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Abstract: Several methods of phase retrieval for in-line phase tomog-
raphy have already been investigated based on the linearization of the
relation between the phase shift induced by the object and the diffracted
intensity. In this work, we present a non-linear iterative approach using the
Frechet derivative of the intensity recorded at a few number of propagation
distances. A Landweber type iterative method with an analytic calculation
of the Frechet derivative adjoint is proposed. The inverse problem is
regularized with the smoothing L2 norm of the phase gradient and evaluated
for several different implementations. The evaluation of the method was
performed using a simple phase map, both with and without noise. Our
approach outperforms the linear methods on simulated noisy data up to high
noise levels and thanks to the proposed analytical calculation is suited to
the processing of large experimental image data sets.
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1. Introduction

X- ray microtomography is widely used in a large variety of applications such as bone imag-
ing [1–7] and material science [8, 9]. Yet it is difficult to image soft tissue, especially with
dense structures. Several techniques to obtain phase contrast have been developed [10–12].
Coupling x-ray microtomography and phase contrast allows to improve the sensitivity of the
method [13–15].

If the spatial coherence of the x-rays is sufficient, phase contrast can be achieved by letting
the beam propagate in free-space after interaction with the object. In this case, the contrast
is related to the 2D Laplacian of the phase shift. The relationship between the phase shift
induced by a sample and the intensity recorded at a sample-to-detector distance D relies on
Fresnel diffraction theory. Such phase contrast radiographs can be used to define an inverse
problem to retrieve the phase shift induced by the object. The phase shift is proportional to a
projection through the refractive index distribution in the object, and therefore phase retrieval
can be coupled to tomography. The phase shift induced by the object is first retrieved for each
projection angle. The reconstruction algorithm then yields a 3D reconstruction of the refractive
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index.
In the hard x-ray region, phase contrast can give a dramatic increase in the purely refractive

part of the sensitivity. In several cases, such as biomaterials, bone and small animal imaging,
both dense and soft tissues are present. The x-ray energy has to be chosen so that there will be
both strong absorption and phase contrast in the recorded images.

Several phase retrieval methods have already been investigated. Some are based on the Trans-
port of Intensity Equation (TIE) [16, 17] and the use of a series of image measurements ob-
tained at different propagation distances. Theses methods can be refined by other techniques
like Gerchberg-Saxton-Fienup algorithms [18, 19]. The others rely on the contrast transfer
function (CTF) [10, 20–22] or on a mixed approach between the two former methods [22]. All
these approaches are based on a linearized relation between the phase and the intensity, thus
involving some approximations to the direct problem.

In this work, a new iterative method is proposed to invert the non-linear function I(ϕ) relating
the measurements to the phase map. Since the inverse operator I−1(ϕ) is not bounded, the phase
retrieval problem considered in this work is ill-posed. Thus Tikhonov regularization is included.
The problem is expressed as the minimization of a non-linear regularized functional with the
Frechet derivative of I(ϕ). An analytic expression of the adjoint of the Frechet derivative allows
to speed up the algorithm and reduce memory requirements.

Section 2 presents our formal development of the direct problem as well as the linear ap-
proaches used in the previous works [22]. In section 3, the problem is expressed as the mini-
mization of a non-linear regularized functional solved by a Landweber-type iterative method.
The analytic expression of the adjoint of the Frechet derivative is derived. Section 4 details
the simulation procedure used to invert noise-free and noisy data. Results comparing different
variants of the algorithm are reported and discussed in section 5.

2. The direct problem and the linearized inverse problem phase contrast imaging

2.1. The direct problem

Considering an object illuminated with partially coherent x-rays of wavelength λ , its interaction
with beam can be described by its complex refractive index, usually written as [23]:

n(x,y,z) = 1−δr(x,y,z)+ iβ (x,y,z) (1)

where δr is the refractive index decrement and β is the absorption index for the spatial coor-
dinate (x,y,z). In the following, z denotes the propagation direction of the x-rays. Assuming a
thin object, the diffraction within the object is neglected and so the interaction of x-rays with
the object can be described by a transmittance function T of the coordinates x= (x,y) in a plane
perpendicular to the propagation direction z.

T (x) = exp[−B(x)+ iϕ(x)] = a(x)exp[iϕ(x)] (2)

The absorption, a(x), and phase shift ϕ(x) induced by the object can be considered as pro-
jections of the absorption and refraction index respectively:

B(x) =
2π
λ

∫
β (x,y,z)dz, ϕ(x) =−2π

λ

∫
δr(x,y,z)dz. (3)

The intensity detected at a distance D is given by the squared modulus of the exit wave:

ID(x) = |T (x)∗PD(x)|2 (4)

where ∗ denotes the 2D convolution of the transmitance with the Fresnel propagator,

PD(x) =
1

iλD
exp

(
i

π
λD

|x|2
)

(5)

#146847 - $15.00 USD Received 4 May 2011; revised 22 Jun 2011; accepted 24 Jun 2011; published 26 Oct 2011
(C) 2011 OSA 7 November 2011 / Vol. 19,  No. 23 / OPTICS EXPRESS  22811



D being the propagation distance along z. The direct problem can also be written in terms of
Fourier transforms [24]. The Fourier transform F of a function g(x) is defined as:

F {g}(f) = g̃(f) =
∫

g(x)exp(−2iπx · f)dx (6)

where f = ( fx, fy) is the spatial frequency and x · f denotes the scalar product.

2.2. The linear inverse problem

Most existing phase retrieval approaches are based on a linearization of Eq. (4) valid under
some assumptions. In particular, assuming that the absorption is slowly varying it has been
shown that the Fourier transforms of the intensity can be written [22]:

ĨD(f) = Ĩϕ=0
D (f)+2sin(πλD|f|2)F {I0ϕ}(f)

+
λD
2π

cos(πλD|f|2)F {∇ · (ϕ∇I0)}(f) (7)

where Iϕ=0
D (f) is the intensity at distance D if the phase was zero and I0 is the intensity at

exit surface of the object. This approach seems to be more accurate and robust to noise than
other methods for mixed absorption and phase objects, like Contrast Transfer Function (CTF)
or Transport of Intensity Equation(TIE) methods which rely on weak absorption or short prop-
agation distance assumptions [24]. It will thus be used as a comparison with the non-linear
method. To include several distances, a least squares minimization procedure is used.

To yield stable solutions, regularization techniques are required. Several methods of regular-
ization have been tested [24–26] to solve this linear inverse problem, such as classical quadratic
Tikhonov regularization and wavelet shrinkage. By introducing the phase-absorption product
ψ(x) = I0(x)ϕ(x), the phase retrieval problem can be solved iteratively as:

ψ̃(n+1)(f) =
∑D A∗

D(f)[ĨD(f)− Ĩϕ=0
D (f)−Δ(n)

D (f)]

∑D |A2
D(f)|2 +α

(8)

with
AD(f) = 2sin(πλD|f|2) (9)

and

ΔD(f) =
λD
2π

cos(πλD|f|2)F
{

∇ · [ψ(n)∇ln(I0)]
}
(f) (10)

where α is a regularizing parameter and ψ(n)(x) is the phase-absorption product at iteration n.
This iterative approximate solution lacks an optimality proof but it will be used as the starting
point of our non-linear inverse problem approach.

3. The non-linear inverse phase retrieval problem

The problem considered in this work is an ill-posed problem in the sense that the operator
I−1
D (ϕ) is not a bounded linear operator. Prior knowledge about the phase is necessary to retrieve

the phase from the intensity measurements. In order to solve the inverse problem, we have
searched for a smooth solution because failure of convergence and stagnation of the iterates
away from the solution were observed when no prior information was included. Numerous
iterative algorithms have been proposed and analysed in the literature, based on regularization
functionals defined in a Hilbert space context [27]. In this work, in order to reconstruct the
phase in a non-linear framework, we propose an iterative Landweber type method.
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3.1. A Landweber type iterative method

In view of Eq. (4), the intensity can be regarded as a function of ϕ , ID(ϕ). The operator ID(ϕ)
can be considered as a non-linear operator which is Frechet differentiable in its domain. In
the following, we will consider the phase having a Lipschitz bounded support Ω and that the
domain D [ID(ϕ)] of the operator ID(ϕ) belongs to the functional Sobolev space H2,2� (Ω) [27]:

H2,2
� (Ω) = {ϕ ∈ H2,2(Ω),

∂ϕ
∂�n

= 0} (11)

where ∂ϕ
∂�n is the normal derivative of the phase. We thus consider the problem of minimizing

the functional:
J(ϕ) = ‖ID(ϕ)− Iδ‖2

L2(Ω) (12)

where ‖.‖L2(Ω) denotes the L2(Ω) norm, Iδ approximates the exact data ID with the accuracy δ

‖ID − Iδ‖L2(Ω) ≤ δ . (13)

In order to regularize the problem, we introduce a Tikhonov’s functional of the following form:

Jα(ϕ) =
1
2
‖ID(ϕ)− Iδ‖2

L2(Ω) +
α
2
‖∇ϕ‖2

L2(Ω) (14)

where α is a regularizing parameter. The stabilizing norm is thus a Sobolev type regularizing
term based on the gradient of the phase to be retrieved.

The optimality condition is
J
′
α(ϕ) ·h = 0 (15)

where h ∈ H2,2� (Ω). It can be written with the Frechet derivative of the intensity I
′
D(ϕ), where

〈,〉 denotes the scalar product

2
〈

ID(ϕ)− Iδ , I
′
D(ϕ).h

〉
L2(Ω)

+2α〈∇ϕ,∇h〉L2
= 0 (16)

or with the adjoint I
′
(ϕ)

∗
of the Frechet derivative

2
〈

I
′
(ϕ)

∗
[ID(ϕ)− Iδ ],h

〉
L2(Ω)

+2α〈∇ϕ,∇h〉L2
= 0 (17)

The optimality condition is then:

I
′
D(ϕ)∗[ID(ϕ)− Iδ ]−α∇ · (∇ϕ) = 0 (18)

The step length parameter τk is chosen in order to minimize the Tikhonov’s functional along
the descent direction:

τk = argmin Jαk(ϕk − τδk), (19)

where δk = I
′
D(ϕk)

∗[ID(ϕk)− Iδ ]−αk
ϕk is the descent direction. An approximate value is
obtained with a dichotomy strategy.

This optimality condition defines the descent direction of our steepest descent iterative
method, the next phase iterate ϕk+1 is obtained from the iterate ϕk with:

ϕk+1 = ϕk − τk∇Jαk(ϕk). (20)
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Starting from the current phase estimate ϕk at the iteration k, a linear search procedure is in-
troduced with a variable step τk yielding the following modification of the standard Landweber
method

ϕk+1 = ϕk − τk{I
′
D(ϕk)

∗[ID(ϕk)− Iδ ]−α
ϕk} (21)

The regularizing parameter is chosen by trial-and-error in order to obtain the best decrease
of J(ϕ). These equations correspond to a Landweber method with a regularizing smoothing
term and an adaptative step length. This type of method has been used in several works on
non-linear ill-posed problems [28, 29]. In this work, a convergence analysis of the method is
not performed. We show that it gives good results for typical phase maps found in in-line phase
tomography applications, with various levels of noise.

3.2. Update of iterates

The calculation of the descent direction and of the iterates can be performed with finite differ-
ences with an adaptive step length, the implicit filtering method or with an analytic calculation
of the adjoint of the diffracted intensity.

3.2.1. Analytical expression of the adjoint of the diffracted intensity derivative

In the case of the phase-intensity relationship, the Frechet derivative of the operator ID(ϕ) at
the point ϕk is the linear operator Gk defined by the relation:

ID(ϕk + ε) = ID(ϕk)+Gk(ε)+O(ε2). (22)

The linear operator I′D(ϕk)(ε) = Gk(ε) can be calculated explicitly as:

Gk(ε) = {−[iaε exp(−iϕk)]∗PD}
{
[aexp(iϕk)]∗PD

}
+{[aexp(−iϕk)]∗PD}

{
[iaε exp(iϕk)]∗PD

}
(23)

or
Gk(ε) = 2Real

({−[iaε exp(−iϕk)]∗PD}{[aexp(iϕk)]∗PD}
)

(24)

Using integrations by parts, it can be shown that the adjoint operator G∗
k is defined by:

G∗
k(ε) = 2Real

[({ε[aexp(−iϕk)
∗PD]}∗ PD

){iaexp(iϕk)}
]
. (25)

3.2.2. Numerical calculation by implicit filtering

In this work, we retrieve the phase from noise-free and noisy data. It is well known that it is
difficult to calculate the gradient of a noisy function. We have thus applied the implicit filter-
ing method described by Kelley et al in [30–32]. In its simplest unconstrained form, implicit
filtering is the steepest descent algorithm with finite difference gradients, where the difference
increment varies as the iteration progresses. Because the gradient is only an approximation, the
computed descent direction may fail to be a descent direction, and the line search may fail. In
this case the difference increment is reduced. It has also been shown that the performance of
implicit filtering with a central difference gradient is superior to that with forward difference
gradient [30–32]. The derivatives in the gradient I′D(ϕ) are thus approximated by centered dif-
ferences formulas. It is noteworthy that this finite difference method requires 2N evaluations
of the Tikhonov functional, where N is the phase vector dimension and it leads to a squared
matrix of size N2. In this work, the phase increment is set to 0.05 rad which is the estimated
noise level on the phase. This phase increment must be small enough so that the linearization
is valid and higher than the noise level.
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4. Simulations

4.1. Simulation of the diffracted intensity

Following [24], the imaging system was simulated in a deterministic fashion. Two phantoms
were defined, one for the absorption coefficient and one for the refractive index decrement.
Theoretical values for the absorption coefficient and the refractive index, δ and β , for different
materials at 24 keV were used (λ = 0.5166Å) for the phantom. Propagation in free-space was
simulated using Eq. (4). The original phase map to be retrieved is displayed in Fig. 1(a), together
with the absorption map in Fig. 1(b) and the corresponding Fresnel diffraction pattern for D=1.4
m without noise in Fig. 1(c). The convolution product was calculated by Fourier transforms and
the intensity has been obtained as the squared modulus in the spatial domain of this convolution.
Using the free-space propagation equation, images were calculated for the eight propagation
distances 0.2 m, 0.4 m, 0.6 m, 0.8 m, 1.0 m, 1.2 m, 1.4 m and 1.6 m. These distances are
suitable for testing and comparing the phase retrieval methods.
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Fig. 1. (a) Original phase map to be retrieved, (b) Original absorption, (c) Fresnel diffrac-
tion pattern at propagation distance D=1.4 m and(d) Phase obtained with the mixed approx-
imation.

The intensity and phase values were discretized on a regular grid and they are considered as
vectors of a 75×75 dimensional real space R

75×75. The Frechet derivative Gk calculated with
the finite difference method at the point ϕk is a matrix of R5475×5475. The phase contrast images
were all corrupted with additive Gaussian white noise with various peak-to-peak signal to noise
ratios (PPSNR), between 24 dB and 0 dB. The peak-to-peak signal to noise ratio is defined by:

PPSNR = 20log(
fmax

nmax
), (26)

where fmax is the maximum signal amplitude and nmax is the maximum noise amplitude.
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4.2. Initialization and stopping conditions

Our phase retrieval algorithms are not globally convergent algorithms. The method will be
quantitatively evaluated by measuring the normalized mean square error (NMSE) using the
L2(Ω) norm. If ϕ∗ is the phase to be recovered and ϕk the current estimate, the NMSE is
calculated as:

‖ϕk −ϕ∗‖/‖ϕ∗‖ (27)

The mixed approximation of the linear problem has been used as the starting point of our
simulations. It is displayed in Fig. 1(d). The initial NMSE is 0.147. This a priori guess of the
solution ensures the convergence of the algorithms.

To avoid problems at the image boundary, the phase support is assumed to be included in
the 70× 70 inner pixels, and the border pixels have been fixed to zero. Since several intensity
maps obtained at different distances are available, the inverse problem may be split into a finite
number of sub-problems. In order to take into account more than one intensity map, we pro-
pose two variants of a cyclic iteration over the distances. When one steepest descent iteration
is performed for each image recording distance, this method will be called a Kaczmarz type
method in the following discussion. When a hundred or more iterations are performed for each
distance, this methodology will be called a sequential one.

In the following, the iterate ϕk+1 is accepted if the following two conditions are satisfied:

Jα(ϕk+1)≤ Jα(ϕk) (28)

and
‖I(ϕk+1)− Iδ‖L2(Ω) ≤ ‖I(ϕk)− Iδ‖L2(Ω). (29)

the iterations are terminated when

‖I(ϕk)− Iδ‖ ≤ δ (30)

with the residual value δ equal to the noise level. A divergence of the iterates away from the
solution is obtained if these stopping conditions are not imposed.

5. Results and discussion

In the following, we have compared the numerical results for the simple test case introduced
above with the following algorithms:

1. A1: Kaczmarz type finite difference Landweber method with a regularization term or
without any regularization (α = 0).

2. A2: Sequential type finite difference Landweber method with a regularization term or
without regularization term performed with N=100 iterations for each distance.

3. A3: Kaczmarz type analytic Landweber method with the former stopping conditions with
a regularization term or without any regularization (α = 0).

These algorithms differ by the number of descent iterations performed for each propagation
distances, by the calculation of the adjoint of the Frechet derivative which is based on finite
difference or on an analytic expression and by the regularization term. The difference between
the algorithms A1 and A2 is the way of the cyclic iteration in the intensity maps is performed.
The last algorithm A3 represents the Kaczmarz type analytic Landweber method with the stop-
ping conditions (28), (29) and (30) both without regularization term or with the regularization
method.
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Figure 2 displays the difference maps between the solution and the true phase to be retrieved.
Figure 2(a) is the initial error map obtained from the mixed approach showing that errors are
mostly concentrated at the edges. Figures 2(b), 2(c) and 2(d) illustrate the differences maps re-
spectively obtained with the algorithm A1 (PPSNR=24 dB), A2 (noisy-free) and A3 (PPSNR=24
dB). The regularization parameter was set to α = 0.01. In order to have more quantitative in-
formation about the convergence rates and to compare the algorithms, we have studied NMSE
for the phase shift as a function of the number of iterations. Figure 3 shows the evolution of the
NMSE as a function of the number of iterations for the different algorithms on the noise-free
and noisy data (PPSNR=24 dB) for α = 0.01.
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Fig. 2. (a) Error map for the phase retrieved with the mixed approach [22], (b) Error map
for the phase retrieved with the algorithm A1 (PPSNR=24 dB, α = 0.01, δ = 0.01), (c)
Error map for the phase obtained with the algorithm A2 (α = 0.01, δ = 0.01) and (d) Error
map for the phase obtained with the algorithm A3 (PPSNR=24 dB, α = 0.01, δ = 0.01).

The errors on the phase have been significantly reduced with all algorithms. The use of sev-
eral distances improves the reconstruction because it allows a better coverage of the frequency
domain and it improves the statistics. Yet, a very slow convergence is obtained with the algo-
rithm A2. Kaczmarz type methods are thus to be preferred.

It is well known that the Landweber iteration has a regularizing effect, the number of itera-
tions being the regularization parameter. The regularization term is not crucial in that case and
improves only slightly the convergence rate. Yet, a divergence of the iterates away from the
solution has been observed for other phase maps, if this term is not included in the functional.
The regularization parameter has been selected from trial-and-error. As displayed in Figs. 3(a)
and 3(b) for noise-free and noisy data, the use of a weak (α = 0.01) smoothing regularization
yields good phase retrieval convergence results.

In Fig. 3 it can observed that the algorithm A3 has good convergence properties. The algo-
rithm A3 is also much faster since the large scale matrix used in the finite difference methods is
replaced by the analytic expression of the adjoint of the Frechet derivative. It should be noted
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Fig. 3. Normalized mean square error for the phase versus iteration number with the edge
fixed to zero: (a) for the noise-free data (α = 0.01, δ = 0.01) and (b) for the noisy data
(α = 0.01, δ = 0.01, PPSNR= 24dB).

that at the end of the iterations, the condition of Eq. (30) is fulfilled and that we have to stop the
iterations considering the noise level.

The phase maps obtained with the algorithm A3 for the noise-free data and noisy data (PP-
SNR=24 dB) with a smooth regularization α = 0.01 are displayed in Figs. 4(a) and 4(b) re-
spectively. The final NMSE are 0.095 for noisy-data (PPSNR=24 dB) and 0.09 for noise-free
data.

The phase retrieval error may still be decreased. The drawbacks of the regularization func-
tional ‖∇ϕ‖L2

are well-known. An isotropic smoothing effect is obtained and the boundaries
are not well preserved. This is obvious in Fig. 2(c). The noise is suppressed but the high values
of the gradient are too greatly penalized on the edge. In future works, the gradient ∇ϕ may be
replaced by a non-linear functional of ϕ as in semi-quadratic regularization or by the bounded
variation semi-norm [27] or by anisotropic terms.

6. Conclusion

In this work, several non-linear iterative approachs for phase retrieval have been proposed.
The methods investigated previously were based on the linearization of the relation between
the phase shift induced by the object and the diffracted intensity. They have used the Transport
Intensity Equation (TIE), the Contrast Transfer Function (CTF), or mixed approaches. Our non-
linear iterative approaches uses the Frechet derivative of the intensity recorded at small number
of propagation distances. We have compared the convergence rates for three algorithms, two
based on the finite difference gradient and one, on the analytic expression of the gradient.

The best results are obtained when the inverse problem is regularized with the smoothing
L2 norm of the phase gradient. The best convergence rates are found when the various dis-
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Fig. 4. Reconstructed phase with A3 algorithm for (a) noisy-data (PPSNR=24 dB, α = 0.01)
and (b) for noise-free simulations (α = 0.01).

tances are treated with a Kaczmarz type method where one descent iteration is performed
for each distance. The evaluation of the method was performed using a simple phase map,
both with and without noise. For the simulated data, the normalized mean square error was
measured. Tikhonov regularization based on linear filtering used in this work has some well-
known drawbacks since it does not only smooth noise but also blurs important features such
as edges. To avoid these shortcomings, non-linear partial differential diffusion equations may
be useful. Therefore, other regularization methods will be tested in future work. Our approach
outperforms the linear methods on simulated noisy data for PPSNR above 20dB and the non-
linearities of the Fresnel diffraction are well taken into account. The analytic calculation of the
adjoint of the Frechet derivative speeds up the calculations and overcomes memory limitations
due to the Frechet derivative matrix. Thus this method opens promising perspectives to process
experimental data in various applications.
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