of the project although the variation of height violates the assumption of the cart table model. But thanks to the dynamical filter the motion generated was sufficiently dynamically consistent so that the stabilizer could cope with the situation. The test was performed in a room at $20^\circ C$. The KPI results can be seen in Fig. 11 (tool upstairs).

The other test was performed at the end of the project on the CDPG [Carpentier et al. (2016)]. This time the CDPG took into account the center of mass height variation but not the whole body motion. The stabilizer should theoretically less trouble to compensate for the simplifications made. For [Carpentier et al. (2016)] three different temperatures were tested: $10^\circ C$, $20^\circ C$ and $35^\circ C$. The numerical results are depicted in Fig. 8.

Interestingly, the temperature level has a direct impact in terms of mechanical cost as it diminishes with the increase in temperature. It is reflected in the tracking error. This intertrial variation do not come from
the change of reference trajectory as it is strictly the same for every trial. There is a level of adaptation due to the stabilizer, but each temperature has been tested at least 4 times. A possible explanation is the fact that the grease in the harmonic drive generate less friction with higher temperature.

As the cost of transport is dimensionless it allows to compare the two motions regardless of their duration. It is then interesting to see that the cost of transport in Fig. 11 (tool upstairs) and in Fig. 8 (10°C) are very similar. And that at the same temperature the total cost of transport for Carpentier et al. (2016) CDPG is 9.6% better (from 6.71 to 6.06). One explanation is that the motion from Carpentier et al. (2016) CDPG being more dynamically consistent, the stabilizer consume less energy to compensate for the model simplifications.

5.1.2 Stairs of 15 cm

In this experiment, the humanoid robot HRP-2 is climbing stairs of 15 cm height using a handrail. In addition the robot is not using any stabilization algorithm, because there are non-coplanar contacts.

In this setup the Morisawa et al. (2007) CDPG has to be used without handrail because of the model simplifications. Trials has therefore been done using a WBC (described in Mansard et al. (2009)) without the handrail. The results show that the current demanded by the motors went up to 45 A. And because the HRP-2 batteries can not provide more than 32 A, all trial failed. This is the reason why the results are not shown in this study.

Nevertheless, tests using the handrail could be performed with Carpentier et al. (2016) CDPG. The corresponding results are depicted in Fig. 9. It confirms that the energy is decreasing with the increase of temperature without the stabilizer. Note that the energy spend by the robot is clearly higher than for the experience on the 10 cm stairs, i.e. a 36% of increase for the energy of walking.
5.1.3 Stepping Stones

In this experience, the humanoid robot HRP-2 had to go up and down on stairs made of red interlocking paving stones. Between each stairs there is a height difference of $\pm 5\text{ cm}$. It is using the CDPG described in Morisawa et al. (2007). It is slightly different from the previous experiments because there are holes between the stairs. To cope with this, the generated trajectories had to always change the height of the next support foot. As the paving stones were always slightly moving due to the robot weight the balance was difficult to obtain in a reliable way. As indicated in the graph depicted in Fig. 11, despite a success rate of 1, the tracking error reaches a level (8×10^{-3}). This tracking error is greater than the one obtained by the 10 cm climbing experiment at $10^\circ C$ but lower than the one obtained by the 15 cm climbing experiment at $35^\circ C$ (which is the lower for this temperature and the CDPG). A possible explanation why the energy consumption is greater is greater than the 10 cm climbing stairs is mostly due to the unstability of the stones and the fact that in this experiment the robot climb the stairs in a human fashion, i.e not one stair at a time.

5.2 Walking on a beam

This experiments was realized using the CDPG Morisawa et al. (2007). In this experiment the humanoid robot HRP-2 is walking on a beam. Initially, the experiment success rate on a real beam was around 20%. This rate was improved to achieve a 90% success rate, thanks a new implementation of the dynamical filter presented in Kajita et al. (2003a). It reduced the drift which is important as the beam length is 3 m long. This could be probably improved by a proper vision feed-back. In this study though the robot walked on a normal ground as if it where on a beam. The reason is the absence of a beam in the temperature controlled room. This means that the balance problem is exactly the same though the precision of the foot
step location is discarded. Hence in this study the success rate is 1. The corresponding result is depicted in Fig. 10.

To perform the motion, the robot has to execute faster motions with its legs than compare to straight walking. It is emphasized by the increase of the cost of transport compared to normal straight walking (see Fig. 13). Though the robot’s leg are moving faster, the step frequency is lowered compared to a normal walking in order to keep the joint velocities in the feasible boundaries. This is reflected by the fact that the Froude number is around 35% less that a straight walking one (see Fig. 13).

5.3 Straight flat ground walking

5.3.1 Temperatures

In the temperature controlled room the humanoid robot HRP-2 is performing a 2 m straight walking following the implementation of Kajita et al. (2003a). The corresponding result is depicted in Fig. 13. Note that the energy with respect to the temperature is following the same trend as for the experiments on the stairs and on the beam.

We also tested the algorithm Naveau et al. (2017) at 10°C. The total cost of transport is higher than the algorithm Kajita et al. (2003a) at the same temperature but lower than the one used for going over the beam. It is however largely less than the total cost of transport for climbing stairs at 10°C.

The fact that the energy cost is higher for Naveau et al. (2017) than for Kajita et al. (2003a) at the same temperature is that Naveau et al. (2017) provide a higher range of motion but the generated motion are closer to the limit of the system, so the stabilizer spend more energy to compensate for this.
5.3.2 Bearing weights

We made the humanoid robot HRP-2 walks while bearing weights at ambient temperature between 15° and 19°. The two algorithms [Kajita et al. (2003a) and Naveau et al. (2017)] were tested. The robot was able to walk while carrying up to 14 kg for the two algorithms. Note that, as expected, the effort to compensate for the additional weight reflects in the cost of transport.

5.3.3 Pushes

We performed pushes in the lateral direction and in the frontal direction while the robot was walking along a straight line. The two algorithms [Kajita et al. (2003a) and Naveau et al. (2017)] were again tested. In our case, the tested algorithm was not able to modify its foot-steps according to the pushes in contrary to the impressive work of Takumi et al. (2017). For this specific set of experiments with push from the back, the robot was able to sustain forces from 31 N to 47 N. Pushes applied in the lateral plane were varying from 23 N to 40 N. For Kajita et al. (2003a), the cost of transport has a value of 3.31 similar to the beam behavior. It is lower than the cost of transport for climbing stairs. The cost of transport for Naveau et al. (2017) is of 4.08. For both algorithms pushes are among the most consuming behaviors. It is due to the stabilizer compensating for the perturbation.

5.3.4 Slopes

The robot walked on a straight line while being on a slope of various angles ([1° – 3.0°]) - and with two possible directions (upward or downward). The two algorithms [Kajita et al. (2003a) and Morisawa et al. (2007)] were tested. For Kajita et al. (2003a) the cost of transport is higher than standard straight walking.
but far less than during the pushes. For [Morisawa et al. (2007)] the cost of transport is higher than even the pushes for [Kajita et al. (2003a)] and the same level than the beam. It can be explained by the fact that when the experiment has been realized the dynamical filter was not used. Therefore the stabilizer had to compensate for the discrepancy between the motion dynamic and the reference of the center of pressure. An algorithm able to estimate the ground slope and adapt to it would probably increase the efficiency of this motion.

5.3.5 Frictions

The robot walked on carpets with different textures implying different friction coefficients bought in a home center. In this case, we did no see any consequences with the CDPG [Kajita et al. (2003a)]. This is probably due to the particular shape of the soils which is one way to affect the friction coefficient. A possible extension of this work would be to use more slippery ground. But a proper way to handle such case is to implement a slip observer such as it was done Kaneko et al. (2005).

5.3.6 Uneven terrain

The robot walked over gravles of calibrated size bought in a nearby home center. We tested several diameters with the CDPG [Kajita et al. (2003a)]. The robot was able to walk on gravles of size up to 8 mm. Beyond this size, the robot was falling. Note that in Fig. 12 the cost of transport is slightly more expensive that classical straight walking in nominal temperature, but not much that walking at 10°C. It is far less expensive that climbing a slope or to counteract pushes. As expected it has no impact on the frequency of the footstep as can be see in the Froude Number.

Figure 12. Straight walk with Kajita’s walking pattern generator [Kajita et al. (2003a)]
We have computed the same performance indicators for the behavior described in Koch et al. (2014) in the frame of the Koroibot project. This work is quite different from the others as it implements a MPWBC under the formulation of an Optimal Control Problem given by Eq. The solution of this problem was computed by the Muscod-II Diehl et al. (2001) solver. As the solver is trying to maximize a solution which is not on a reduced space (the centroidal dynamics for the previous algorithms) but on the whole robot, the solution find is near real constraints of the robot in terms of joint position, velocity, acceleration and torques. This is reflected in the cost of transport which is very high, 10.15, almost as high as the climbing stair of 15 cm (see Fig. (muscode)).

5.4 Stabilizer

The stabilizer described in Kajita et al. (2007) and Kajita et al. (2001) was extremely resilient during all the tests. An horizontal plane generated oscillations along the sagittal plane and the perpendicular plane at 1 Hz and 2 Hz at various amplitude [10, 20, 30, 40, 48] in mm. Along the sagittal plane at 40 mm and 48 mm for both frequencies the feet of the robot were raising. In the perpendicular plane at 40 mm and 48 mm for both frequencies the overall robot rotated of about 15° and 20°. It was also tried to increase the frequency for a given amplitude of 10 mm. In the sagittal plane, the robot was able to reach 7 Hz without falling. In the perpendicular plane at 7 Hz the robot was making violent oscillations (without falling) reaching mechanical resonance. The trial was subsequently stopped. The results are depicted in Fig. We can clearly see that for the oscillation in the perpendicular plane the increase of total energy is following an exponential curve, compare to the same experience in the sagittal plane. This clearly shows...
Figure 14. Stabilization evaluation of the algorithm described in Kajita et al. (2001). The upper figure show the results along the sagittal plane, whereas the lower figure depicts the results along the perpendicular plane.

that we reach the resonance frequency of the system as it can be seen in the video available at the following location https://www.youtube.com/watch?v=djWGsb44JmY&feature=youtu.be.
6 CONCLUSION

6.1 Summary and major outcomes

In this paper we presented a benchmarking for the control architecture such as the one in Fig.1 implemented on the HRP-2 robot owned by LAAS-CNRS. The performance indicator used in this paper are mostly based on Torricelli et al. (2015). Based on this work we computed the following set of KPI:

- walked distance,
- success rate,
- max tracking error,
- duration of the experiment,
- mechanical joint energy,
- actuators energy,
- cost of transport,
- mechanical cost of transport,
- Froude number.

They all represent either the particular characteristics of the experiments or the performance of the control architecture used.

The list of algorithms executed on the HRP-2 robot were:

- a flat ground capable CDPG from Kajita et al. (2003a),
- an analytical flat ground capable CDPG from Morisawa et al. (2007),
- a non linear flat ground capable CDPG from Naveau et al. (2017),
- a multi-contact CDPG from Carpentier et al. (2016),
- a MPWBC from Koch et al. (2014),
- a WBC which is the stabilizer from Kajita et al. (2007) and Kajita et al. (2001)
- a WBC that computes the joint position from the end-effector plus center of mass trajectories from Mansard et al. (2009)
- a WBC that computes the joint acceleration from the end-effector plus center of mass trajectories used in Carpentier et al. (2016)

The list of environmental conditions where the tests could successfully occur are:

- a temperature controlled room which provided from 10°C to 35°C,
- a slope of various angles ($[1^\circ - 3.0^\circ]$),
- a controlled mobile platform that simulates a translating ground,
- a set of calibrated weight from 5 kgs to 15 kgs,
- a stick with a force sensor on it to apply measured perturbation on the robot,
- different floors with different friction.

The list of the motion performed in the environmental conditions where:

- climbing up 10 cm high stairs without handrail,
- climbing up 15 cm high stairs with handrail,
- walking over stepping stones,
- walking on a beam,
From all these results and experiments few major results come out. First the temperature plays a role on the energy consumed during a motion. We observed that the colder the room is the more mechanical and electrical energy is consumed. We also noticed that the more the motion is at the limit of stability the more the stabilizer has to inject energy into the system to compensate for potential drift. This create a noticeable increase in energy consumption, e.g. when the robot walk on a beam, step over obstacle, walk on stepping stones. However the most expensive motion is climbing stairs which is clearly a challenge for future potential applications where stairs are involved.

Finally in terms of cost of transport, the algorithm proposed by Carpentier et al. (2016) seems to be the most efficient and the most versatile. Its main disadvantage during this campaign was the lack of on-line implementation compare to Morisawa et al. (2007) and Naveau et al. (2017).

6.2 Future work

We could not properly compute the KPI when we tried to vary the friction of the ground. A future work is then to implement a proper slip observer like the one in Kaneko et al. (2005). Build a stabilizer that could be used in multi-contact in order to compensate for the external perturbation and the modeling assumption.

Furthermore, the LAAS-CNRS acquired a new humanoid robot Talos Stasse et al. (2017). The future work consist in implementing all the algorithms presented in this paper and perform the benchmarking on this new robot.

AUTHOR CONTRIBUTIONS

OS, EB, KGE conducted the experiments on the temperature, climbing stairs, at the LNE. MN and OS conducted the experiments with Koroibot. OS, EB and PS conceived the research idea. PS obtained funding for the project. OS, KGE, MN, EB, RG, GA and PS participated in the preparation of the manuscript.

ACKNOWLEDGMENTS

The financial support provided by the European Commission within the H2020 project ROBOCOM++ (JTC2016-PILOTS, Projet-ANR-16-PILO-0001) is gratefully acknowledged.

SUPPLEMENTAL DATA

As a reminder, a CAD model of the staircase used is available on the github repository where all the log of the experiments are also present: https://github.com/laas/koroibot_KPI. All the computation performed on the logs and implementing the key performance indicators are available here: https://github.com/laas/EnergyComputation.

REFERENCES

Stasse et al.

Benchmarking HRP-2

Herdt, A., Perrin, N., and Wieber, P.-B. (2010). Walking without thinking about it. In Int. Conf. on Intelligent Robots and Systems

This is a provisional file, not the final typeset article

Takumi, K., Hiroyuki, K., Mitsuhide, K., Chiaki, T., Shinya, S., Masanori, T., et al. (2017). Dynamic gait transition between walking, running and hopping for push recovery. In *Int. Conf. on Humanoid Robotics*

