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SPECTRAL ANALYSIS OF THE LAPLACIAN ACTING ON

DISCRETE CUSPS AND FUNNELS

NASSIM ATHMOUNI, MARWA ENNACEUR, AND SYLVAIN GOLÉNIA

Abstract. We study perturbations of the discrete Laplacian associated to dis-

crete analogs of cusps and funnels. We perturb the metric and the potential in
a long-range way. We establish a propagation estimate and a Limiting Absorp-

tion Principle away from the possible embedded eigenvalues. The approach is

based on a positive commutator technique.
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1. Introduction

The spectral theory of discrete Laplacians on graphs has drawn a lot of attention
for decades as they are discrete analogs of manifolds. We are especially interested in
the nature of the essential spectrum. Without trying to be exhaustive, using positive
commutator techniques, [Sa, BoSa] treat the case of Zd, [AlFr, GeGo] study the case
of binary trees, [MăRiTi] investigate some general graphs, and [PaRi] focused on
a periodic setting. Some other techniques have been used successfully, e.g., [HiNo]
with some geometric approach and [BrKe].

In the context of some manifolds of finite volume, [MoTr, GoMo] prove that
the essential spectrum of the (continuous) Laplacian becomes empty under the
presence of a magnetic field with compact support. Besides, they establish some
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Weyl asymptotic. Analogously, for some discrete cusps, [GoTr] classify magnetic
potentials that lead to the absence of the essential spectrum and compute a kind
of Weyl asymptotic for the magnetic discrete Laplacian. Back to [GoMo], one also
obtains a refined analysis of the spectral measure (propagation estimate, limiting
absorption principle) for long-range perturbation of the metric when the essential
spectrum occurs relying on a positive commutator technique. We refer to [GoMo]
for further comments and references therein. This part of the analysis was not
carried out in [GoTr]. This is the main aim of this article.

To start off, we recall some standard definitions of graph theory. A (non-oriented)
graph is a triple G := (E ,V,m), where V is a finite or countable set (the vertices),
E : V × V → R+ is symmetric, and m : V → (0,∞) is a weight. We say that G is
simple if m = 1 and E : V × V → {0, 1}.

Given x, y ∈ V, we say that (x, y) is an edge and that x and y are neighbors if
E(x, y) > 0. Note that in this case, since E is symmetric, (y, x) is also an edge and y
and x are neighbors. We denote this relationship by x ∼ y and the set of neighbors
of x by NG(x). The space of complex-valued functions acting on the set of vertices
V is denoted by C(V) := {f : V → C}. Moreover, Cc(V) is the subspace of C(V) of
functions with finite support. We consider the Hilbert space

`2(V,m) :=

{
f ∈ C(V),

∑
x∈V

m(x)|f(x)|2 <∞

}
endowed with the scalar product, 〈f, g〉 :=

∑
x∈V m(x)f(x)g(x). We define the

Laplacian operator

∆Gf(x) :=
1

m(x)

∑
y∈V
E(x, y)(f(x)− f(y)),(1.1)

for all f ∈ Cc(V). ∆G is a positive operator since we have 〈f,∆Gf〉`2(V,m) = QG(f),
with

QG(f) :=
1

2

∑
x,y∈V

E(x, y) |f(x)− f(y)|2 ,

for all f ∈ Cc(V). To simplify, we denote its Friedrichs’extension with the same
symbol. We define the degree of x ∈ V by

degG(x) :=
1

m(x)

∑
y∈V
E(x, y)

We present a simple version of our model: We consider G1 := (E1,V1,m1), where
V1 := Z, m1(n) := e−n, and E(n, n + 1) := e−(2n+1)/2, for all n ∈ N and G2 :=
(E2,V2,m2) a connected finite graph such that |V2| = p, p ≥ 3, where |V2| is the
cardinal of the set V2 with m2 constant. Let G := (E ,V,m) be the twisted cartesian
product G1 ×τ G2 given by{

m(x, y) := m1(x)×m2(y),
E ((x, y), (x′, y′)) := E1(x, x′)× δy,y′ + δx,x′ × E2(y, y′),

for all x, x′ ∈ V1 and y, y′ ∈ V2, If n > 0, this is a cups side and if n < 0, this is a
funnel side. We refer to Section 3.1 for more details.

The (twisted cartesian) Laplacian ∆G is essentially self-adjoint on Cc(V), see
Proposition 3.14. Moreover, it has no singularly continuous spectrum and

σac(∆G) =

[
α

m2
,
β

m2

]
,

with

α := e1/2 + e−1/2 − 2 and β := e1/2 + e−1/2 + 2.(1.2)
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funnel side cusp side

Figure 1. Representation of a discrete cusp and funnel side

We turn into perturbation theory. First, we perturb the weights, we consider G′ :=
(E ′,V,m′), where

m′(x) := (1 + µ(x))m(x) and E ′(x, y) := (1 + ε(x, y))E(x, y),

(H0)


max
x2∈V2

|V ((x1, x2))| → 0, if |x1| → ∞,
max
x2∈V2

|µ((x1, x2))| → 0, if |x1| → ∞,
max

x2∈V2,y∼(x1,x2)
|ε((x1, x2), y)| → 0, if |x1| → ∞.

This ensures that ∆G′ + V (·) is also essentially self-adjoint on Cc(V). Here V (·)
denotes the operator of multiplication by V . Moreover, (H0) guarantees the stability
of the essential spectrum, see Proposition 4.2. Namely,

σess(∆G′) =

[
α

m2
,
β

m2

]
.

In order to obtain the absence of singularly continuous spectrum for ∆G′ , we require
some additional decay. Let ε > 0 and ask:

(H1) sup
n∈Z,y∈V2

〈n〉1+ε
∣∣∣V (n− 1, y)− V (n, y)

∣∣∣ <∞,
(H2) sup

n∈Z,y∈V2
〈n〉1+ε |µ(n− 1, y)− µ(n, y)| <∞

(H3) sup
n∈Z,k∈V2

〈n〉1+ε |ε((n, k), (n+ 1, k))− ε((n− 1, k), (n, k))| <∞,

where 〈·〉 :=
√

1 + | · |2.
Our main result is the following:

Theorem 1.1. Let H := ∆G′+V (·) as above. Suppose that (H0) holds true. Then,
we have the following assertions:

(1) σess(H) = σess(∆G).

Assume furthermore that (H1), (H2), and (H3) hold true. Set κ(H) := σp(H) ∪
{α/m2, β/m2} with α, β are given in (1.2) and where σp denotes the pure point
spectrum. Take s > 1/2 and [a, b] ⊂ R \ κ(H). We obtain:

(2) The eigenvalues of H distinct from α/m2 and β/m2 are of finite multiplicity
and can accumulate only toward α/m2 and β/m2.

(3) The singular continuous spectrum of H is empty.
(4) The following limit exists and finite:

lim
ρ→0

sup
λ∈[a,b]

‖〈Λ〉−s(H − λ− iρ)−1〈Λ〉−s‖ <∞,

(5) There exists c > 0 such that for all f ∈ `2(V,m′), we have:∫
R
‖〈Λ〉−se−itHE[a,b](H)f‖2`2(V,m′)dt ≤ c‖f‖

2
`2(V,m′).
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Our approach is based on a positive commutator technique, namely we establish
a Mourre estimate. The proof of this theorem is given in Subsection 4.2. We refer
to Section 2 for historical references and for an introduction on the subject.

We now describe the structure of the paper. In Section 2, we present the Mourre’s
theory. The next section is devoted to study the free model. In Subsection 3.1, we
present the context and introduce the notion of cusp and funnel. In Subsection
3.2, we start with the Mourre estimate on N. In Subsections 3.3, and 3.4, we prove
the Mourre estimate for the unperturbed Laplacian that acts on a funnel and on a
cusp, respectively. Then, in Subsection 3.6, we conclude the Mourre estimate for
the whole graph. In Section 4, we perturb the metrics and add a potential. The
proofs are more involved than in Section 3.1 as we rely on the optimal class C1,1(A)
of the Mourre theory. This yields the main result.
Notation: We denote by N the set of non-negative integers. In particular 0 ∈ N.
Set [[a, b]] := [a, b] ∩ Z. We denote by 1X the indicator of the set X.
Acknowledgements: We would like to anonymous referees for their comments
on the script.

2. The Mourre theory

In [Pu], C.R. Putnam used a positive commutator estimate to insure that the
spectrum of an operator is purely absolutely continuous. His method was un-
fortunately not very flexible and did not allow the presence of eigenvalue. In
[Mo1, Mo2], E. Mourre had the idea to localise in energy the positive commu-
tator estimate. Thanks to some hypothesis of regularity, he proved that the em-
bedded eigenvalues can accumulated only at some thresholds, that the singularly
continuous spectrum is empty and also established a limiting absorption principle,
away from the eigenvalues and from the thresholds. Many papers have shown the
power of Mourre’s commutator theory for a wide class of self-adjoint operators, e.g.,
[BaFrSi, BoCaHäMi, CaGrHu, DeJa, FrHe, GeGéMø, GeGo, HuSi, JeMoPe, Sa].
We refer to [AmBoGe] for the optimised theory and to [GoJe1, GoJe2, Gé] for
recent developments.

Let us now, briefly recall Mourre’s commutator theory. The aim is to establish
some spectral properties of a given (unbounded) self-adjoint operator H acting in
some complex and separable Hilbert spaceH with the help of an external unbounded
and self-adjoint operatorA. Let ‖·‖ denote the norm of bounded operators onH and
σ(H) the spectrum of H. Recall that the latter is real. We endow D(H), the domain
of H, with its graph norm We denote by R(z) := (H− z)−1 the resolvent of H in z.
Take an other Hilbert space K such that there is a dense and injective embedding
from K to H, by identifying H with its antidual H∗, we have: K ↪→ H ' H∗ ↪→ K∗,
with dense and injective embeddings.

We introduce some regularity classes with respect to A and follow [AmBoGe,
Chapter 6]. Given k ∈ N, we say that H ∈ Ck(A) if for all f ∈ H, the map
R 3 t 7→ eitA(H + i)−1e−itAf ∈ H has the usual Ck regularity. We say that
H ∈ Ck,u(A) if the map R 3 t 7→ eitA(H + i)e−itA ∈ B(H) is of class Ck(R,B(H)),
where B(H) is endowed with the norm operator topology.

We start with an example, e.g., [GoJe1, Proposition 2.1].

Lemma 2.1. For φ, ϕ ∈ D(A), the rank one operator |φ〉〈ϕ| : ψ 7→ 〈ϕ,ψ〉φ is of
class C1(A) and

[|φ〉〈ϕ|, A] = |φ〉〈Aϕ| − |Aφ〉〈ϕ|.
By induction, given n ∈ N and φ, ϕ ∈ D(An), |φ〉〈ϕ| is of class Cn(A).

We turn to a criterion in term of commutator.

Theorem 2.2 ([AmBoGe, p.258]). Let A and H be two self-adjoint operators in
the Hilbert space H. The following points are equivalent:
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(1) H ∈ C1(A).
(2) For one (then for all) z 6∈ σ(H), there is a finite c such that

|〈Af,R(z)f〉 − 〈R(z)f,Af〉| ≤ c‖f‖2, for all f ∈ D(A).

(3) (a) There is a finite c such that for all f ∈ D(A) ∩ D(H):

|〈Af,Hf〉 − 〈Hf,Af〉| ≤ c(‖Hf‖2 + ‖f‖2).

(b) For some (then for all) z 6∈ σ(H), the set

{f ∈ D(A), R(z)f ∈ D(A) and R(z)f ∈ D(A)}is a core for A.

Note that (2) yields that the commutator [A, R(z)] extends to a bounded operator
in the form sense. We shall denote the extension by [A, R(z)]◦. In the same way,
from (3a), the commutator [H,A] extends to a unique element of B

(
D(H),D(H)∗

)
denoted by [H,A]◦. Note that D(H) is endowed with the graph norm of H and
that D(H)∗ denotes its anti-dual. Moreover, if H ∈ C1(A) and z /∈ σ(H),[

A, (H − z)−1
]
◦ = (H − z)−1︸ ︷︷ ︸

H←D(H)∗

[H,A]◦︸ ︷︷ ︸
D(H)∗←D(H)

(H − z)−1︸ ︷︷ ︸
D(H)←H

.

Here, we use the Riesz lemma to identify H with its anti-dual H∗.
Note that, in practice, the condition (3.b) could be delicate to check. This is

addressed by the next lemma.

Lemma 2.3 ([GoMo, Lemma A.2]). Let D be a subspace of H such that D ⊂
D(H)∩D(A), D is a core for A and HD ⊂ D . Let (χn)n∈N be a family of bounded
operators such that

(1) χnD ⊂ D , χn tends strongly to 1 as n→∞, and supn ‖χn‖B(D(H)) <∞.
(2) Aχnf → Af , for all f ∈ D , as n→∞.
(3) There is z 6∈ σ(H), such that χnR(z)D ⊂ D and χnR(z)D ⊂ D .

Suppose also that for all f ∈ D

lim
n→∞

A[H,χn]R(z)f = 0 and lim
n→∞

A[H,χn]R(z)f = 0.

Finally, suppose that there is a finite c such that

|〈Af,Hf〉 − 〈Hf,Af〉| ≤ c(‖Hf‖2 + ‖f‖2), for all f ∈ D .

Then, one has H ∈ C1(A).

We define other refined classes of regularity:

We say that H ∈ C0,1(A) if

∫ 1

0

∥∥[(H + i)−1, eitA]
∥∥ dt
t
<∞.

We say that H ∈ C1,1(A) if

∫ 1

0

∥∥[[(H + i)−1, eitA], eitA]
∥∥ dt
t2
<∞.

Thanks to [AmBoGe, p. 205], it turns out that
Given an interval open interval I, we denote by EI(H) the spectral projection

of H above I. We say that the Mourre estimate holds true for H on I if there exist
c > 0 and a compact operator K such that

EI(H)[H, iA]◦EI(H) ≥ EI(H) (c + K)EI(H),(2.1)

when the inequality is understood in the form sense. We say that we have a strict
Mourre estimate holds for H on the open interval I ′ when there exists c′ > 0 such
that

EI′(H)[H, iA]◦EI′(H) ≥ c′EI′(H).(2.2)

Assuming H ∈ C1(A), (2.1), and λ ∈ I is not an eigenvalue, therefore there exists
an open interval I ′ that contains λ and c′ > 0 such that (2.2). The aim of Mourre’s
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commutator theory is to show a limiting absorption principle (LAP), see [AmBoGe,
Theorem 7.6.8].

Theorem 2.4. Let H be a self-adjoint operator, with σ(H) 6= R. Assume that
H ∈ C1(A) and the Mourre estimate (2.1) holds true for H on I. Then

(1) The number of eigenvalues (counted with multiplicity) of H, that are in I,
is finite.

Assuming furthermore that K = 0 in (2.1), it yields:

(2) H has no eigenvalues in I.
(3) If H ∈ C1,1(A) and K = 0, s > 1/2 and I ′ a compact sub-interval of I,

then

sup
<(z)∈I′,=(z) 6=0

‖〈A〉−s(H − z)−1〈A〉−s‖ exists and finite.

Moreover, in the norm topology of bounded operators, the boundary values of the
resolvent:

I ′ 3 λ 7→ lim
ρ→0±

〈A〉−s(H − λ− iρ)−1〈A〉−s exists and continuous.

For more details and deeper results, see [AmBoGe, Proposition 7.2.10, Corollary
7.2.11, Theorem 7.5.2].

3. The free model

3.1. Construction of the graph. We discuss two different product of graphs. To
start off, given G1 := (E1,V1,m1) and G2 := (E2,V2,m2), the Cartesian product of
G1 by G2 is defined by G� := (E�,V�,m�), where V� := V1 × V2,{

m�(x, y) := m1(x)×m2(y),
E� ((x, y), (x′, y′)) := E1(x, x′)× δy,y′m2(y) +m1(x)δx,x′ × E2(y, y′).

We denote it by G1×G2 := G�. This definition generalises the unweighted Cartesian
product, e.g., [Ha]. It is used in several places in the literature, e.g., see [Ch, Section
2.6] and see [BoKeGoLiMü] for a generalisation.
The terminology is motivated by the following decomposition:

∆G� = ∆G1 ⊗ 1 + 1⊗∆G2 ,

where `2(V,m) ' `2(V1,m1)⊗ `2(V2,m2). Note that

eit∆G� = eit∆G1 ⊗ eit∆G2 , ∀t ∈ R.
We refer to [ReSi, Section VIII.10] for an introduction to the tensor product of
self-adjoint operators.

We now introduce a twisted Cartesian product. We refer to [GoTr, Section 2.2]
for motivations, its link with hyperbolic geometry and generalisations. Given G1 :=
(E1,V1,m1) and G2 := (E2,V2,m2), we define the product of G1 by G2 by G :=
(E ,V,m), where V := V1 × V2 and{

m(x, y) := m1(x)×m2(y),
E ((x, y), (x′, y′)) := E1(x, x′)× δy,y′ + δx,x′ × E2(y, y′),

for all x, x′ ∈ V1 and y, y′ ∈ V2. We denote G by G1 ×τ G2. If m = 1, note that
G1 ×τ G2 = G1 × G2.

Under the representation `2(V,m) ' `2(V1,m1)⊗ `2(V2,m2),

degG1×τG2(·) = degG1(·)⊗ 1

m2(·)
+

1

m1(·)
⊗ degG2(·)(3.1)

and

∆G1×τG2 = ∆G1 ⊗
1

m2(·)
+

1

m1(·)
⊗∆G2 .(3.2)
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If m is non-trivial, we stress that the Laplacian obtained with our product is usually
not unitarily equivalent to the Laplacian obtained with the Cartesian product.

A hyperbolic manifold of finite volume is the union of a compact part, of a cusp,
and a funnel, e.g., [Th, Theorem 4.5.7]. In this article we study a discrete analog.

In the sequel, we take m2 constant on V2.

The graph G := (E ,V,m) is divided into three parts: A cusp part, a funnel part,
and a finite part. Set G? := (E?,V?,m?) be the induced graph of G over V? where
? ∈ {c, f, 0} and V is a disjoint reunion of Vc, V f , and V0.

We consider Gc
1 := (Ec

1 ,Vc
1 ,m

c
1), where

Vc
1 := N, mc

1(n) := exp(−n), and Ec
1(n, n+ 1) := exp(−(2n+ 1)/2),

for all n ∈ N and Gc
2 := (Ec

2 ,Vc
2 ,m2) a possibly disconnected connected finite graph.

Set Gc := Gc
1 ×τ Gc

2. This is a cusp part. Note it is of finite volume as:∑
(x,y)∈Vc1×Vc2

mGc(x, y) <∞.

We consider Gf
1 := (E f

1,V f
1,m

f
1), where

V f
1 := N, mf

1(n) := exp(n), and E f
1(n, n+ 1) := exp((2n+ 1)/2),

for all n ∈ N and Gf
2 := (E f

2,V f
2,m2) a connected finite graph. Set Gf := Gf

1 ×τ Gf
2.

This is a funnel part.
For the compact part, we ask that for all x ∈ V0, supp (E(x, ·)) is finite and

m0(x) > 0.
We now, take advantage of

`2(G) := `2(Gf)⊕ `2(G0)⊕ `2(Gc).

We have that

∆G := ∆Gf ⊕ 0⊕∆Gc + K0,

where K0 is an operator of finite rank with support in Cc(V).
To analyse the perturbations of operator we shall rely on the following gauge

transformation, e.g., [Go, CoToTr, HaKe]. See also [BoGo] for some historical
references.

Proposition 3.1. Let G := (V, E ,m) be a weighted graph and m : V → (0,∞) be a
weight. The following map is unitary:

Tm→m′f : `2(V,m)→ `2(V,m′)

f 7→

(
x 7→

√
m(x)

m′(x)
f(x)

)
.(3.3)

We have:

∆FG′ = Tm→m′
(
∆G̃ −W (·)

)F
T−1
m→m′ ,(3.4)

where G′ := (V, E ′,m′), G̃ := (V, Ẽ ,m) and,

Ẽ(x, y) := E ′(x, y)

√
m(x)m(y)

m′(x)m′(y)

W (x) :=
1

m(x)

∑
y∈V
Ẽ(x, y)

(
1−

√
m(x)m′(y)

m(y)m′(x)

)
.

Here we emphasised the choice Friedrichs extension with the symbol F .
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3.2. Mourre estimate on N. In this section we make a preliminary work on the
half axis. We construct a conjugate operator, prove a Mourre estimate for ∆N
and check the regularity conditions. This is a known result, e.g., [AlFr], see also
[GeGo, Mic].

Given f ∈ `2(N, 1), we set

∀n ∈ N∗, Uf(n) := f(n− 1) and Uf(0) := 0.

Note that U∗f(n) = f(n + 1),∀n ∈ N. The operator U is an isometry and is not
unitary: we have U∗U = id and UU∗ = 1[1,∞[(·).

We define by Q the operator of multiplication by n in `2(N, 1). Namely, it is the
closure of the operator given by (Qf)(n) = nf(n) for all n ∈ N and f ∈ Cc(N). It
is essentially self-adjoint on Cc(N). In [GeGo], one finds the following elementary
relations:

QU = U(Q+ 1), U∗Q = (Q+ 1)U∗ and UQU = U2(Q+ 1) on D(Q).(3.5)

The operator ∆N is defined by (1.1), where N ' (N, EN,m), with EN(n, n + 1) = 1
and m(n) = 1 for all n ∈ N. Explicity, we have

∆Nf(n) :=

{
2f(n)− f(n− 1)− f(n+ 1) if n ≥ 1,

f(n)− f(n+ 1) if n = 0,
∀f ∈ `2(N, 1).

We can express it with the help of U . Namely, we have:

∆N = 2− (U + U∗)− 1{0}(·).
A standard result is :

σess(∆N) = [0, 4] and σsc(∆N) = ∅.
We construct the conjugate operator in `2(N, 1). On the space Cc(N), we define

AN|Cc(N) :=
1

2
(SQ+QS) , where S :=

U − U∗

2i

=
i

2

(
U

(
Q+

1

2

)
− U∗

(
Q− 1

2

))
= − i

2

(
1

2
(U∗ + U) +Q (U∗ − U)

)
.(3.6)

We denote by AN its closure.

Lemma 3.2. The operator AN is essentially self-adjoint on Cc(N) and

D(AN) = D(QS) := {f ∈ `2(N), Sf ∈ D(Q)}.
We refer to [GeGo] and [Mic, Lemma 5.7] for the essential self-adjointness and

[GeGo, Lemma 3.1] for the domain.
We give a first technical lemma.

Lemma 3.3. On Cc(N), we have

(U∗ + U)AN = − i

2

(
(U2∗ − U2)Q− 1− 1

2
(1{0}(·) + U2 + U∗2)

)
,

AN(U∗ + U) =
i

2

(
(U2 − U2∗)Q− 1

2
(U2 + U∗2)− 1− 1

2
1{0}(·)

)
.

Proof. We compute on Cc(N). The statement follows easily from

UAN = − i

2

(
(1N − U2)Q− 1

2
(1N + U2),

)
.

U∗AN = − i

2

(
(U∗ − 1)Q− 1

2
(U∗2 − 1

2
)

)
.

by taking the adjoint. �
We can compute the first comutator.
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Lemma 3.4. The operator ∆N is C1(AN) and we have:

(3.7) [∆N, iAN]◦ =
1

2
∆N(4−∆N) +K1,

with K1 a finite rank operator belonging to C∞(A).

This lemma is essentially given in [GeGo], see also [AlFr] for another type of
presentation. For the convenience of the reader we reproduce it.

Proof. First, since δ{0} ∈ D(An) for all n ∈ N, δ{0} and K1 := [δ{0}, iAN]◦ belong

to C1(AN) by Lemma 2.1. Next, we turn to the other part and work in the form
sense and by density. Let f ∈ Cc(N). Since ∆Nf ∈ Cc(N) and using Lemma 3.3, we
obtain:

〈f, [∆N, iAN]f〉 := 〈∆Nf, iANf〉 − 〈−iANf,∆Nf〉
= i〈f,AN(U∗ + U)− (U∗ + U)ANf〉+ 〈f, [δ{0}, iAN]f〉

=
1

2
〈f,∆N(4−∆N)f〉+ 〈f, [δ{0}, iAN]◦f〉.

Since ∆N(4−∆N) and [δ{0}, iAN]◦ are bounded operators and since Cc(N) is a core
for AN, there is a constant c such that

|〈∆Nf, iANf〉 − 〈−iANf,∆Nf〉| ≤ c‖f‖2, for all f ∈ D(A).

Hence, it is C1(AN). By density, we also obtain (3.7). �
By induction, we infer:

Corollary 3.5. ∆N ∈ C∞(AN).

We mention [Mic] for an anisotropic use on Z based on the Mourre theory of ∆N.

3.3. The funnel side. In this section we construct a conjugate operator for ∆Gf

and establish a Mourre estimate.

3.3.1. A first step into the analysis. As seen above, under the identification

`2(V f ,m) = `2(N,mf
1)⊗ `2(V f

2,m
f
2).(3.8)

We have

∆Gf := ∆Gf
1
⊗ 1

mf
2

+
1

mf
1(·)
⊗∆Gf

2
.(3.9)

Recall here that m2 is a constant. The first remark is that

Lemma 3.6.
1

mf
1(·)
⊗∆Gf

2
∈ K

(
`2(V f)

)
.

Proof. Note that ∆Gf
2

is of finite rank since V2 is finite and that
1

mf
1(·)

is a compact

operator since mf
1(n)→∞, as n→∞. �

Since m2 is constant and degGf
1

is bounded, we obtain:

Proposition 3.7. We have ∆Gf ∈ B
(
`2(V f),mf

)
.

Recalling the Proposition 3.1, we obtain:

T−1
1→mf

1
∆Gf

1
T1→mf

1
= ∆N + (e1/2 − 1)1{0} + e1/2 + e−1/2 − 2

Recalling Lemma 3.6, we infer immediately

σess(∆Gf ) =

[
α

m2
,
β

m2

]
and σsc(∆Gf

1
) = ∅,

with α and β are given in (1.2).
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3.3.2. Construction of the conjugate operator. In order to get also σsc(∆Gf ) = ∅, we
rely on the Mourre theory and construct a conjugate operator for ∆Gf . Recalling
(3.6) and with respect to (3.8), we set

AGf := Amf
1
⊗ 1Vf

2
:= T1→mf

1
ANT

−1
1→mf

1
⊗ 1Vf

2
.(3.10)

It is essentially self-adjoint on Cc(V f) and on Cc(N) ⊗ `2(V f) by Lemma 3.2. It
acts as follows:

Proposition 3.8. On Cc(N), we have

Amf
1

=
i

2

(
e1/2(Q− 1/2)U − e−1/2(Q+ 1/2)U∗

)
.

Proof. Let f ∈ Cc(N),

Amf
1
f(n) = − i

2
√
mf

1(n)

(
1

2
(U + U∗) +Q (U∗ − U)

)
T−1

1→mf
1
f(n)

=
i

2

((
n− 1

2

)√
mf

1(n− 1)

mf
1(n)

f(n− 1)−
(
n+

1

2

)√
mf

1(n+ 1)

mf
1(n)

f(n+ 1)

)

=
i

2

(
e1/2

(
n− 1

2

)
Uf(n)− e−1/2

(
n+

1

2

)
U∗f(n)

)
.

This concludes the proof. �
We turn to the regularity. In order to lighten the computation, given a graph

G = (E ,V,m), we write

T1 ' T2 if there is K : Cc(V)→ Cc(V) of finite rank such that T1 = T2 +K

Thanks to Lemma 2.1 and Proposition 3.8, we obtain immediately:

Lemma 3.9. Assume that T1 ' T2. Then for all n ∈ N,

T1 ∈ D(AnGf )⇔ T2 ∈ D(AnGf ).

We have:

Lemma 3.10. We have ∆Gf ∈ C1(AGf ) and

[∆Gf , iAGf ]◦ = w(∆Gf ) +K,(3.11)

where

wf(x) :=
m2

2

(
x− α

m2

)(
β

m2
− x
)
,

with α and β as in (1.2) and K is a compact operator.

Proof. We prove that [∆Gf , iAGf ]◦ ∈ B(`2(V f ,mf)). As in Lemma 3.4 and working
in the form sense on Cc(N)⊗ `2(V f

2), a straightforward computation leads to[
∆Gf

1
⊗ 1

m2
, iAGf

]
' 1

2
(∆Gf

1
− α)(β −∆Gf

1
)⊗ 1

m2

' wf(∆Gf )− m2

2

(
1

m1(·)
⊗∆Gf

2

)(
β

m2
−∆Gf

1
⊗ 1

m2
− 1

m1(·)
⊗∆Gf

2

)
+
m2

2

(
∆Gf

1
⊗ 1

m2
− α

m2

)(
1

m1(·)
⊗∆Gf

2

)
.(3.12)

= wf(∆Gf ) +K ′



SPECTRAL ANALYSIS OF THE DISCRETE LAPLACIAN 11

where K ′ is a compact operator coming from Lemma 3.6 and Lemma 2.1. We turn
to the second part of ∆Gf .[

1

mf
1(·)

, iAmf
1

]
⊗∆Gf

2
= T1→mf

1

[
1

mf
1(·)

, iAN

]
T−1

1→mf
1
⊗∆Gf

2

= T1→mf
1

(
1

2
(e− 1)e−Q

(
Q− 1

2

)
U

)
T−1

1→mf
1
⊗∆Gf

2
,(3.13)

in the form sense on Cc(N)⊗ `2(V f
2). The operator is a compact since U is bounded

and limn→∞ e−n(n− 1/2) = 0.
This implies that [∆Gf , iAGf ]◦ ∈ B(`2(V f ,mf)) and that (3.11) holds true. Finally,

since Cc(N)⊗ `2(V f
2) is a core for AGf , we deduce that ∆Gf ∈ C1(AGf ). �

Lemma 3.11. We have ∆Gf ∈ C2(AGf ).

Proof. As above, since Cc(N) ⊗ `2(V f
2) is a core for AGf it is enough to prove that

[[∆Gf , iAGf ]◦, iAGf ], defined initially in the form sense on Cc(N)⊗ `2(V f
2), extends to

an element of B(`2(V f ,mf)).
We prove that the right hand side of (3.11) belongs to C1(AGf ). It composed of

w(∆Gf ) which is C1(AGf ) (as product of bounded operators belonging to C1(AGf )),
terms with finite support that are also in C1(AGf ) by Lemma 2.1 and terms similar

to (3.13). Therefore
[[

∆Gf
1
⊗ 1

m2
, iAGf

]
◦
, iAGf

]
extends to a bounded operator.

We turn to the second part. It remains to show that the left hand side of (3.13)
belongs to C1(AGf ). Repeating the computation done in (3.13), we see that since

limn→∞ e−n〈n〉2 = 0,
[[

1
mf

1(·) , iAmf
1

]
◦
,Amf

1

]
extends to a compact operator. �

Remark 3.12. By induction, we can prove that ∆Gf ∈ C∞(AGf ).

Finally, we establish the Mourre estimate.

Proposition 3.13. We have ∆Gf ∈ C2(AGf ). Given a compact interval I ⊂
(α/m2, β/m2), there are c > 0, a compact operator K such that

EI(∆Gf )[∆Gf , iAGf ]◦EI(∆Gf ) ≥ cEI(∆Gf ) +K,(3.14)

in the form sense. In particular, σsc(∆Gf ) = ∅.

Proof. Lemma 3.11 gives that ∆Gf ∈ C2(AGf ). By (3.11), we obtain

EI(∆Gf )[∆Gf , iAGf ]◦EI(∆Gf ) = EI(∆Gf )w(∆Gf )EI(∆Gf ) +K

≥ cEI(∆Gf ) +K,

where K is a compact operator and

c :=
m2

2
inf
x∈I

(
x− α

m2

)(
β

m2
− x
)
> 0.

The absence of singular continuous spectrum follows from the general theory. �
To lighten the text we did not expand more consequences of the Mourre theory

in this case and refer to Theorem 4.3 for them.

3.4. The cusps side. In this section we construct a conjugate operator for ∆Gc

and establish a Mourre estimate. By contrast with the funnel side, we shall refine
the tensor product decomposition.



12 NASSIM ATHMOUNI, MARWA ENNACEUR, AND SYLVAIN GOLÉNIA

3.4.1. The model and the low/high energy decomposition. Again we rely on the
decomposition

`2(Vc,m) = `2(N,mc
1)⊗ `2(Vc

2 ,m2).(3.15)

We have

∆Gc := ∆Gc
1
⊗ 1

m2
+

1

mc
1(·)
⊗∆Gc

2
.(3.16)

Recall that m2 is a constant. Unlike with the treatment of ∆Gf , we refine the
tensor product decomposition. In the spirit of [GoMo, GoTr], we denote by P le the
projection on ker(∆G2) and by P he is the projection on ker(∆G2)⊥. Here, le stands
for low energy and he for high energy. We shall take advantage of

`2(Vc,m) := Hle ⊕Hhe

:= `2(N,mc
1)⊗ ker(∆2)⊕ `2(N,mc

1)⊗ ker(∆2)⊥.(3.17)

The main idea is the continuous spectrum comes from the low energy part of the
space whereas the discrete spectrum arises from the high energy part.

We have that ∆Gc := ∆le
Gc ⊕∆he

Gc , where

∆le
Gc := ∆Gc

1
⊗ 1

m2
P le,(3.18)

on (1⊗ P le)`2(Vc,mc), and

∆he
Gc := ∆Gc

1
⊗ 1

m2
P he +

1

mc
1(·)
⊗ P he∆Gc

2
,(3.19)

on (1⊗ P he)`2(Vc,mc). We stress that m2 is constant.
Unlike ∆Gf , ∆Gc is unbounded. More precisely we have:

Proposition 3.14. The operator ∆Gc is essentially self-adjoint on Cc(N)⊗ `2(V2)

and on Cc(Vc). Its domain is given by D
(

1
mc

1(·) ⊗∆Gc2

)
.

Proof. First mc
1(·) is essentially self-adjoint of Cc(N). Since ∆Gc2 is bounded, we

infer that 1
mc

1(·) ⊗ ∆Gc2 is essentially self-adjoint on Cc(N) ⊗ `2(V2). Next, since

∆Gc
1
⊗ 1
m2

is bounded, ∆Gc is essentially self-adjoint on Cc(N)⊗ `2(V2) by the Kato-

Rellich Theorem, e.g., [ReSi, Theorem X.12]. The statement with Cc(Vc) follows by
standard approximations. �

Using the notation given in (3.3), we see that:

Tmc
1→1∆Gc

1
T−1
mc

1→1 = ∆N − (e−1/2 − 1)1{0}(·) + e1/2 + e−1/2 − 2 in `2(N).

By using for instance some Jacobi matrices techniques, it is well-known that the
essential spectrum of ∆le

Gc is purely absolutely continuous and

σac(∆le
Gc) = [α, β],

with multiplicity one, e.g., [We]. Recall that α and β are defined in (1.2).
We turn to the high energy part. Using [GoTr, Equation (10)],

1

mc
1(·)
⊗∆Gc

2
P he ≤ ∆Gc(1⊗ P he) ≤ 2M +

1

mc
1(·)
⊗∆Gc

2
P he.

Using the min-max Theorem and since mc
1(n)→ 0 as n→∞, ∆Gc(1⊗ P he) has a

compact resolvent. We infer that

σac(∆Gc) =

[
α

m2
,
β

m2

]
and σsc(∆Gc) = ∅.
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3.4.2. The conjugate operator. We pursue the analysis of ∆Gc in order to apply the
Mourre theory to it. We go back to `2(N,mc

1)⊗ ker(∆2). We set:

Ale
Gc := T−1

mc
1→1ANTmc

1→1 ⊗ P le.(3.20)

It is self-adjoint. Straightforwardly we get

Ale
Gc = − i

2

(
e−1/2

(
Q+

1

2

)
U∗ + e1/2

(
1

2
−Q

)
U

)
⊗ P le

on Cc(N)⊗ ker(∆2). With respect to (3.17), we set

AGc := Ale
Gc ⊕Ahe

Gc , where Ahe
Gc := 0.

By Lemma 3.2, it is essentially self-adjoint on Cc(N)⊗`2(Vc
2 ,m2) and also on Cc(Vc)

by standard approximation. Keeping the notation of Lemma 3.9, we obtain:

Lemma 3.15. We have ∆Gc ∈ C1(AGc) and

[∆Gc , iAGc ]◦ ' wc(∆le
Gc)⊕ 0,(3.21)

with respect to (3.17), with K ∈ K(`2(Vc,mc)) and

wc(x) :=
m2

2

(
x− α

m2

)(
β

m2
− x
)
.

In particular, [∆Gc , iAGc ]◦ ∈ B(`2(Vc,mc)).

Proof. As in Lemma 3.4, using Lemma 2.1, and working in the form sense on
Cc(N)⊗ `2(Vc

2), a straightforward computation leads to[
∆Gc

1
⊗ 1

mc
2

, iAGc

]
' 1

2
(∆Gc

1
− α)(β −∆Gc

1
)⊗ 1

m2
P le

' wc(∆le
Gf )⊕ 0.(3.22)

We turn to the second part of ∆Gc .[
1

mc
1(·)
⊗∆Gf

2
, iAGc

]
=

[
1

mc
1(·)

,AGc
1

]
⊗ 0 = 0(3.23)

This implies that [∆Gc , iAGc ]◦ ∈ B(`2(Vc,mc)) and (3.21).
It remains to prove that ∆Gc ∈ C1(AGc). We check the hypotheses of Lemma

2.3. Let {Xn}n∈N be a family of functions defined on Vc
1 × Vc

2 as follows:

Xn(x1, x2) :=

((
1− x1 − n

n2 + 1

)
∨ 0

)
∧ 1.

Note that supp (Xn) = [[0, n2 + n]]×V2 and ∀(x1, x2) ∈ [[0, n]]×Vc
2 , Xn(x1, x2) = 1.

We set D := Cc(Vc).
1) We have ‖Xn‖∞ = 1 then ‖Xn(·)‖B(`2(Vc,mc)) = 1. Moreover, Xn(·) tends

strongly to 1 as n→ +∞. Now, we shall show that supn ‖Xn(·)‖D(∆Gf ) <∞. Since[
∆Gc

1
⊗ 1

m2
+

1

mc
1(·)
⊗∆Gc

2
,Xn(·)

]
= [∆Gc

1
,Xn(·)]⊗ 1

m2︸ ︷︷ ︸
bounded by 2‖∆Gc1‖/m2

+

[
1

mc
1(·)

,Xn(·)
]

︸ ︷︷ ︸
=0

⊗∆2,

then there is c > 0 such that, for all f ∈ Cc(Vc) such that f ∈ (∆Gc + i)Cc(Vc) and
n ∈ N,

‖(∆Gc + i)Xn(Q)(∆Gc + i)−1f‖ ≤ c‖f‖.
Since ∆Gc is essentially self-adjoint on Cc(Vc) and since −i /∈ σ(∆Gc), it holds for all
f ∈ `2(Vc,mc). In particular, we derive that ‖(∆Gc + i)Xn(Q)f‖ ≤ c‖(∆Gc + i)f‖,
for all f ∈ `2(Vc,mc). In particular, supn ‖Xn(·)‖D(∆Gf ) <∞.

2) Given f ∈ Cc(Vc), note that for n large enough Xn(·)f = f . In particular, for
all f ∈ Cc(Vc), AGcXn(·)f → AGcf , as n→∞.
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3) Noticing that [∆Gc ,Xn(·)] = [∆Gc
1
,Xn(·)]⊗ 1

m2
, a straightforward computation

ensures that there exists c such that

‖AGc [∆Gc ,Xn(·)]‖ ≤ c

〈n〉
.

Finally for all z ∈ C\R, the condition Xn(·)(∆Gc−z)−1Cc(Vc) ⊂ Cc(Vc) is immediate
as Xn is with finite support. [GoMo, Lemma A.2] gives that ∆le

Gc ∈ C1(Ale
Gc). �

Lemma 3.16. We have eitAGcD(∆Gc) ⊂ D(∆Gc) for all t ∈ R.

Proof. We have ∆Gc ∈ C1(AGc) and [∆Gc , iAGc ]◦ is bounded. Therefore [GeGé]
gives the result. �

Lemma 3.17. We have ∆Gc ∈ C2(AGc) and

[[∆Gc , iAGc ]◦, iAGc ]◦ ' [[∆le
Gc , iAle

Gc ]◦, iAle
Gc ]◦ ⊕ 0.(3.24)

Proof. Recalling (3.21) and Lemma 2.1, the result follows from noticing that wc(∆le
Gc)

is in C1(Ale
Gc) as product of bounded elements of C1(Ale

Gc). �
Concerning the Mourre estimate, we prove the following result:

Proposition 3.18. We have ∆Gc ∈ C2(AGc). Given a compact interval I ⊂(
α
m2
, β
m2

)
, there are c > 0, a compact operator K such that

EI(∆Gc)[∆Gc , iAGc ]◦EI(∆Gc) ≥ cEI(∆Gc) +K,(3.25)

in the form sense.

Proof. The Lemma 3.17 provides that ∆Gc ∈ C2(AGc). OnHhe, EI(∆he
Gc) is compact

since ∆he
Gc is with compact resolvent and I is with compact support. With respect

to (3.17), we have EI(∆Gc) = EI(∆le
Gc)⊕ EI(∆he

Gc) and

EI(∆Gc)[∆Gc , iAGc ]◦EI(∆Gc) = EI(∆le
Gc)[∆le

Gc , iAle
Gc ]◦EI(∆le

Gc)⊕ 0

≥ cEI(∆le
Gc)⊕ 0 ≥ cEI(∆Gc) +K,

in the form sense, where K is a compact operator and

c :=
m2

2
inf
x∈I

(
x− α

m2

)(
β

m2
− x
)
> 0.

This concludes the proof. �
To lighten the text we did not expand more consequences of the Mourre theory

in this case and refer to Theorem 4.3 for them.

3.5. The compact part. We define the conjugate operator on `2(V) = `2(V f) ⊕
`2(V0)⊕ `2(Vc) as

`2(V) = `2(V f)⊕ `2(V0)⊕ `2(Vc)

A := AGf ⊕ 0⊕AGc .

Since V0 is finite, we have a finite rank perturbation and we conclude that A is
self-adjoint and essentially self-adjoint on Cc(V).

Lemma 3.19. We have ∆G ∈ C2(A).

Proof. We have (∆G−∆Gf ⊕0⊕∆Gc) that are with finite support. Hence it belongs
to C2(A) by Lemma 2.1. Next recalling Lemma 3.11 and Lemma 3.17 we obtain
the result. �
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3.6. The whole graph. In this section, we give the Mourre estimate in the whole
graph.

Proposition 3.20. We have ∆G ∈ C2(A). Given a compact interval I ⊂ ( α
m2
, β
m2

)
Moreover, there are c > 0, a compact operator K such that

EI(∆G)[∆G , iA]◦EI(∆G) ≥ cEI(∆G) +K.(3.26)

Proof. First ∆G ∈ C2(A) by Lemma 3.19. Then by collecting (3.25) and (3.14), we
obtain

EI(∆Gf ⊕ 0⊕∆Gc)[∆Gf ⊕ 0⊕∆Gc , iA]◦EI(∆Gf ⊕ 0⊕∆Gc)

≥ cEI(∆Gf ⊕ 0⊕∆Gc) +K.

Since the operators ∆G and ∆Gf⊕0⊕∆Gc are in C1
u(A) (as in C2(A), see [AmBoGe]),

[AmBoGe, Theorem 7.2.9] implies (3.26). �

4. The perturbed model

In this section, we perturb the metrics of the previous case which will be small
to infinity. We obtain similar results however the proof is more involved because
we rely on the optimal class C1,1(A) of the Mourre theory.

4.1. Perturbation of the metric. Let Gε,µ := (V, Eε,mµ) where

mµ(x) := (1 + µ(x))m(x) and Eε(x, y) := (1 + ε(x, y))E(x, y),

where µ > −1, ε > −1, and

µ(x)→ 0 if |x| → ∞ and ε(x, y)→ 0 if |x|, |y| → ∞.(4.1)

We set
m∗µ := mµ|V∗ , E∗ε := Eε|V∗×V∗ ,

µ∗ := µ∗|V∗ , and ε∗ := ε|V∗×V∗ , with ∗ ∈ {c, f}.
To analyse the spectral properties of ∆Gε,µ , we compare it to ∆G . As they do

not act in the same spaces, we rely on Proposition 3.1. and send ∆Gε,µ in `2(V,m)
with the help of the unitary transformation. Namely, supposing (4.1). Let

∆̃Gε,µ := Tmµ→m∆Gε,µT
−1
mµ→m.

A straightforward calculus ensures:

Lemma 4.1. For all f ∈ Cc(V), we have

(∆̃Gε,µ −∆G)f(x) :=
1

m(x)

∑
y∼x

(
ε(x, y)√

(1 + µ(x))(1 + µ(y))

− µ(x) + µ(y) + µ(x)µ(y)√
(1 + µ(x))(1 + µ(z))(1 +

√
(1 + µ(x))(1 + µ(z)))

)
E(x, z) (f(x)− f(y))

(4.2)

− 1

m(x)

∑
z∼x

(1 + ε(x, z))E(x, z)
µ(z)− µ(x)

(1 + µ(x))
√

1 + µ(z)(
√

1 + µ(z) +
√

1 + µ(x))
f(x).

Proposition 4.2. Let V : V → R be a function, obeying V (x)→ 0 if |x| → ∞. We

assume that (4.1) holds true, then ∆̃Gε,µ −∆G ∈ K(`2(V),m). In particular

(1) D(∆Gε,µ + V (·)) = D(T−1
mµ→m∆GTmµ→m),

(2) ∆Gε,µ + V (·) is essentially self-adjoint on Cc(V),
(3) σess(∆Gε,µ + V (·)) = σess(∆G).

Proof. Use Propositions 4.4 and 4.9 and note that the contribution arising from V0

is a finite rank perturbation. �
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4.2. Main result. The main result of this section is the following theorem:

Theorem 4.3. Let Gε,µ a graph satisfies a condition (4.1) and

AGε,µ := AGf
ε,µ
⊕ 0⊕AGc

ε,µ

be a self-adjoint operator, where AG∗ε,µ := T−1
mµ∗→mAG∗Tmµ∗→m with ∗ ∈ {f, c}. Let

V : V → R be a function such that V, ε, and µ are radial on Vc(see Definition 4.10).
We assume that:

(H1) sup
(x1,x2)∈V∗

〈x1〉1+ε|V (x1 − 1, x2)− V (x1, x2)| <∞,

(H2) sup
(x1,x2)∈V∗

〈x1〉ε+1|µ∗(x1 − 1, x2)− µ∗(x1, x2)| <∞,

(H3) sup
(x1,x2)∈V∗

〈x1〉ε+1|ε∗((x1, x2), (x1 + 1, x2))− ε∗((x1 − 1, x2), (x1, x2))| <∞,

where V (x) → 0 if |x| → ∞. Then ∆Gε,µ + V (·) ∈ C1,1(AGε,µ). Moreover, for all

compact interval I ⊂ ( α
m2
, β
m2

), with α, β are given in (1.2), there are c > 0 and a
compact operator K such that

EI(∆Gε,µ + V (·))[∆Gε,µ + V (·), iAGε,µ ]◦EI(∆Gε,µ + V (·))
≥ cEI(∆Gε,µ + V (·)) +K.(4.3)

in the form sense. Set κ(∆Gε,µ + V (·)) := σp(∆Gε,µ + V (·)) ∪ { αm2
, β
m2
} where σp

denotes the pure point spectrum. Take s > 1/2 and [a, b] ⊂ R\κ(∆Gε,µ +V (·)). We
obtain:

(2) The eigenvalues of ∆Gε,µ + V (·) distinct from α and β are of finite multi-
plicity and can accumulate only toward α and β.

(3) The singular continuous spectrum of ∆Gε,µ + V (·) is empty.
(4) The following limit exists and finite:

lim
ρ→0

sup
λ∈[a,b]

‖〈Λ〉−s(∆Gε,µ + V (·)− λ− iρ)−1〈Λ〉−s‖ <∞,

(5) There exists c > 0 such that for all f ∈ `2(V,mµ), we have:∫
R
‖〈Λ〉−se−it(∆Gε,µ+V (·))E[a,b](∆Gε,µ + V (·))f‖2dt ≤ c‖f‖2,

with Λ := Λf ⊕ 0⊕ Λc.

Proof. First ∆Gε,µ + V (·) ∈ C1,1(AGε,µ) because ∆Gf
ε,µ
⊕ 0⊕∆Gc

ε,µ
∈ C1,1(AGε,µ) by

the Lemma 4.8, the Lemma 4.14, the Lemma 4.13, the Lemma 4.7 and by Lemma
3.19. In particular, we have that the two operators are in C1

u(AGε,µ), see [AmBoGe].
Then, using the Proposition 4.5 and the Proposition 4.11 we obtain

EI(∆Gf
ε,µ
⊕ 0⊕∆Gc

ε,µ
+ V (·))[∆Gf

ε,µ
⊕ 0⊕∆Gc

ε,µ
+ V (·), iAGε,µ ]◦

EI(∆Gf
ε,µ
⊕ 0⊕∆Gc

ε,µ
+ V (·))

≥ cEI(∆Gf
ε,µ
⊕ 0⊕∆Gc

ε,µ
+ V (·)) +K.

Since ∆Gf
ε,µ
⊕0⊕∆Gc

ε,µ
∈ C1

u(AGε,µ), ∆Gf
ε,µ
⊕0⊕∆Gc

ε,µ
−∆Gε,µ ∈ K(`2(V,mµ)), and

V (·) ∈ C1
u(AGε,µ) and by [AmBoGe, Theorem 7.2.9], we obtain (4.3). By Lemma 4.7

and Lemma 4.13, V (·) ∈ C1,1(AGε,µ). And by using Proposition 4.4 and Proposition

4.9, we have that (∆Gf
ε,µ
⊕ 0⊕∆Gc

ε,µ
+ i)−1− (∆Gε,µ + i)−1 ∈ K(`2(V,mµ)). Finally,

we turn to points (4). It is enough to obtain them with s ∈ (1/2, 1). We apply
[AmBoGe, Proposition 7.5.6] and obtain

lim
ρ→0
‖〈A〉−s(∆Gε,µ + V (·)− λ− iρ)−1〈A〉−s‖,
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exists and finite. Using Propositions 4.6 b) and 4.12 b)

‖〈AGε,µ〉f‖ ≤ a‖〈Λ〉f‖,
for all f ∈ D(Λ). By Riesz-Thorin interpolation, there is as > 0 such that

‖〈AGε,µ〉sf‖ ≤ as‖〈Λ〉sf‖,

for all f ∈ D(Λs). We conclude that limρ→0 ‖〈Λ〉−s(∆Gε,µ + V (·)− λ− iρ)−1〈Λ〉−s‖
exists and finite. The point (5) is an immediate consequence of (4). �

4.3. The funnel side. We first deal with the question of the essential spectrum.

Proposition 4.4. Let V f : V f → R be a function obeying V f(x) → 0 if |x| → ∞.

We assume that (4.1) holds true then ∆̃Gf
ε,µ
−∆Gf ∈ K(`2(V f),mf), where ∆̃Gε,µ :=

Tmµ→m∆Gε,µT
−1
mµ→m. In particular,

(1) D(∆Gf
ε,µ

+ V (·)) = D(T−1
mµ→m∆GTmµ→m),

(2) ∆Gf
ε,µ

+ V (·) is essentially self-adjoint on Cc(V),

(3) σess(∆Gf
ε,µ

+ V (·)) = σess(∆G).

Proof. We shall show that ∆̃Gf
ε,µ
−∆Gf ∈ K(`2(V f ,mf)), as in (4.2). Let f ∈ Cc(V),∣∣〈f, (∆̃Gf

ε,µ
−∆Gf )f〉`2(Vf ,mf )

∣∣ =

∣∣∣∣ ∑
x∈Vf

mf(x)
(

(∆̃Gf
ε,µ
−∆Gf )f

)
(x)f(x)

∣∣∣∣
≤
∣∣∣∣ ∑
x∈Vf

mf(x)
1

mf(x)

∑
z∼x

εf(x, z)√
(1 + µf(x))(1 + µf(z))

E f(x, z)

×
(
f(x)− f(z)

)
f(x)

∣∣∣∣
+

∣∣∣∣ ∑
x∈Vf

mf(x)
1

mf(x)

∑
z∼x

1−
√

(1 + µf(x))(1 + µf(z))√
(1 + µf(x))(1 + µf(z))

E f(x, z)

×
(
f(x)− f(z)

)
f(x)

∣∣∣∣+
∣∣〈f,W f(·)f〉

∣∣
≤ 2〈f, (deg1(·) + deg2(·) + |W f(·)|)f〉,

with

deg1(x) :=
1

mf(x)

∑
z∈Vf

εf(x, z)√
(1 + µf(x))(1 + µf(z))

E f(x, z)

and

deg2(x) :=
1

mf(x)

∑
z∈Vf

∣∣∣∣∣1−
√

(1 + µf(x))(1 + µf(z))√
(1 + µf(x))(1 + µf(z))

∣∣∣∣∣ E f(x, z),

for all x = (x1, x2) ∈ V f . We have

|deg1(x)| =

∣∣∣∣∣∣ 1

mf(x)

∑
z∈Vf

εf(x, z)√
(1 + µf(x))(1 + µf(z))

E f(x, z)

∣∣∣∣∣∣
≤ sup

z∼x

∣∣∣∣∣ εf(x, z)√
(1 + µf(x))(1 + µf(z))

∣∣∣∣∣degGf (x).

Since V2 is a finite set and for all x2 ∈ V2, εf ((x1,x2),(z1,z2))√
(1+µf (x1,x2))(1+µf (z1,z2))

→ 0 when

x1, z1 → ∞ and since degGf (·) is bounded then deg1(·) is compact. In the same

way, using that ∀x2, z2 ∈ V2,
1−
√

(1+µf (x1,x2))(1+µf (z1,z2))√
(1+µf (x1,x2))(1+µf (z1,z2))

→ 0 if x1, z1 → ∞, we

obtain the compactness of deg2(·).
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Now, we will show that W f ∈ K(`2(V f ,mf)). For all x ∈ V f , we have

|W f(x)| =
∣∣∣∣ 1

mf(x)

∑
z∼x

(1 + εf(x, z))E f(x, z)

×

(
µf(z)− µf(x)

(1 + µf(x))
√

1 + µf(z)(
√

1 + µf(z) +
√

1 + µf(x))

)∣∣∣∣
≤ sup

z∼x

∣∣∣∣∣(1 + εf(x, z))

(
µf(z)− µf(x)

(1 + µf(x))
√

1 + µf(z)(
√

1 + µf(z) +
√

1 + µf(x))

)∣∣∣∣∣
× degGf (x).

Since V2 is a finite set and
(
1 + εf(x, z)

)(
µf(z) − µf(x)

)
→ 0 when |x|, |z| → ∞,

degGf (·) is bounded and since V f(·) is a compact perturbation, we conclude that

∆̃Gf
ε,µ
−∆Gf is compact. The points (1) and (2) follow from Theorem [ReSi, Theorem

XIII.14] and (3) from the Weyl’s Theorem. �
We turn to the Mourre estimate.

Proposition 4.5. Let V f : V f → R be a function. We assume that (H1), (H2),
and (H3) hold true, where εf(x, z) → 0 if |x|, |z| → ∞, µf(x) → 0 if |x| → ∞ and
V f(x)→ 0 if |x| → ∞. Then ∆Gf

ε,µ
+V f(·) ∈ C1.1(AGf

ε,µ
). Moreover, for all compact

interval I ⊂ ( α
m2
, β
m2

), there are c > 0, a compact operator K such that

EI(∆Gf
ε,µ

+ V f(·))[∆Gf
ε,µ

+ V f(·), iAGf
ε,µ

]◦EI(∆Gf
ε,µ

+ V f(·))

≥ cEI(∆Gf
ε,µ

+ V f(·)) +K,(4.4)

in the form sense.

Proof. The Proposition 4.8 and Lemma 4.7 give that ∆Gf
ε,µ

+ V f(·) ∈ C1,1(AGf
ε,µ

).

Since ∆̃Gf
ε,µ
−∆Gf is a compact operator by Proposition 4.4, thanks to (3.14) and

by [AmBoGe, Theorem 7.2.9], we obtain (4.4). �
We start with a technical lemma so as to apply [AmBoGe, Proposition 7.5.7].

Proposition 4.6. Let Λf := (Q+ 1/2)⊗ 1Vf . It satisfies the following assertions:

(1) eiΛf tD(∆Gf
ε,µ

) ⊂ D(∆Gf
ε,µ

) and there exists a finite constant c, such that

‖eiΛf t‖B(D(∆Gfε,µ
)) ≤ c, for all t ∈ R.

(2) D(Λf) ⊂ D(AGf
ε,µ

).

(3) (Λf)−2(AGf
ε,µ

)2 extends to a continuous operator in D(∆Gf
ε,µ

).

Note that ∆Gf
ε,µ

is bounded then D(∆Gf
ε,µ

) = `2(V f ,mf
µ).

Proof. With the help of the unitary transformation Tmµ→m, it is enough to prove
the result with ε = 0 and µ = 0.

(1) Since ∆Gf is bounded it is verified by a functional calculus.
(2) Let f ∈ Cc(V f) ,

‖AGff‖2`2(Vf ,mf )

=
∑
x∈Vf

mf(x)

∣∣∣∣ i

2

(
e1/2(Q− 1/2)U ⊗ 1Vf

2
− e−1/2(Q+ 1/2)U∗ ⊗ 1Vf

2

)
f(x)

∣∣∣∣2
≤ c

∑
x∈Vf

mf(x)
∣∣∣(Q+ 1/2)⊗ 1Vf

2
f(x)

∣∣∣2 ≤ c‖Λff‖2`2(Vf ,mf ).

Since Λf is essentially self-adjoint, the result follows.
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(3) For all f ∈ Cc(V f), and by using the relations of Subsection 3.5, we have

A2
m1
f(n) =

1

4
(2n2 + 1/2)f(n)− 1

4
e(n− 1/2)(n− 3/2)f(n− 2)

− 1

4
e−1(n+ 1/2)(n+ 3/2)f(n+ 2).

Then for all f ∈ Cc(V f).

‖(Λf)−2(AGf )2f‖2 =∑
(x1,x2)∈Vf

mf(x1, x2)

∣∣∣∣14 (((Q+ 1/2)−2(2Q2 + 1/2)
)
⊗ 1Vf

2

)
f(x1, x2)

− 1

4
e
((

(Q+ 1/2)−2(Q− 1/2)(Q− 3/2)
)
⊗ 1Vf

2

)
f(x1 − 2, x2)

− 1

4
e−1

((
(Q+ 1/2)−2(Q+ 1/2)(Q+ 3/2)

)
⊗ 1Vf

2

)
f(x1 + 2, x2)

∣∣∣∣2.
Then, there exists C > 0 such that for all f ∈ Cc(V f), ‖(Λf)−2(AGf )2f‖2 ≤ C‖f‖2.
By density, we find the result. �

The proof of Proposition 4.8 will be long and technical. For the sake of the reader,
we have separated the treatment of the potential V f to present the technical steps.

Lemma 4.7. Let V f : V f → R be a function. We assume that (H1) holds true,
then V f(·) ∈ C1(AGf

ε,µ
) and [V f(·),AGf

ε,µ
]◦ ∈ C0,1(AGf

ε,µ
). In particular, V f(·) ∈

C1,1(AGf
ε,µ

).

Proof. First, recalling
[
V f(·), iAGf

ε,µ

]
◦

= T−1
mµ∗→m

[
V f(·), iAGf

]
◦ Tmµ∗→m, it is enough

to deal with ε = µ = 0. Next, we recall that

[
V f(·), iAGf

]
◦ =

e−1/2

2

(
Q+

1

2

)[
V f , U∗

]
⊗ 1Vf

2
+
e1/2

2

(
1

2
−Q

)[
V f , U

]
⊗ 1Vf

2
.

By using (H1) at the last step, there is C such that, for all f ∈ Cc(V),∥∥〈Q+ 1/2〉ε ⊗ 1Vf
2
[V f(·), iAGf ]◦f

∥∥
≤ e−1/2

2

∥∥(〈Q+ 1/2〉ε(Q+ 1/2)
[
V f , U∗

] )
⊗ 1Vf

2
f
∥∥

+
e1/2

2

∥∥(〈Q+ 1/2〉ε(Q+ 1/2)
[
V f , U

] )
⊗ 1Vf

2
f
∥∥

≤ e−1/2

2

∥∥〈Λ〉ε+1
( [
V f , U∗

]
⊗ 1Vf

2

)
f
∥∥+

e1/2

2

∥∥〈Λ〉ε+1
( [
V f , U

]
⊗ 1Vf

2

)
f
∥∥ ≤ C‖f‖.

Finally thanks to Proposition 4.6, we can apply [AmBoGe, Proposition 7.5.7] and
the result follows. �

We conclude this section with the most technical part.

Proposition 4.8. Assuming (H2) and (H3) hold true, we have ∆Gf
ε,µ
∈ C1(AGf

ε,µ
).

Moreover [∆Gf
ε,µ
,AGf

ε,µ
]◦ ∈ C0,1(AGf

ε,µ
). In particular, ∆Gf

ε,µ
∈ C1,1(AGf

ε,µ
).

Proof. We work in `2(V f ,mf ). First, using the computation below with ε = 0 and
recalling that AGfCc(V f) ⊂ Cc(V f), we get there is c > 0 such that

‖[∆̃Gf
ε,µ
,AGf ]f‖`2(Vf ,mf ) ≤ c‖f‖`2(Vf ,mf ),
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for all f ∈ Cc(V f). By density, we obtain that ∆̃Gf
ε,µ
∈ C1(AGf ). Next take ε > 0

and f ∈ Cc(V f). We aim at proving that [∆̃Gf
ε,µ
,AGf ]◦ is C0,1(AGf ).

‖〈Λf〉ε[∆̃Gf
ε,µ
,AGf ]f‖`2(Vf ,mf ) =

∑
x∈Vf

mf(x)
∣∣〈Λf〉ε[∆̃Gf

ε,µ
,AGf ]f(x)

∣∣2
≤
∑
x∈Vf

mf(x)

∣∣∣∣ i

2

(
e1/2〈Q− 1/2〉1+ε ⊗ 1Vf

2

)

×
(

1

mf(x)

∑
z∼x
E f(x, z)

1 + εf(x, z)√
(1 + µf(x))(1 + µf(z))

f(x1 − 1, x2)

(4.5)

− 1

mf(x1 − 1, x2)

∑
z∼x
E f((x1 − 1, x2), z)f(z1 − 1, z2)× 1 + εf((x1 − 1, x2), z)√

(1 + µf(x1 − 1, x2)(1 + µf(z))

)∣∣∣∣2
+
∑
x∈Vf

mf(x)

∣∣∣∣ i

2

(
e1/2〈Q− 1/2〉1+ε ⊗ 1Vf

2

)
×
(

1

mf(x1 − 1, x2)

∑
z∼x
E f((x1 − 1, x2), z)

1 + εf((x1 − 1, x2), z)√
(1 + µf(x1 − 1, x2)(1 + µf(z))

f(z)

− 1

mf(x)

∑
z∼x
E f(x, z)

1 + εf(x, z)√
(1 + µf(x))(1 + µf(z))

f(z1 − 1, z2)

)∣∣∣∣2
+
∑
x∈Vf

mf(x)

∣∣∣∣ i

2

(
e−1/2〈Q+ 1/2〉1+ε ⊗ 1Vf

2

)
×
(

1

mf(x1 + 1, x2)

∑
z∼x
E f((x1 + 1, x2), z)

1 + εf((x1 + 1, x2), z)√
(1 + µf(x1 + 1, x2)(1 + µf(z))

− 1

mf(x)

∑
z∼x
E f(x, z)

1 + εf(x, z)√
(1 + µf(x))(1 + µf(z))

)
f(x1 + 1, x2)

∣∣∣∣2
+
∑
x∈Vf

mf(x)

∣∣∣∣ i

2

(
e−1/2〈Q+ 1/2〉1+ε ⊗ 1Vf

2

)
×
(

1

mf(x)

∑
z∼x
E f(x, z)

1 + εf(x, z)√
(1 + µf(x))(1 + µf(z))

f(z1 + 1, z2)

− 1

mf(x1 + 1, x2)

∑
z∼x
E f((x1 + 1, x2), z)

1 + εf((x1 + 1, x2), z)√
(1 + µf(x1 + 1, x2)(1 + µf(z))

f(z1, z2)

)∣∣∣∣2
+ ‖〈Λf〉ε[W f(·),AGf ]f‖`2(Vf ,mf ),

with

[W f(·),AGf ]f(x) =
i

2
e1/2

(
(Q− 1/2)⊗ 1Vf

2

) 1

mf(x)

∑
z∼x

(1 + εf(x, z))E f(x, z)Uf(x)

×

(
µf(z)− µf(x)

(1 + µf(x))
√

1 + µf(z)(
√

1 + µf(z) +
√

1 + µf(x))

)(4.6)
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− i

2
e1/2

(
(Q− 1/2)⊗ 1Vf

2

) 1

mf(x1 − 1, x2)

∑
z∼x

(1 + εf((x1 − 1, x2), (z1 − 1, z2))

×

(
µf(z1 − 1, z2)− µf(x1 − 1, x2)

(1 + µf(x1 − 1, x2))
√

1 + µf(z1 − 1, z2)(
√

1 + µf(z1 − 1, z2) +
√

1 + µf(x1 − 1, x2))

)
× E f((x1 − 1, x2), (z1 − 1, z2))Uf(x)

+
i

2
e−1/2

(
(Q+ 1/2)⊗ 1Vf

2

) 1

mf(x1 + 1, x2)

∑
z∼x

(1 + εf((x1 + 1, x2), (z1 + 1, z2))

×

(
µf(z1 + 1, z2)− µf(x1 + 1, x2)

(1 + µf(x1 + 1, x2))
√

1 + µf(z1 + 1, z2)(
√

1 + µf(z1 + 1, z2) +
√

1 + µf(x1 + 1, x2))

)
× E f((x1 + 1, x2), (z1 + 1, z2))U∗f(x)

− i

2
e−1/2

(
(Q+ 1/2)⊗ 1Vf

2

) 1

mf(x)

∑
z∼x

(1 + εf(x, z))E f(x, z)U∗f(x)

×

(
µf(z)− µf(x)

(1 + µf(x))
√

1 + µf(z)(
√

1 + µf(z) +
√

1 + µf(x))

)
.

We treat the first term of ‖〈Λf〉ε[∆̃Gf
ε,µ
,AGf ]f‖`2(Vf ,mf ) in (4.5).

∑
x∈Vf

mf(x)

∣∣∣∣ i

2

(
e1/2〈Q− 1/2〉1+ε ⊗ 1Vf

2

)∑
z∼x

(
E f(x, z)(1 + εf(x, z))

mf(x)
√

(1 + µf(x))(1 + µf(z))

− E f((x1 − 1, x2), z)(1 + εf((x1 − 1, x2), z))

m(x1 − 1, x2)
√

(1 + µf(x1 − 1, x2)(1 + µf(z))

)
f(x1 − 1, x2)

∣∣∣∣2

≤ 2
∑
x∈Vf

mf(x)

∣∣∣∣ i

2

(
e1/2〈Q− 1/2〉1+ε ⊗ 1Vf

2

)
×
∑
z1∼x1

δz2=x2

(
E f

1(x1, z1)(1 + εf(x, z))

m(x)
√

(1 + µf(x))(1 + µf(z))
(4.7)

− E f
1(x1 − 1, z1)(1 + εf((x1 − 1, x2), z))

mf(x1 − 1, x2)
√

(1 + µf(x1 − 1, x2)(1 + µf(z))

)
f(x1 − 1, x2)

∣∣∣∣2
+ 2

∑
x∈Vf

mf(x)

∣∣∣∣ i

2

(
e1/2〈Q− 1/2〉1+ε ⊗ 1Vf

2

)
×
∑
z2∼x2

δz1=x1

(
E f

2(x2, z2)(1 + εf(x, z))

m(x)
√

(1 + µf(x))(1 + µf(z))
(4.8)

− E f
2(x2, z2)(1 + εf((x1 − 1, x2), z))

mf
1(x1 − 1)m2

√
(1 + µf(x1 − 1, x2)(1 + µf(z))

)
f(x1 − 1, x2)

∣∣∣∣2.
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We bound (4.7) as follows:

(4.7) ≤ 4
∑
x∈Vf

mf(x)

∣∣∣∣ i

2

(
e〈Q− 1/2〉1+ε ⊗ 1Vf

2

) 1

m2

×
( √

1 + µf(x1 − 1, x2)(1 + εf(x, (x1 + 1, x2))√
(1 + µf(x))(1 + µf(x1 + 1, x2))(1 + µf(x1 − 1, x2))

(4.9)

−
√

1 + µf(x1 + 1, x2)(1 + εf((x1 − 1, x2), (x1, x2)))√
(1 + µf(x1 − 1, x2)(1 + µf(x))(1 + µf(x1 + 1, x2))

)
f(x1 − 1, x2)

∣∣∣∣2
+ 4

∑
x∈Vf

mf(x)

∣∣∣∣ i

2

(
〈Q− 1/2〉1+ε ⊗ 1Vf

2

) 1

m2

×
( √

1 + µf(x1 − 2, x2)(1 + εf(x, (x1 − 1, x2)))√
(1 + µf(x))(1 + µf(x1 − 1, x2))(1 + µf(x1 − 2, x2))

(4.10)

−
√

1 + µf(x1 − 1, x2)(1 + εf((x1 − 1, x2), (x1 − 2, x2)))√
(1 + µf(x1 − 1, x2)(1 + µf(x1 − 2, x2))(1 + µf(x1 − 1, x2))

)
f(x1 − 1, x2)

∣∣∣∣2,
Now, we concentrate on (4.9) and in the same way, we deal with (4.10). Since the
assertions (H2) and (H3) hold true then there exists an integer c, such that

4
∑
x∈Vf

mf(x)

∣∣∣∣ i

2

(
e〈Q− 1/2〉1+ε ⊗ 1Vf

2

)
× 1

m2

( √
1 + µf(x1 − 1, x2)(1 + εf(x, (x1 + 1, x2))√

(1 + µf(x))(1 + µf(x1 + 1, x2))(1 + µf(x1 − 1, x2))

−
√

1 + µf(x1 + 1, x2)(1 + εf((x1 − 1, x2), (x1, x2)))√
(1 + µf(x1 − 1, x2)(1 + µf(x))(1 + µf(x1 + 1, x2))

)
f(x1 − 1, x2)

∣∣∣∣2

= 4
∑
x∈Vf

mf(x)

∣∣∣∣ i

2

(
e〈Q− 1/2〉1+ε ⊗ 1Vf

2

) 1

m2

×
(

(µf(x1 − 1, x2)− µf(x1 + 1, x2))εf(x, (x1 + 1, x2))

(
√

1 + µf(x1 − 1, x2) +
√

1 + µf(x1 + 1, x2))

× 1√
(1 + µf(x))(1 + µf(x1 + 1, x2))(1 + µf(x1 − 1, x2))

+

√
1 + µf(x1 + 1, x2)(εf(x, (x1 + 1, x2))− εf((x1 − 1, x2), x)√

(1 + µf(x))(1 + µf(x1 + 1, x2))(1 + µf(x1 − 1, x2))

+
µf(x1 − 1, x2)− µf(x1 + 1, x2)

(
√

1 + µf(x1 − 1, x2) +
√

1 + µf(x1 + 1, x2))

× 1√
(1 + µf(x))(1 + µf(x1 + 1, x2))(1 + µf(x1 − 1, x2))

)
f(x1 − 1, x2)

∣∣∣∣2
≤ c‖f‖2`2(Vf ,mf ).

In the same way, we treat (4.8) and ‖〈Λf〉ε[W f(·),AGf ]f‖2`2(Vf ,mf ). By density, there

exists c > 0 such that ‖〈Λf〉ε[∆̃Gf
ε,µ
,AGf ]f‖2`2(Vf ,mf ) ≤ c‖f‖

2
`2(Vf ,mf ). Finally, by ap-

plying [AmBoGe, Proposition 7.5.7] where the hypotheses are verified in Proposition
4.6, we find the result. �
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4.4. The cusp side: Radial metric perturbation. We recall that

∆̃Gc
ε,µ
f(x) := Tmµ→m∆Gc

ε,µ
T−1
mµ→mf(x), for all f ∈ Cc(Vc).

We first deal with the question of the essential spectrum.

Proposition 4.9. Let V c : Vc → R be a function obeying V c(x) → 0 if |x| → ∞.

We assume that (4.1) holds true then ∆̃Gc
ε,µ
−∆Gc ∈ K(`2(Vc,mc)). In particular,

(1) D(∆Gc
ε,µ

+ V (·)) = D(T−1
mµ→m∆GTmµ→m),

(2) ∆Gc
ε,µ

+ V (·) is essentially self-adjoint on Cc(V),

(3) σess(∆Gc
ε,µ

+ V (·)) = σess(∆G).

Proof. Let f ∈ Cc(Vc), we have

|〈f, (∆̃Gc
ε,µ
−∆Gc)f〉`2(Vc,mc)| = |

∑
x∈Vc

mc(x)(∆̃Gc
ε,µ
−∆Gc)f(x)f(x)|

≤
∑
x∈Vc

mc(x)
1

mc(x)

∑
z1∼x1

εc(x, (z1, x2))√
(1 + µc(x))(1 + µc(z1, x2))

× Ec
1(x1, z1)|f(x)|2

+ 1/2
∑
x∈Vc

mc(x)
1

mc(x)

∑
z1∼x1

εc(x, (z1, x2))√
(1 + µc(x))(1 + µc(z1, x2))

× Ec(x, z)(|f(z)|2 + |f(x)|2)

+
∑
x∈Vc

mc(x)
1

mc(x)

∑
z1∼x1

∣∣∣∣∣µc(x) + µc(z1, x2) + µc(x)µc(z1, x2)√
(1 + µc(x))(1 + µc(z1, x2))

∣∣∣∣∣
× 1√

1 + µc(x) +
√

1 + µc(z1, x2)
Ec

1(x1, z1)|f(x)|2

+ 1/2
∑
x∈Vc

mc(x)
1

mc(x)

∑
z1∼x1

∣∣∣∣∣µc(x) + µc(z1, x2) + µc(x)µc(z1, x2)√
(1 + µc(x))(1 + µc(z1, x2))

∣∣∣∣∣
× 1√

1 + µc(x) +
√

1 + µc(z1, x2)
Ec

1(x1, z1)|f(z1, x2)|2

+ 1/2
∑
x∈Vc

mc(x)
1

mc(x)

∑
z1∼x1

∣∣∣∣∣µc(x) + µc(z1, x2) + µc(x)µc(z1, x2)√
(1 + µc(x))(1 + µc(z1, x2))

∣∣∣∣∣
× 1√

1 + µc(x) +
√

1 + µc(z1, x2)
Ec

1(x1, z1)|f(x)|2

≤ 2〈f, (deg3(·) + deg4(·) + |W c(·)|)f〉,

where

deg3(x) :=
1

mc(x)

∑
z1∈Vc

1

εc(x, (z1, x2))√
(1 + µc(x))(1 + µc(z1, x2))

Ec
1(x1, z1)

and

deg4(x) :=
1

mc(x)

∑
z1∈Vc

1

∣∣∣∣∣ µc(x) + µc(z1, x2) + µc(x)µc(z1, x2)√
(1 + µc(x))(1 + µc(z1, x2))(

√
1 + µc(x) +

√
1 + µc(z1, x2))

∣∣∣∣∣
× Ec

1(x1, z1).

We have

|deg3(x)| ≤ sup
z1∼x1

∣∣∣∣∣ εc(x, (z1, x2))

m2

√
(1 + µc(x))(1 + µc(z1, x2))

∣∣∣∣∣degGc
1
(x).
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Since V2 is a finite set and for all x2 ∈ V2, εc((x1,x2),(z1,x2))√
(1+µc(x1,x2))(1+µc(z1,x2))

→ 0 when

x1, z1 → ∞ and since degGc
1
(·) is bounded then deg3(·) is compact. In the same

way, using that ∀x2 ∈ V2,
µc(x)+µc(z1,x2)+µc(x)µc(z1,x2)√

(1+µc(x1,x2))(1+µc(z1,x2))(
√

1+µc(x)+
√

1+µc(z1,x2))
→ 0 if

x1, z1 →∞, we obtain the compactness of deg4(·).
Now, we will show that W c(·) ∈ K(`2(Vc,mc). For all x ∈ Vc, we have

|W c(x)| =
∣∣ 1

mc(x)

∑
z∼x

(
µc(z)− µc(x)

(1 + µc(x))
√

1 + µc(z)(
√

1 + µc(z) +
√

1 + µc(x))

)
× (1 + εc(x, z))Ec(x, z)

∣∣
≤ sup
z1∼x1

(1 + εc(x, (z1, x2))) degGc
1
(x)

×

∣∣∣∣∣ µc(z1, x2)− µc(x)

(1 + µc(x))
√

1 + µc(z1, x2)(
√

1 + µc(z1, x2) +
√

1 + µc(x))

∣∣∣∣∣
Since V2 is a finite set and ∀x2 ∈ V2, εc((x1, x2), (z1, x2))(µc(z1, x2)−µc(x1, x2))→ 0
when x1, z1 → ∞, and since degGc

1
(·) is bounded and since V c(·) is a compact

perturbation. Then, ∆̃Gc
ε,µ
− ∆Gc is a compact operator. The points (1) and (2)

follow from Theorem [ReSi, Theorem XIII.14] and (3) from the Weyl’s Theorem. �
In order to go into the Mourre theory, we construct the conjugate operator:

AGc := Am1
⊗ P le,(4.11)

with

Am1
:= T1→m1

ANT
−1
1→m1

:=
i

2

(
e1/2(Q− 1/2)U − e−1/2(Q+ 1/2)U∗

)
.

It is self-adjoint and essentially self-adjoint on Cc(Vc) by Lemma 3.2. Because of
the projection in (4.11), we restrict to radial perturbations.

Definition 4.10. The perturbations V c, µ and ε are called radial if they do not de-
pend on the second variable, i.e., For all (x1, x2), (z1, z2) ∈ Vc, we have V c(x1, x2) =
V c(x1, z2), µ(x1, x2) = µ(x1, z2) and ε((x1, x2), (z1, z2)) = ε((x1, x2), (z1, x2)).

We turn to Mourre estimate.

Proposition 4.11. Let Gc
ε,µ a graph satisfies a condition (4.1). Suppose that V c :

Vc → R, ε and µ are radial and assume (H1), (H2), and (H3) and V c(x) → 0 if
|x| → ∞. Then ∆Gc

ε,µ
+ V c(·) ∈ C1,1(AGc

ε,µ
). Moreover, for all compact interval

I ⊂ ( α
m2
, β
m2

) there are c > 0, a compact operator K such that

EI(∆Gc
ε,µ

+ V c(·))[∆Gc
ε,µ

+ V c(·), iAGc
ε,µ

]◦EI(∆Gc
ε,µ

+ V c(·))
≥ cEI(∆Gc

ε,µ
+ V c(·)) +K,(4.12)

in the form sense.

Proof. The Proposition 4.14 and Lemma 4.13 gives that ∆Gc
ε,µ
∈ C1,1(AGc). Since

∆̃Gc
ε,µ
− ∆Gc is a compact operator by Proposition 4.9, thanks to (3.25) and by

[AmBoGe, Theorem 7.2.9] we obtain (4.12). �
We turn to series of Lemmata. To be able to apply the [AmBoGe, Proposition

7.5.7], we check the next point.

Proposition 4.12. Let Λc := (Q + 1/2) ⊗ 1Vc , then Λc satisfies the following
assertions:

(1) eiΛctD(∆Gc
ε,µ

) ⊂ D(∆Gc
ε,µ

) and there exists a finite constant c, such that

‖eiΛct‖B(D(∆Gcε,µ )) ≤ c, for all t ∈ R.
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(2) D(Λc) ⊂ D(AGc
ε,µ

).

(3) (Λc)−2(AGc
ε,µ

)2 extends to a continuous operator in D(∆Gc
ε,µ

).

Proof. With the help of the unitary transformation Tmµ→m, it is enough to prove
the result with ε = 0 and µ = 0.

(1) We have

[∆Gc , eiΛct] = [∆Gc
1
, eiΛct]⊗ 1

m2
+ [

1

m1(·)
, eiΛct]⊗∆2.

Since 1
m1(·) and eiΛct commute and since [∆Gc

1
, eiΛct] is uniformly bounded, then

there exists c > 0 such that for all f ∈ Cc(Vc)

‖(∆Gc + i)eiΛct(∆Gc + i)−1f‖`2(Vc,mc) ≤ c‖f‖`2(Vc,mc).

Hence, there exists c > 0 such that for all f ∈ Cc(Vc)

‖(∆Gc + i)eiΛctf‖`2(Vc,mc) ≤ c‖(∆Gc + i)f‖`2(Vc,mc).

Since ∆Gc is essentially self-adjoint on Cc(Vc) then we find the result.
(2) Let f ∈ Cc(Vc), by using the relations of Subsection 3.5, we have

‖AGcf‖2`2(Vc,mc) ≤
1

2

∑
x∈Vf

mf(x)
∣∣∣e1/2(Q− 1/2)U ⊗ P lef(x)

∣∣∣2
+
∣∣∣e−1/2(Q+ 1/2)U∗ ⊗ P lef(x)

∣∣∣2
≤ c

∑
x∈Vf

mf(x)
∣∣(Q+ 1/2)⊗ P lef(x)

∣∣2 ≤ c‖Λcf‖2`2(Vf ,mf ).

Since, Λc is essentially self-adjoint on Cc(Vc). we find the result.
(3) First for all f ∈ Cc(Vc), we have

‖(Λc)−2(AGc)2f‖2`2(Vc,mc) =
∑

(x1,x2)∈Vc

mc(x1, x2)|Λ−2(AGc)2f(x, y)|2

=
∑

(x1,x2)∈Vc

mc(x1, x2)
∣∣1
4

((
(Q+ 1/2)−2(2Q2 + 1/2)

)
⊗ P le

)
f(x1, x2)

− 1

4
e
((

(Q+ 1/2)−2(Q− 1/2)(Q− 3/2)
)
⊗ P le

)
f(x1 − 2, x2)

− 1

4
e−1

((
(Q+ 1/2)−2(Q+ 1/2)(Q+ 3/2)

)
⊗ P le

)
f(x1 + 2, x2)

∣∣2.
By density, we get (Λc)−2(AGc)2 is a bounded operator. Since Λc is a radial operator
and ∆Gc

1
is bounded then there exists C > 0 such that, for all f ∈ Cc(Vc),

‖[∆Gc , (Λc)−2(AGc)2]f‖`2(Vc,mc)

= ‖
(

[∆Gc
1
⊗ 1

m2
, (Λc)−2(AGc)2] + [

1

m1(·)
⊗∆Gc

2
, (Λc)−2(AGc)2]

)
f‖`2(Vc,mc)

= ‖
(

[∆Gc
1
⊗ 1

m2
, (Λc)−2(AGc)2] + (Λc)−2[

1

m1(·)
⊗∆Gc

2
, (AGc)2]

)
f‖`2(Vc,mc)

= ‖[∆Gc
1
⊗ 1

m2
, (Λc)−2(AGc)2]f‖`2(Vc,mc) ≤ C‖f‖`2(Vc,mc).

We have used [ 1
m1(·) ⊗∆Gc

2
, (AGc)2] = 0 by construction. Conclude by density. �

The proof of Proposition 4.14 is long and technical. For the sake of the reader,
we have separated the treatment of the potential V c to present the technical steps.

Lemma 4.13. Let V c : Vc → R be a radial function and (H1) holds true, then
[V c(·),AGc

ε,µ
]◦ ∈ C0,1(AGc

ε,µ
). In particular, V c(·) ∈ C1,1(AGc

ε,µ
).
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Proof. Since V c is radial, by a slight abuse of notation, we have V c := V c ⊗ 1V2 .
We compute the commutator on Cc(Vc) and get

[
V c(·), iAGc

ε,µ

]
=

(
e−1/2

2

(
Q+

1

2

)
[V c, U∗] +

e1/2

2

(
1

2
−Q

)
[V c, U ]

)
⊗ P le.

By density, we infer that
[
V c(·), iAGc

ε,µ

]
extends to a bounded operator and that

V c(·) ∈ C1(AGc
ε,µ

). Next, there exists C > 0 so that, for all f ∈ Cc(Vc),

∥∥〈Λ〉ε ⊗ [V c(·), iAGc
ε,µ

]◦f
∥∥ ≤ e−1/2

2

∥∥(〈Q+ 1/2〉ε(Q+ 1/2) [V c, U∗]
)
⊗ P lef

∥∥
+
e1/2

2

∥∥(〈Q+ 1/2〉ε(Q+ 1/2) [V c, U ]
)
⊗ P lef

∥∥
≤ e−1/2

2

∥∥(〈Λ〉ε+1 [V c, U∗]
)
⊗ P lef

∥∥
+
e1/2

2

∥∥(〈Λ〉ε+1 [V c, U ]
)
⊗ P lef

∥∥ ≤ C‖f‖, by(H1).

Finally, the result follow by applying [AmBoGe, Proposition 7.5.7] where the hy-
potheses are verified in Proposition 4.12. �

Here is the most technical part:

Proposition 4.14. Assuming (H2) and (H3), we have ∆Gc
ε,µ
∈ C1(AGc

ε,µ
). More-

over [∆Gc
ε,µ
,AGc

ε,µ
]◦ ∈ C0,1(AGc

ε,µ
). In particular, ∆Gc

ε,µ
∈ C1,1(AGc

ε,µ
).

Proof. We work in `2(Vc,mc). We first prove that ∆̃Gc
ε,µ
∈ C1(AGc). By the com-

putation below (with ε = 0), we obtain that there is c > 0 such that

‖[∆̃Gc
ε,µ
,AGc ]f‖`2(Vc,mc) ≤ c‖f‖`2(Vc,mc), ∀f ∈ Cc(Vc).

Using Lemma 3.16 and [AmBoGe, Theorem 6.3.4], this implies that ∆̃Gc
ε,µ
∈ C1(AGc).
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We turn to the C0,1 property. We assume that (H2) and (H3) are true then

‖〈Λc〉ε[∆̃Gc
ε,µ
,AGc ]◦f‖`2(Vc,mc) ≤

∑
x∈Vc

mc(x)| i
2

(e1/2〈Q− 1/2〉1+ε ⊗ P le

×
( 1

mc(x)

∑
z∼x
Ec(x, z)

1 + εc(x, z)√
(1 + µc(x))(1 + µc(z))

− 1

mc(x1 − 1, x2)

∑
z∼x
Ec((x1 − 1, x2), z)

1 + εc((x1 − 1, x2), z)√
(1 + µc(x1 − 1, x2)(1 + µc(z))

)(4.13)

× f(x1 − 1, x2)|2

+
∑
x∈Vc

mc(x)| i
2

(e1/2〈Q− 1/2〉1+ε ⊗ P le)

×
( 1

mc(x1 − 1, x2)

∑
z∼x
Ec((x1 − 1, x2), z)

1 + εc((x1 − 1, x2), z)√
(1 + µc(x1 − 1, x2)(1 + µc(z))

f(z)

− 1

mc(x)

∑
z∼x
Ec(x, z)

1 + εc(x, z)√
(1 + µc(x))(1 + µc(z))

f(z1 − 1, z2)
)
|2

+
∑
x∈Vc

mc(x)| i
2

(e−1/2〈Q+ 1/2〉1+ε ⊗ P le)

×
( 1

mc(x1 + 1, x2)

∑
z∼x
Ec((x1 + 1, x2), z)

1 + εc((x1 + 1, x2), z)√
(1 + µc(x1 + 1, x2)(1 + µc(z))

− 1

mc(x)

∑
z∼x
Ec(x, z)

1 + εc(x, z)√
(1 + µc(x))(1 + µc(z))

)
f(x1 + 1, x2)|2

+
∑
x∈Vc

mc(x)| i
2

(e−1/2〈Q+ 1/2〉1+ε ⊗ P le)

×
( 1

mc(x)

∑
z∼x
Ec(x, z)

1 + εc(x, z)√
(1 + µc(x))(1 + µc(z))

f(z1 + 1, z2)

− 1

mc(x1 + 1, x2)

∑
z∼x
Ec((x1 + 1, x2), z)

1 + εc((x1 + 1, x2), z)√
(1 + µc(x1 + 1, x2)(1 + µc(z))

f(z1, z2)
)
|2

+ ‖〈Λc〉ε[W c,AGc ]◦f‖`2(Vc,mc).

We treat the first term of ‖〈Λc〉ε[∆̃Gc
ε,µ
,AGc ]◦f‖`2(Vc,mc) in (4.13)∑

x∈Vc

mc(x)
∣∣ i

2

(
e1/2〈Q− 1/2〉1+ε ⊗ P le

)
×
∑
z∼x

( Ec(x, z)(1 + εc(x, z))

mc(x)
√

(1 + µc(x))(1 + µc(z))

− Ec((x1 − 1, x2), z)(1 + εc((x1 − 1, x2), z))

mc(x1 − 1, x2)
√

(1 + µc(x1 − 1, x2)(1 + µc(z))

)
f(x1 − 1, x2)

∣∣2
≤ 2

∑
x∈Vc

mc(x)
∣∣ i

2

(
e1/2〈Q− 1/2〉1+ε ⊗ P le

)
×
∑
z1∼x1

δz2=x2

( Ec
1(x1, z1)(1 + εc(x, z))

m(x)
√

(1 + µc(x))(1 + µc(z))
(4.14)

− Ec
1(x1 − 1, z1)(1 + εc((x1 − 1, x2), z))

mc(x1 − 1, x2)
√

(1 + µc(x1 − 1, x2)(1 + µc(z))

)
f(x1 − 1, x2)|2
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+ 2
∑
x∈Vc

mc(x)
∣∣ i

2

(
e1/2〈Q− 1/2〉1+ε ⊗ P le

)
×
∑
z2∼x2

δz1=x1

( E2(x2, z2)(1 + εc(x, z))

m(x)
√

(1 + µc(x))(1 + µc(z))
(4.15)

− E2(x2, z2)(1 + εc((x1 − 1, x2), z))

mc
1(x1 − 1)m2

√
(1 + µc(x1 − 1, x2)(1 + µc(z))

)
f(x1 − 1, x2)|2.

We focus on (4.14).

(4.14) ≤ 4
∑
x∈Vc

mc(x)
∣∣ i

2

(
e〈Q− 1/2〉1+ε ⊗ P le

)

× 1

m2

( √
1 + µc(x1 − 1, x2)(1 + εc(x, (x1 + 1, x2))√

(1 + µc(x))(1 + µc(x1 + 1, x2))(1 + µc(x1 − 1, x2))

(4.16)

−
√

1 + µc(x1 + 1, x2)(1 + εc((x1 − 1, x2), (x1, x2)))√
(1 + µc(x1 − 1, x2)(1 + µc(x))(1 + µc(x1 + 1, x2))

)
f(x1 − 1, x2)

∣∣2
+ 4

∑
x∈Vc

mc(x)
∣∣ i

2

(
〈Q− 1/2〉1+ε ⊗ P le

)
× 1

m2

( √
1 + µc(x1 − 2, x2)(1 + εc(x, (x1 − 1, x2)))√

(1 + µc(x))(1 + µc(x1 − 1, x2))(1 + µc(x1 − 2, x2))

−
√

1 + µc(x1 − 1, x2)(1 + εc((x1 − 1, x2), (x1 − 2, x2)))√
(1 + µc(x1 − 1, x2)(1 + µc(x1 − 2, x2))(1 + µc(x1 − 1, x2))

)(4.17)

× f(x1 − 1, x2)
∣∣2.

Now, we concentrate on (4.16). (4.17) can be done in the same way. Since the
assertions (H2) and (H3) hold true then there exists an integer c, such that

4
∑
x∈Vc

mc(x)
∣∣ i

2

(
e(Q− 1/2)1+ε ⊗ P le

)
× 1

m2

( √
1 + µc(x1 − 1, x2)(1 + εc(x, (x1 + 1, x2))√

(1 + µc(x))(1 + µc(x1 + 1, x2))(1 + µc(x1 − 1, x2))

−
√

1 + µc(x1 + 1, x2)(1 + εc((x1 − 1, x2), (x1, x2)))√
(1 + µc(x1 − 1, x2)(1 + µc(x))(1 + µc(x1 + 1, x2))

)
f(x1 − 1, x2)

∣∣2
= 4

∑
x∈Vc

mc(x)
∣∣ i

2

(
e〈Q− 1/2〉1+ε ⊗ P le

) 1

m2

×
( (µc(x1 − 1, x2)− µc(x1 + 1, x2))εc(x, (x1 + 1, x2))

(
√

1 + µc(x1 − 1, x2) +
√

1 + µc(x1 + 1, x2))

× 1√
(1 + µc(x))(1 + µc(x1 + 1, x2))(1 + µc(x1 − 1, x2))

)
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+ 4
∑
x∈Vc

mc(x)
∣∣ i

2

(
e〈Q− 1/2〉1+ε ⊗ P le

) 1

m2

×
(√1 + µc(x1 + 1, x2)(εc(x, (x1 + 1, x2))− εc((x1 − 1, x2), x)√

(1 + µc(x))(1 + µc(x1 + 1, x2))(1 + µc(x1 − 1, x2))

+
µc(x1 − 1, x2)− µc(x1 + 1, x2)

(
√

1 + µc(x1 − 1, x2) +
√

1 + µc(x1 + 1, x2))

× 1√
(1 + µc(x))(1 + µc(x1 + 1, x2))(1 + µc(x1 − 1, x2))

)
f(x1 − 1, x2)

∣∣2
≤ c‖f‖2`2(Vc,mc),

and in the same way, we deal with (4.15) and ‖〈Λc〉ε[W c,AGc ]◦f‖`2(Vc,mc). By
density, we have proven that there exists c > 0 such that

‖〈Λc〉ε[∆̃Gc
ε,µ
,AGc ]◦f‖2`2(Vc,mc) ≤ c‖f‖

2
`2(Vc,mc).

Finally, by applying [AmBoGe, Proposition 7.5.7] with G := D(∆Gc
ε,µ

) where the
hypotheses are verified in Proposition 4.6, we find the result. �
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Université de Sfax. Route de la Soukra km 4 - B.P. n 802 - 3038 Sfax
E-mail address: ennaceur.marwa27@gmail.com

Univ. Bordeaux, Bordeaux INP, CNRS, IMB, UMR 5251, F-33400 Talence, France
E-mail address: sylvain.golenia@math.u-bordeaux.fr


