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In this paper, we study a differential hemivariational inequality (DHVI, for short) in the framework of reflexive Banach spaces. Our aim is three fold. The first one is to investigate the existence and the uniqueness of mild solution, by applying a general fixed-point principle. The second one is to study its exponential stability, by employing the formula for the variation of parameters and inequality techniques. Finally, the third aim is to illustrate an application of our abstract results in the study of an initial and bound-ary value problem which describes the contact of an elastic rod with an obstacle.

Introduction

Differential variational inequalities (DVIs, for short) are systems which couple differential or partial differential equations with a time-dependent variational inequality. They represent a powerful mathematical tool used in the analysis of a large number of nonlinear boundary value problems. Various mathematical models arising in the study of contact and impact problems, electrical circuits with ideal diodes, economical dynamics and traffic networks, lead to DVIs. For this reason, in the last decade, a considerable effort has been made in their analysis and numerical approximation.

Introduced in [START_REF] Aubin | Differential inclusions[END_REF], DVIs were systematically discussed in [START_REF] Pang | Differential variational inequalities[END_REF], in the framework of Euclidean spaces. Later, a number of papers have been dedicated to the development of theory of DVIs and their applications. Among them, we refer the reader to [START_REF] Chen | Differential variational inequality approach to dynamic games with shared constraints[END_REF][START_REF] Ke | Decay solutions for a class of fractional differential variational inequalities[END_REF][START_REF] Liu | Existence and global bifurcation of periodic solutions to a class of differential variational inequalities[END_REF][START_REF] Liu | Nonlinear evolutionary systems driven by mixed variational inequalities and its applications[END_REF][START_REF] Liu | Partial differential hemivariational inequalities[END_REF][START_REF] Loi | On two parameter global bifurcation of periodic solutions to a class of differential variational inequalities[END_REF][START_REF] Loi | Topological methods for some classes of differential variational inequalities[END_REF], where results on solvability, stability, and bifurcation for finite-dimensional DVIs have been obtained. The study of DVIs in infinite-dimensional spaces is more recent. The reason is that, in contrast with the case of finite-dimensional spaces, the study of DVIs in infinite-dimensional spaces requires regularity results of the solution of the associated variational inequalities such as measurability, continuity, or condensivity, which enable us to convert them to differential inclusions. For more details on this topic, we refer to [START_REF] Gwinner | On differential variational inequalities and projected dynamical systems equivalence and a stability result[END_REF][START_REF] Gwinner | On a new class of differential variational inequalities and a stability result[END_REF][START_REF] Liu | Partial differential variational inequalities involving nonlocal boundary conditions in Banach spaces[END_REF][START_REF] Liu | Evolutionary problems driven by variational inequalities[END_REF][START_REF] Nguyen | On the differential variational inequalities of parabolic elliptic type[END_REF] and the references therein. Differential hemivariational inequalities (DHVIs, for short) represent an important extension of DVIs, which couple differential or partial differential equations with a hemivariational inequality or a variational-hemivariational inequality.

The stability of solutions is a topic of main interest in the control theory and other areas where ordinary differential equations and partial differential equations play an important role. The presence of time-dependent terms in control systems results in differential equations involving transcendental terms of the exponential type. The corresponding stability (necessary for the analysis of time systems) is often a significant matter. Recently, problems of exponential stability for differential systems have attracted the attention of many researchers, as it results from the references [START_REF] Gomez | Necessary exponential stability conditions for linear periodic time-delay systems[END_REF][START_REF] Grimmer | Stability properties of Volterra integro-differential equations[END_REF][START_REF] Liao | Global exponential stability for a class of generalized neural networks with distributed delays[END_REF][START_REF] Ngoc | On exponential stability of nonlinear Volterra difference equations in phase spaces[END_REF][START_REF] Van Neerven | Exponential stability of operators and operator semigroups[END_REF]. It is noteworthy that the results in all aforementioned works concern only the stability of solutions of differential equations. Nevertheless, many problems arising in engineering, operational research, economical dynamics, and physical sciences are described by systems of partial differential equations and/or by DVIs or DHVIs in infinite-dimensional spaces. For such problems, there are very few results concerning the stability of solutions, despite the fact that the need of such kind of results is widely recognized in the literature. To fill this gap, in this paper, we study the exponential stability problem for a class of DHVIs in reflexive Banach spaces. To introduce the problem, we need some notations that we present in what follows.

Everywhere in this work E will be a Banach space and U will be a reflexive Banach space, endowed with the norms • E and • U ,respectively.WedenotebyU * the strong topological dual of U and by

•, • the duality paring mapping between U * and U.Moreover,L(U, E) represents the space of linear continuous operators from U to E.Th eno rmo nth es paceL(U, E) will be denoted by • L(U,E) . We abbreviate this notation when U = E,i.e.wewriteL(E) instead of L(E, E) and

• L(E) instead of • L(E,E)
. Finally, 0 U represents the zero element of U.

Below, I denotes either a bounded interval of the form [0, b]withb > 0 or the unbounded interval R + = [0, +∞).NotationsC(I; E) and C(I; U) willrepresentthespaceofcontinuousfunctionsonI with values in E and U,respectively .InthecaseI = [0, b], these spaces are Banach spaces endowed with the canonical norm. In the case I = R + , they can be organized in a canonical way as a Fréchet space, i.e. a complete metric space in which the corresponding topology is induced by a countable familyofseminorms.Intherestofthemanuscript,weshallusethestandardnotationfortheLebesque and Sobolev spaces.

Let A : D(A) ⊆ E → E be the infinitesimal generator of a C 0 -semigroup {T(t)} (t≥0) on E and let f :

I × E → E, g : I × E → L(U, E).ConsideralsothesetK ⊂ E, the operators B : U → U * , h : I × E → U * and the functions ϕ : U × U → R, J : U → R.
We assume that J is locally Lipschitz and we denote by J 0 its generalized (Clarke) directional derivative. With these data, we consider the following problem.

(DHVI). Find x : I → Eandu: I → Us uc ht h a t

x

′ (t) = Ax(t) + f (t, x(t)) + g(t, x(t))u(t) for t ∈ I, ( 1 ) 
u(t) ∈ SOL(K; B, h(t, x(t)), ϕ, J) for t ∈ I, ( 2 ) 
x(0) = x 0 .( 3 
)
Here SOL(K; B, h(x(t), •), ϕ, J) standsforthesetofsolutionofthehemivariationalinequality

u(t) ∈ K, Bu(t) -h(t, x(t)), v -u(t) +ϕ(u(t), v) -ϕ(u(t), u(t)) + J 0 (u(t); v -u(t)) ≥ 0f o r a l l v ∈ K (4) 
and, therefore, inclusion (2) stands that u satisfies inequality (4) for t ∈ I.Withthisremark,wenote that (DHVI) represents a system which couples the differential equation ( 1) with the hemivariational inequalities (4), associated to the initial condition (3). Therefore, following the terminology in [START_REF] Liu | Partial differential variational inequalities involving nonlocal boundary conditions in Banach spaces[END_REF][START_REF] Liu | Evolutionary problems driven by variational inequalities[END_REF][START_REF] Nguyen | On the differential variational inequalities of parabolic elliptic type[END_REF], we refer to (DHVI) as a differential hemivariational inequality. The solution of (DHVI) is understood in the following sense.

Definition 1.1: Ap a i ro ff u n c t i o n s(x, u),w i t hx ∈ C(I; E) and u ∈ C(I; U),i ss a i dt ob eam i l d solution of ( 1)-(3) if

x(t) = T(t)x 0 + t 0 T(t -s)[f (s, x(s)) + g(s, x(s))u(s)]ds for all t ∈ I,( 5 
)
where u(t) ∈ SOL(K; B, h(t, x(t)), ϕ, J) for all t ∈ I.If(x, u) is a mild solution of ( 1)-( 3), then x(t) is called the mild trajectory and u(t) is called the variational control trajectory.

We complete this definition with the following one.

Definition 1.2: Amildsolution(x, u) of ( 1)-( 3) is called globally exponentially stable if there exists two constants L > 0andω>0 such that

x(t) E ≤ Le -ωt for all t ∈ I.( 6 
)
The rest of the manuscript is structured as follows. In Section 2, we recall some basic definitions and results needed throughout this paper. In Section 3, we state and prove the existence of a uniquenesssolutionfor(DHVI).Thefirsttraitofnoveltyofourworkconsistsinthefactthat,incontrast with [START_REF] Liu | Partial differential variational inequalities involving nonlocal boundary conditions in Banach spaces[END_REF][START_REF] Liu | Evolutionary problems driven by variational inequalities[END_REF][START_REF] Nguyen | On the differential variational inequalities of parabolic elliptic type[END_REF] (where the unique solvability of the DHVIs is obtained by converting the system into a differentialinclusion),ourproofisbasedonafixed-pointargumentusedin [START_REF] Liu | Differential quasivariational inequalities in contact mechanics[END_REF]. Next, in Section 4, we prove the exponential stability of the solution for the DHVI. The proof is based on arguments of semigroups of linear continuous operators. Finally, in Section 5, we consider a one-dimensional model of contact which lead to a differential hemivariational inequality of the form (1.1)- (1.3). Under appropriate assumptions on the data, we prove the unique solvability of the model as well as a stability result.TheproofsarebasedonourabstractresultsinSections3 and 4.

Preliminaries

In this section, we review some prerequisites that are necessary in the rest of the manuscript.

A function φ : U → R is (sequentially) lower semicontinuous (l.s.c., for short) if x n → x in U,as n →+∞implies φ(x) ≤ lim inf n→+∞ φ(x n ).LetJ : U → R be a locally Lipschitz function. Following Clarke [START_REF] Clarke | Optimization and nonsmooth analysis[END_REF], the generalized directional derivative of J at x ∈ U in the direction v ∈ U is defined by

J 0 (x; v) := lim sup λ→0 + ,ξ →x J(ξ + λv) -J(ξ ) λ .
The generalized gradient of J : U → R at x ∈ U is the subset of U * given by

∂J(x) :={ξ ∈ U * : J 0 (x; v) ≥ ξ , v ∀v ∈ U }.
The statement below collects some basic properties of the generalized directional derivative and gradient. (i) For all v ∈ U, one has J 0 (x; v) = max{ ξ , v : ξ ∈ ∂J(x)}.

(ii) For every x ∈ U, ∂J(x) is a nonempty, convex, weakly * compact subset of U * and ξ U * ≤ L x for any ξ ∈ ∂J(x), where L x > 0 is the Lipschitz constant of J near x. (iii) For every x ∈ U, the function U ∋ v → J 0 (x; v) ∈ R is positively homogeneous and subadditive, i.e. J 0 (x; λv) = λJ 0 (x; v) for all λ ≥ 0, v ∈ Ua n dJ 0 (x; v 1 + v 2 ) ≤ J 0 (x; v 1 ) + J 0 (x; v 2 ) for all v 1 , v 2 ∈ U, respectively.

Next, we proceed with the definition of some classes of operators. 

-v ≥ Bu, u -v for all v ∈ U.
In the sequel, we denote by C(I; E) × C(I; U) the Cartesian product of the spaces C(I; E) and C(I; U).AtypicalelementofC(I; E) × C(I; U) will be denoted by (x, u) or (x, η).Consideralsotwo subsets P ⊂ C(I; E) × C(I; U) and Q ⊂ C(I; E) × C(I; U) defined by the equivalences below:

(x, u) ∈ P ⇐⇒ (x, u) satisfies (5) for all t ∈ I,( 7 )

(x, u) ∈ Q ⇐⇒ (x, u) satisfies (4) for all t ∈ I.( 8 )
It is clear that the problem (1)-(3) has at least a mild solution iff P ∩ Q =∅and, moreover, it has a unique solution iff P ∩ Q ⊂ C(I; E) × C(I; U) reduces to a single element, i.e. is a singleton. For this reason, our aim in what follows is to provide sufficient conditions such that P ∩ Q is a singleton. To this end, we suppose that the following conditions hold.

For each η ∈ C(I; U) thereexistsauniquex ∈ C(I; E) such that (x, η) ∈ P.( 9 ) For each x ∈ C(I; E) thereexistsauniqueη ∈ C(I; U) such that (x, η) ∈ Q. ( 10 
)
We now define the operators : C(I; U) → C(I; E), : C(I; E) → C(I; U) and : C(I; U) → C(I; U) by equalities

x = η ⇐⇒ (x, η) ∈ P. ( 11 
) η = x ⇐⇒ (x, η) ∈ Q. ( 12 
) η = η for all η ∈ C(I; U). (13) 
We note that assumptions ( 9) and [START_REF] Gwinner | On differential variational inequalities and projected dynamical systems equivalence and a stability result[END_REF] guarantee that these operators are well-defined. Assume that the operator hasauniquefixedpoint,i.e.

thereexistsauniqueelementη * ∈ C(I; U) such that η * = η * . ( 14 
)
Let x * = η * ,i.e.x * satisfies the integral equation ( 5) with u = η * ,andletu * = x * ,i.e.u * is the solution of the the hemivatiational inequality (4) with x = x * . Then it is easy to see that the pair (x * , u * ) has the regularity C(I; E) × C(I; U) and, moreover, it is a mild solution of the system (1)-( 3).

In addition, the uniqueness of the fixed point of guarantees that the mild solution is unique.

We collect the properties above to deduce the following fixed point principle.

Theorem 2.3: Assume that (9), ( 10) and ( 14) hold. Then the DHVI (1)-( 3) has a unique mild solution with regularity C(I; E) × C(I; U).

Theorem 2.3 represent a particular case of [START_REF] Sofonea | Variational-hemivariational inequalities with applications[END_REF]Theorem 2], already used in a slightly different form in [START_REF] Liu | Differential quasivariational inequalities in contact mechanics[END_REF]. This theorem will play a central role in the study of the existence and uniqueness of solution for (DHVI) as it results from the next section.

An existence and uniqueness result

In this section, we state and prove the existence of a unique mild solution for the differential hemivariational inequality (DHVI). To this end, we consider the following assumptions on the data.

H(A) 1 The operator

A : D(A) ⊂ E → E is the infinitesimal generator of a C 0 -semigroup {T(t)} (t≥0) ⊂ L(E). H(f ) 1 f : I × E → E is such that (1) t → f (t, x) : I → E is measurable for all x ∈ E; (2) thereisaconstantL f > 0 such that f (t, x) -f (t, y) E ≤ L f x -y E for a.e. t ∈ I,a l lx, y ∈ E; (3) thereexistsafunctiona ∈ L 1 (I; R + ) such that f (t,0 E ) E ≤ a(t) for a.e. t ∈ I. H(g) 1 g : I × E → L(U, E) is such that (1) t → g(t, x) : I → L(U, E) is continuous for all x ∈ E; (2) thereisaconstantL g > 0 such that g(t, x) -g(t, y) L(U,E) ≤ L g x -y E for a.e. t ∈ I,a l lx, y ∈ E;
(3) thereexistsacontinuousfunctiond :

I → R + such that g(t,0 E ) L(U,E) ≤ d(t) for all t ∈ I. H(K) K is a closed convex subset of U such that 0 U ∈ K. H(B) B : U → U * is such that (1) it is pseudomonotone;
(2) is strongly monotone, i.e. there exists m B > 0 such that

Bv 1 -Bv 2 , v 1 -v 2 ≥m B v 1 -v 2 2 U for all v 1 , v 2 ∈ U. H(ϕ) The functional ϕ : U × U → R is such that (1) ϕ(η, •) : U → R is convex and lower semicontinuous for all η ∈ U; (2) ϕ(u, λv) = λϕ(u, v) for all u, v ∈ U, λ>0; (3) ϕ(v, v) ≥ 0forallv ∈ U; (4) there exists α ϕ > 0suchthat ϕ(η 1 , v 2 ) -ϕ(η 1 , v 1 ) + ϕ(η 2 , v 1 ) -ϕ(η 2 , v 2 ) ≤ α ϕ η 1 -η 2 U v 1 -v 2 U for all η 1 , η 2 , v 1 , v 2 ∈ U. H(J) The locally Lipschitz functional J : U → R is such that (1) there exist κ 0 , κ 1 ≥ 0suchthat ∂J(v) U * ≤ κ 0 + κ 1 v U for all v ∈ U;
(2) there exists α J > 0 such that

J 0 (v 1 ; v 2 -v 1 ) + J 0 (v 2 ; v 1 -v 2 ) ≤ α J v 1 -v 2 2 U for all v 1 , v 2 ∈ U. H(h) h : I × E → U * is such that (1) h(•, x) : I → U * is continuous for all x ∈ E;
(2) thereisaconstantL h > 0suchthat h(t, x) -h(t, y) U * ≤ L h xy E for all t ∈ I, x, y ∈ E;

(3) thereexistsaconstantℓ>0 such that h(t, x) U * ≤ ℓ for all t ∈ I, x ∈ E.

H(0) x 0 ∈ E.
To provide our main result in this section, we recall two preliminary lemmas which will be useful to guarantee the validity of assumptions ( 9) and [START_REF] Gwinner | On differential variational inequalities and projected dynamical systems equivalence and a stability result[END_REF]. Lemma 3.1: Let E be a Banach space, assume that A : D(A) ⊂ E → E satisfies condition H(A) 1 and, moreover, assume that 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ f : I × E → E is such that (a) the mapping t → f (t, x) : I → E is measurable, for all x ∈ E; (b) for any compact set ⊂ I there exists L > 0suchthat f (t, x 1 ) -f (t, x 2 ) E ≤ L x 1 -x 2 E for all x 1 , x 2 ∈ E, t ∈ .
ẋ(t) = Ax(t) + f (t, x(t)) for all t ∈ I, (17) 
x(0) = x 0 . ( 18 
)
Its proof can be found in [25, Theorem 6.1.2], for instance.

Lemma 3.2:

Let U be a reflexive Banach space, assume that H(K),H (B),H (ϕ)(1), ( 4) and H(J) are satisfied and, moreover, assume that

α ϕ + α J < m B . ( 19 
)
Then, for each z ∈ U * there exists a unique element u such that

u ∈ K, Bu, v -u +ϕ(u, v) -ϕ(u, u) + J 0 (u; v -u) ≥ z, v -u for all v ∈ K. ( 20 
)
The proof of Lemma 3.2 is based on a surjectivity result for pseudomonotone operators combined with the properties of the subdifferential and the Banach fixed point theorem. It can be found in [START_REF] Migórski | A class of variational-hemivariational inequalities in reflexive Banach spaces[END_REF] or in [START_REF] Sofonea | Variational-hemivariational inequalities with applications[END_REF]Theorem 84].

Next, we proceed with the following result.

Lemma 3.3: LetUbeareflexiveBanachspaceandassumethatH(K),H (B),H (ϕ)(1), ( 4),H (J),H (h) and (19) hold. Then, for each x ∈ C(I; E), there exists a unique function u ∈ C(I; U) such that

u(t) ∈ K, Bu(t), v -u(t) +ϕ(u(t), v) -ϕ(u(t), u(t)) + J 0 (u(t); v -u(t)) ≥ h(t, x(t)), v -u(t) for all v ∈ K, t ∈ I. (21) 
Moreover, if u 1 , u 2 ∈ C(I; U) represent the solution of the inequality (21) for the functions x 1 , x 2 ∈ C(I; E), respectively, then the following inequality holds:

u 1 (t) -u 2 (t) U ≤ L h m B -α ϕ -α J x 1 (t) -x 2 (t) E for all t ∈ I. (22) 
In addition, if H(ϕ)(2), (3) are also satisfied, then the solution satisfies the bound

u(t) U ≤ 1 m B -α J ( B0 U U * + ℓ + κ 0 ) for all t ∈ I. (23) 
Proof: Let x ∈ C(I; E) be given and let t ∈ R + be fixed. It follows from Lemma 3.2 that there exists a unique element u(t) which solves ( 21) at the given moment t.

We now show that the function t → u(t) : I → U is continuous. To this end, consider t 1 , t 2 ∈ I and, for the sake of simplicity in writing, denote x(t i ) = x i , u(t i ) = u i for i = 1,2. Using ( 21) we obtain

u 1 ∈ K, Bu 1 , v -u 1 +ϕ(u 1 , v) -ϕ(u 1 , u 1 ) + J 0 (u 1 , v -u 1 ) ≥ h(t 1 , x 1 ), v -u 1 for all v ∈ K, (24) 
u 2 ∈ K, Bu 2 , v -u 2 +ϕ(u 2 , v) -ϕ(u 2 , u 2 ) + J 0 (u 2 , v -u 2 ) ≥ h(t 2 , x 2 ), v -u 2 for all v ∈ K. ( 25 
)
We t a ke v = u 2 in (24) and v = u 1 in (25), then we add the resulting inequalities to obtain that

Bu 1 -Bu 2 , u 1 -u 2 ≤ϕ(u 1 , u 2 ) -ϕ(u 1 , u 1 ) + ϕ(u 2 , u 1 ) -ϕ(u 2 , u 2 ) + J 0 (u 1 ; u 2 -u 1 ) + J 0 (u 2 ; u 1 -u 2 ) + h(t 1 , x 1 ) -h(t 2 , x 2 ), u 1 -u 2 . ( 26 
)
We now wr ite

h(t 1 , x 1 ) -h(t 2 , x 2 ), u 1 -u 2 = h(t 1 , x 1 ) -h(t 1 , x 2 ), u 1 -u 2 ) + h(t 1 , x 2 ) -h(t 2 , x 2 ), u 1 -u 2 ,
then we use assumption H(h) to see that

h(t 1 , x 1 ) -h(t 2 , x 2 ), u 1 -u 2 ≤ L h x 1 -x 2 E u 1 -u 2 U + h(t 1 , x 2 ) -h(t 2 , x 2 ) U * u 1 -u 2 U . ( 27 
)
Next, inequalities [START_REF] Migórski | A class of variational-hemivariational inequalities in reflexive Banach spaces[END_REF], [START_REF] Sofonea | History-dependent quasivariational inequalities arising in contact mechanics[END_REF] and assumptions H(B)(2),H (ϕ)(4) and H(J)(2) yield

(m B -α ϕ -α J ) u 1 -u 2 U ≤ L h x 1 -x 2 E + h(t 1 , x 2 ) -h(t 2 , x 2 ) U * . ( 28 
)
Inequality [START_REF] Sofonea | Mathematical models in contact mechanics[END_REF] combined with the assumptions H(h)(1) and ( 19) implies that t → u(t) : I → U is a continuous function. This concludes the existence part of the lemma. The uniqueness part is a direct consequence of the uniqueness of the solution u(t) of the hemivariational inequality [START_REF] Clarke | Optimization and nonsmooth analysis[END_REF], at each t ∈ I, guaranteed by Lemma 3.3. Next, we check that the inequality ( 22) hold. To this end, suppose that x 1 , x 2 ∈ C(I; E) and let t ∈ I be given. Using arguments similar to those used in the proof of inequality [START_REF] Sofonea | Mathematical models in contact mechanics[END_REF] we deduce that

(m B -α ϕ -α J ) u 1 (t) -u 2 (t) U ≤ L h x 1 (t) -x 2 (t) E
which implies [START_REF] Sofonea | Optimal control of variational-hemivariational inequalities in reflexive Banach spaces[END_REF].

Finally, we check that the solution satisfies the bound [START_REF] Migórski | Nonlinear inclusions and hemivariational inequalities. Models and analysis of contact problems[END_REF]. To prove this, let t ∈ I be fixed and take v = 0 U ∈ K in [START_REF] Clarke | Optimization and nonsmooth analysis[END_REF]. It follows from assumptions H(ϕ)(2), (3) that Bu(t), u(t) ≤J 0 (u(t); -u(t)) + h(t, x(t)), u(t) . Now, we write Bu(t) = Bu(t) -B0 U + B0 U . Then, using condition H(B) [START_REF] Pang | Differential variational inequalities[END_REF] and hypothesis H(h)(3), we deduce that

m B u(t) 2 U ≤ ( B0 U U * + ℓ) u(t) U + J 0 (u(t); -u(t)). (29) 
On the other hand, taking v 1 = u(t) and v 2 = 0 U in H(J)(2),wehave

J 0 (u(t); -u(t)) ≤ α J u(t) 2 U -J 0 (0 U ; u(t)). (30) 
Moreover, it follows from Lemma 2.1(i) that

-J 0 (0 U ; u(t)) ≤|J 0 (0 U ; u(t))|≤ max ξ ∈∂J(0) ξ , u(t) ≤ max ξ ∈∂J(0 U ) | ξ , u(t) | ≤ max ξ ∈∂J(0 U ) ξ U * u(t) U .
and, using condition H(J)(1) with v = 0 U yields

-J 0 (0 U ; u(t)) ≤ κ 0 u(t) U . (31) 
Now, we combine inequalities [START_REF] Shillor | Models of debonding caused by vibrations, heat and humidity[END_REF] and (31) to see that

J 0 (u(t); -u(t)) ≤ α J u(t) 2 U + κ 0 u(t) U . ( 32 
)
Finally, we substitute (32) in [START_REF] Sofoneam | Afixedpointresultwithapplicationsinthestudyofviscoplasticfrictionless contact problems[END_REF] to deduce that

(m B -α J ) u(t) U ≤ B0 U U * + ℓ + κ 0 .
This shows that inequality [START_REF] Migórski | Nonlinear inclusions and hemivariational inequalities. Models and analysis of contact problems[END_REF] holds, which completes the proof of the lemma.

We proceed with the following existence and uniqueness result.

Lemma 3.4:

Let E be a Banach space and assume that H(A) 1 ,H (f ) 1 ,H (g) 1 and H(0) hold. Then, for each η ∈ C(I; U), there exists a unique function x ∈ C(I; E) such that

x(t) = T(t)x 0 + t 0 T(t -s)[f (s, x(s)) + g(s, x(s))η(s)]ds. ( 33 
)
Assume now that x 1 , x 2 ∈ C(I; E) represent the solution of problem (33) corresponding to the functions η 1 , η 2 ∈ C(I; U), respectively. Moreover, assume that there exists ̺>0 such that

η 1 (t) U ≤ ̺, η 2 (t) U ≤ ̺ for all t ∈ I. (34) 
Then, for each compact set ⊂ I, there exists a constant M > 0 such that

x 1 (t) -x 2 (t) E ≤ M t 0 η 1 (s) -η 2 (s) U ds for all t ∈ . ( 35 
)
Proof: First, let η ∈ C(I; U) be given and consider the function f :

I × E → E defined by f (t, x) = f (t, x) + g(t, x)η(t) for all t ∈ I, x ∈ E.
We use assumptions H(f ) 1 and H(g) 1 ,toseethat f satisfies condition [START_REF] Gomez | Necessary exponential stability conditions for linear periodic time-delay systems[END_REF]. Therefore, the existence and uniqueness part of Lemma 3.4 is a direct consequence of Lemma 3.1. Now, suppose that η ∈ C(I; U) is such that

η(t) U ≤ ̺ for all t ∈ I (36) 
where ̺>0isgiven.Consideracompactset ⊂ I,denote

T := sup s∈ T(s) L(E) (37) 
and let t ∈ . We use (33), assumptions H(f ) 1 and H(g) 1 , inequality (36) and notation (37) to obtain the following inequalities:

x(t) E ≤ T(t) L(E) x 0 E + t 0 T(t -s) L(E) f (s, x(s)) E + g(s, x(s))η(s) E ds ≤ T x 0 E + T t 0 f (s, x(s)) -f (s,0 E ) E + f (s,0 E ) E + ( g(s, x(s)) -g(s,0 E ) L(U,E) + g(s,0 E ) L(U,E) ) η(s) U ds ≤ T x 0 E + T t 0 L f x(s) E + a(s) + [L g x(s) E + d(s)]̺ ds. Denote ρ := T x 0 E + T a L 1 ( ,R + ) + d L 1 ( ,R + ) ̺ . ( 38 
)
Then, it follows from the above that

x(t) E ≤ ρ + T (L f + L g ̺) t 0 x(s) E ds.
Then by the Gronwall inequality, we obtain that

x(t) E ≤ ρ e T (L f +L g ̺)t for all t ∈ . ( 39 
)
We shall use the bound (39) in the proof of inequality (35). Next, assume that η 1 , η 2 ∈ C(I; U) are two functions which satisfy condition [START_REF] Van Neerven | Exponential stability of operators and operator semigroups[END_REF] and denote by x 1 , x 2 ∈ C(I; E) the solution of problem (33) corresponding to η 1 , η 2 ∈ C(I; U),respectively.Lett ∈ . Using (33) we have

x i (t) = T(t)x 0 + t 0 T(t -s)[f (s, x i (s)) + g(s, x i (s))η i (s)]ds for all i = 1, 2.
This implies that

x 1 (t) -x 2 (t) = t 0 T(t -s) f (s, x 1 (s)) -f (s, x 2 (s)) + g(s, x 1 (s))η 1 (s) -g(s, x 2 (s))η 2 (s) ds
and, therefore, using (37) we deduce that

x 1 (t) -x 2 (t) E ≤ T t 0 f (s, x 1 (s)) -f (s, x 2 (s)) E + g(s, x 1 (s))η 1 (s) -g(s, x 2 (s))η 2 (s) E ds (40) We now use assumptions H(f ) 1 to see that f (s, x 1 (s)) -f (s, x 2 (s)) E ≤ L f x 1 (s) -x 2 (s) E for all s ∈ [0, t]. (41) 
On the other hand, assumptions H(g) 1 and (34) yield

g(s, x 1 (s))η 1 (s) -g(s, x 2 (s))η 2 (s) E ≤ g(s, x 1 (s))η 1 (s) -g(s, x 2 (s))η 1 (s) E + g(s, x 2 (s))η 1 (s) -g(s, x 2 (s))η 2 (s) E ≤ g(s, x 1 (s)) -g(s, x 2 (s)) L(U,E) η 1 (s) U + g(s, x 2 (s)) L(U,E) η 1 (s) -η 2 (s) U ≤ L g ̺ x 1 (s) -x 2 (s) E + g(s, x 2 (s)) -g(s,0 E ) L(U,E) + g(s,0 E ) L(U,E) η 1 (s) -η 2 (s) U ≤ L g ̺ x 1 (s) -x 2 (s) E + L g x 2 (s) E + d(s) η 1 (s) -η 2 (s) U
and, using (39) we deduce that

g(s, x 1 (s))η 1 (s) -g(s, x 2 (s))η 2 (s) E ≤ L g ̺ x 1 (s) -x 2 (s) E + L g ρ e T (L f +L g ̺)s + d(s) η 1 (s) -η 2 (s) U for all s ∈ [0, t]. (42) 
We now substitute inequalities (41) and ( 42) in (40) to find that

x 1 (t) -x 2 (t) E ≤ T (L f + L g ̺) t 0 x 1 (s) -x 2 (s) E ds + T sup s∈ d(s) + L g ρ e T (L f +L g ̺)t t 0 η 1 (s) -η 2 (s) U ds. (43) 
Let

L := sup s∈ s, Q := sup s∈ d(s), (44) 
M = T (Q + L g ρ e T (L f +L g ̺)L )e T (L f +L g ̺)L (45) 
We now use the Gronwall argument in inequality (43) and notations (44), (45) to see that (35) holds.

W enowrecallwiththefollowingfixed-pointresult.

Lemma 3.5:

Let U be a Banach space and S : C(I; U) → C(I; U) be an operator with the following property: for any compact set ⊂ IthereexistsM > 0 such that

Su 1 (t) -Su 2 (t) U ≤ M t 0 u 1 (s) -u 2 (s) U ds for all u 1 , u 2 ∈ C(I; U), t ∈ . ( 46 
)
Then, S hasauniquefixedpoint,i.e.thereexistsauniqueelementη * ∈ C(I; U) such that Sη * = η * .

Note that here and below, when no confusion arises, we use the shorthand notation Su(t) to represent the value of the function Su at the point t,i.e.Su(t) = (Su)(t). An operator which satisfies condition ( 46) is called a history-dependent operator. This terminology was introduced in [START_REF] Sofonea | History-dependent quasivariational inequalities arising in contact mechanics[END_REF]and since it was used in many papers, see [START_REF] Migórski | Nonlinear inclusions and hemivariational inequalities. Models and analysis of contact problems[END_REF][START_REF] Sofonea | Variational-hemivariational inequalities with applications[END_REF][START_REF] Sofonea | Mathematical models in contact mechanics[END_REF] and the references therein. Lemma 3.5 was proved in [START_REF] Sofoneam | Afixedpointresultwithapplicationsinthestudyofviscoplasticfrictionless contact problems[END_REF].Itsproofcanalsobefoundin[24, Ch.2], together with various properties of history-dependent operators.

We now are in the position to present our existence and uniqueness result for the solution of the DHVI ( 1)-(3).

Theorem 3.6:

Assume that E is a Banach space, U is a reflexive Banach space and, moreover, assume that H(A) 1 ,H (f ) 1 ,H (g) 1 ,H (K),H (B),H (ϕ),H (J),H (h),H (0) and ( 19) hold. Then the DHVI (1)-( 3)hasauniquemildsolution(x, u) ∈ C(I; E) × C(I; U).

Proof:

We use Theorem 2.3. First, it follows from Lemma 3.4 that condition (9) holds. Next, Lemma 3.3 guarantees that condition (10) holds, too.

We now prove that the operator defined by ( 14) is a history-dependent operator. To this end we note that, a carefully analysis of the definitions ( 11)-( 13) reveals that the operator : C(I; U) → C(I; U) is defined by equality η = u x η for all η ∈ C(I; U).

(47)

Here, for each η ∈ C(I; U), x η ∈ C(I; E) represents the solution of the integral Equation ( 33), guaranteed by Lemma 3.4, and u x η , represents the solution of the hemivariational inequality ( 21) for x = x η , guaranteed by Lemma 3.3. Let η 1 , η 2 ∈ C(I; U) and, for simplicity, denote

x η 1 = x 1 , x η 2 = x 2 , u x η 1 = u 1 , u x η 2 = u 2 .
Then,it follows from (47) that

η 1 = u 1 , η 2 = u 2 . ( 48 
)
Moreover, inequalities ( 22) and ( 23) imply that

u 1 (t) -u 2 (t) U ≤ L h m B -α ϕ -α J x 1 (t) -x 2 (t) E for all t ∈ I. (49) u 1 (t) U ≤ ̺, u 2 (t) U ≤ ̺ for all t ∈ I (50)
where, here and below,

̺ := (1/(m B -α J ))( B0 U U * + ℓ + κ 0 ).
Let be a compact subset of I. Then, inequalities (50) allows us to use Lemma 3.4 in order to obtain that

x 1 (t) -x 2 (t) E ≤ M t 0 η 1 (s) -η 2 (s) U ds for all t ∈ . ( 51 
)
We now combine definition (48) with inequalities (49), (51) to see that

η 1 (t) -η 2 (t) U ≤ L h M m B -α ϕ -α J t 0 η 1 (s) -η 2 (s) U ds for all t ∈ .
This inequality shows that is a history-dependent operator and, therefore, using Lemma 3.5 we deduce that it has a unique fixed point.

It follows from above that conditions ( 9), ( 10), ( 14) in Section 2 are verified. Therefore, we are in a position to use Theorem 2.3 in order to conclude the proof.

Exponential stability of (DHVIs)

In this section, we analyze the exponential stability of the (DHVI). To this end, we need to reinforce part of the assumption in Theorem 3.6. More precisely, we consider the following assumptions. H(A) 2 A : D(A) ⊂ E → E satisfies condition H(A 1 ) and, moreover, there are two positive numbers w, M such that T(t) L(E) ≤ Me -wt for every t ≥ 0.

H(f ) 2 f : I × E → E satisfies condition H(f 1 ) with a(t) = 0forallt ∈ I. H(g) 2 g : I × E → L(U, E) satisfies condition H(g 1 ) with d(t) = 0forallt ∈ I.
Note that condition H(A) 2 show that the semigroup generated by A is exponentially stable. Our second main result concerning the exponential stability of (DHVI) is formulated as follows.

Theorem 4.1: Assume that E is a Banach space, U is a reflexive Banach space, H(A) 2 ,H (f ) 2 ,H (g) 2 , H(K),H (B),H (ϕ),H(J),H (h),H (0) and (19) hold and, moreover, assume that

M[L f (m B -α J ) + L g ( B0 U U * + ℓ + κ 0 )] < w(m B -α J ). (52) 
Thenthemildsolutionof( 1)-( 3) is globally exponentially stable.

Proof: Denote by (x, u) ∈ C(I; E) × C(I; U) the mild solution of problem ( 1)-( 3). Recall that its existence and uniqueness is guaranteed by Theorem 3.6. Moreover, using Definition 1.1 it follows that

x(t) = T(t)x 0 + t 0 T(t -s)[f (s, x(s)) + g(s, x(s))u(s)]ds for all t ∈ I, (53) 
and, in addition, Lemma 3.3 yields

u(t) U ≤ 1 m B -α J ( B0 U U * + ℓ + κ 0 ) for all t ∈ I. (54) 
Let t ∈ I. We now use (53), assumptions H(A) 2 ,H(f ) 2 and H(g) 2 andthebound(54)toderivethe estimate

x(t) E ≤ T(t) L(E) x 0 E + t 0 T(t -s) L(E) [ f (s, x(s)) E + g(s, x(s))u(s) E ]ds ≤ Me -wt x 0 E + t 0 Me -w(t-s) L f + L g m B -α J ( B0 U U * + ℓ + κ 0 ) x(s) E ds.
This inequality implies that

e wt x(t) E ≤ M x 0 E + M[L f (m B -α J ) + L g ( B0 U U * + ℓ + κ 0 )] (m B -α J ) t 0 e ws x(s) E ds.
and, therefore, the Gronwall inequality yields

e wt x(t) E ≤ M x 0 E e M[L f (m B -α J )+L g ( B0 U U * +ℓ+κ 0 )]/(m B -α J )t , which implies that x(t) E ≤ M x 0 E e M[L f (m B -α J )+L g ( B0 U U * +ℓ+κ 0 )]/(m B -α J )-w t . ( 55 
) Denote L = w -M x 0 E , ω = w - M[L f (m B -α J ) + L g ( B0 U U * + ℓ + κ 0 )] (m B -α J ) (56) 
and note that assumptions H(A) 2 and (52) guarantee that M > 0andω>0, respectively. We combine inequality (55) with notation (56) to conclude that

x(t) E ≤ Le -ωt .
We now use this inequality and Definition 1.2 to conclude the proof.

A one-dimensional example

The abstract results in Sections 3-4 are useful in the study of various initial and boundary value problems. To provide an example, we consider in this section the following one-dimensional problem. Problem P. Find the functions x : I × (0, 1) → R and u :

I × (0, 1) → R such that x ′ (t, z) = δx zz (t, z) -cx(t, z) + f * (t, x(t, z)) + g * (t, x(t, z))u(t, z)) for all t ∈ I,a . e .z ∈ (0, 1), (57) 
x z (t,0) = x(t,1) = 0, for all t ∈ I,

Bu zz (t, z) + h * (t, x(t, z)) = 0, for all t ∈ I, z ∈ (0, 1), ( 59)

u(t,1) ≤ k, -Bu z (t,1) = λ + j(u(t,1)),i f u(t,1)<k -Bu z (t,1) ≥ λ + j(u(t,1)),i f u(t,1) = k , (60) u(t 
,0) = 0, for all t ∈ I, (61) 
x(0, z) = x 0 (z) a.e. z ∈ (0, 1).

H er e ,a ndbelo winthissectio n,thep rimedeno t esthederi va ti v ewi thr es pectt othetimeva ria b le t and the subscripts represent the derivative with respect to the spatial variable z,i . e .x ′ = ∂x/∂t, u z = ∂u/∂z and x zz = ∂ 2 x/∂z 2 . Equations ( 57) and (58) represents the state equation, (59)-( 61) is the control inequality and (62) is the initial condition. Problem P represents the variational formulation of a mathematical model which describes the contact of an elastic rod with an obstacle. A brief description of the physical setting is the following. An elastic rod occupies, in the reference configuration, the interval [0, 1] on the Oz axis. The rod is fixed in z = 0, is acted by body forces of density h * along Oz,a n di t se x t r e m i t yz = 1i si nc o n t a c t with an obstacle made of a rigid body covered by a deformable layer of thickness k > 0. This layer behaves rigid-elastically, i.e. it allows penetration, but only when the magnitude of the stress in the contact point reaches a critical positive value, the yield limit, denoted by λ. In addition, the reaction of this layer depends on the penetration, this dependence being described by a given continuous function j. The contact process is time-dependent, the time interval of interest is I and can be bounded or unbounded. The material's behaviour is described with the elasticity operator B, assumed to be nonlinear.

Details concerning the previous contact model ( 59)-(61), including the passage from the classical formulation of the problem can be found in [START_REF] Sofonea | Optimal control of variational-hemivariational inequalities in reflexive Banach spaces[END_REF]and,therefore,weskipthem.Neverthelesswenote that, in contrast with the model presented in [START_REF] Sofonea | Optimal control of variational-hemivariational inequalities in reflexive Banach spaces[END_REF], in this current paper we assume that the force h * depends on an additional variable x, which satisfies a diffusion equation of the form (57) and (58), associated to the initial condition (62). Here δ>0 is the diffusion coefficient, the parameter c > 0 is used to regulate the convergence speed, f * and g * are arbitrary external forcing functions, and x 0 represents the initial data. From physical point of view x could be interpreted as being the temperature field, the adhesion field the a moisture field. For more details we refer the reader to [START_REF] Shillor | Models of debonding caused by vibrations, heat and humidity[END_REF], where models of contact governed by a parameter x which satisfies a diffusion equation have been considered.

We now turn to the analysis of Problem P. To this end, we define the operator A : D(A) ⊂ L 2 (0, 1) → L 2 (0, 1) as follows

(Ax)(z) = δx zz (z) -cx(z), D(A) ={x ∈ H 2 (0, 1) | x z (0) = 0, x z (1) = 0}. ( 63 
)
It is well know from [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]thatA satisfies assumption H(A) 1 on the space E = L 2 (0, 1).Moreover,the semigroup T(t) = e tA generated by A is exponential stable, that is,

T(t) L(L 2 (0,1)
) ≤ e -(c+δπ 2 /4)t for all t ∈ I.

This shows that assumption H(A) 2 holds, too. Next, we define the space U by equality

U ={v ∈ H 1 (0, 1) | v(0) = 0}, (65) 
which is a real Hilbert space endowed with the inner product

(u, v) U = 1 0 u x v x dx for all u, v ∈ U
and the associated norm • U . Recall that the completeness of the space (U, • U ) follows from the Friedrichs-Poincaré inequality. Moreover, from the Sobolev trace theorem, it follows that

|v(1)|≤ v U for all v ∈ U. (66) 
We denote by U * and •, • the dual of U and the duality pairing between U * and U,respectively. We now consider the following assumptions on the data.

H(f * ) f * : I × R → R is such that (1) there exists L f * > 0suchthat |f * (t 1 , ϑ 1 ) -f * (t 2 , ϑ 2 )|≤L f * |t 1 -t 2 |+|ϑ 1 -ϑ 2 | for all t 1 , t 2 ∈ I, ϑ 1 , ϑ 2 ∈ R; (2) f * (t,0) = 0forallt ∈ I. H(g * ) g * : I × R → R is such that (1) there exists L g * > 0suchthat |g * (t 1 , ϑ 1 ) -g * (t 2 , ϑ 2 )|≤L g * |t 1 -t 2 |+|ϑ 1 -ϑ 2 | for all t 1 , t 2 ∈ I, ϑ 1 , ϑ 2 ∈ R; (2) g * (t,0) = 0forallt ∈ I. H(B) B : (0, 1) × R → R is such that (1) there exists L B > 0 such that |B(z, ϑ 1 ) -B(z, ϑ 2 )|≤L B |ϑ 1 -ϑ 2 | for all ϑ 1 , ϑ 2 ∈ R,a . e .z ∈ (0, 1); 
(2) there exists m B > 0suchthat

(B(z, ϑ 1 ) -B(z, ϑ 2 ))(ϑ 1 -ϑ 2 ) ≥ m B |ϑ 1 -ϑ 2 | 2 for all ϑ 1 , ϑ 2 ∈ R,a . e .z ∈ (0, 1); 
(3) the map z → B(z, ϑ) is measurable on (0, 1),foreachϑ ∈ R;

(4) B(z,0) = 0foreachz ∈ (0, 1). H(j) The functional j : R → R is such that (1) j is continuous;

(2) there are κ 0 , κ 1 ≥ 0 such that |j(θ )|≤κ 0 + κ 1 |θ | for all θ ∈ R;

(3) there exists α j > 0 such that θ → α j θ + j(θ ) is nondecreasing;

(4) j(θ ) ≥ 0ifθ>0andj(θ ) = 0ifθ ≤ 0. H(h * ) h * : I × R → R is such that (1) there exists L h * > 0 such that |h * (t 1 , ϑ 1 ) -h * (t 2 , ϑ 2 )|≤L g * |t 1 -t 2 |+|ϑ 1 -ϑ 2 | for all t 1 , t 2 ∈ I, ϑ 1 , ϑ 2 ∈ R;
(2) thereexistsaconstantℓ>0 such that

h(t, ϑ) L 2 (0,1) ≤ ℓ for a.e. t ∈ I, ϑ ∈ R. H(0) x 0 (z) ∈ L 2 (0, 1).
Note that condition H(j)( 4) is imposed from mechanical reasons. It shows that when there is a contact between the rod and the obstacle then the reaction of the foundation is toward rod and when there is separation, it vanishes.

Next, define the set K, the operator B : U → U * and the functions ϕ :

U × U → R, q : R → R, J : U → R, f : I × E → E, g : I × E → L(E, U), h : I × U → U * by equalities K ={u ∈ U | u(1) ≤ k}, (67) 
Bu, v = 1 0 Bu z v z dz for all u, v ∈ U, (68) ϕ 
(u, v) = λv(1) for all u, v ∈ U, (69) 
q(r) = r 0 j(s) ds for all r ∈ R, (70) 
J(v) = q(v(1)) for all v ∈ U, (71) 
f (t, x)(z) = f * (t, x(z)) for all t ∈ I, x ∈ E,a . e .z ∈ (0, 1), (72) 
[g(t, x)u](z) = g * (t, x(z))u(z) for all t ∈ I, x ∈ E, u ∈ U,a . e .z ∈ (0, 1), ( 73)

h(t, x), v = 1 0 h * (t, x(z)) v(z) dz,f o r a l l t ∈ I, x ∈ E, v ∈ U. (74) 
In the sequel, to derive the variational-hemivariational formulation of Problem P,weletv ∈ K and perform an integration by parts on Equation (59) with v(0) = u(0) = 0 and the condition (60) to obtain

1 0 Bu z (v z -u z ) dz + λv(1) -λu(1) + j(u(1))(v(1) -u(1)) ≥ 1 0 h * (t, x(t, z))(v -u) dz. ( 75 
)
Recall that the assumptions H(f * )-H(0) above guarantee that these functions and operators are well defined. For instance, we precise that the definition (73) has to be understood in the following sense: for all t ∈ I and x ∈ E, g(t, x) r e p r e s e n t st h eo p e r a t o rw h i c ha s s o c i a t ea te a c hf u n c t i o nu ∈ U the function g(t, x)u : (0, 1) → R defined by [g(t, x)u](z) = g * (t, x(z))u(z) a.e. z ∈ (0, 1).I ti se a s yt o see that this function belongs to E and the operator u → g(t, x)u is linear and continuous, i.e. it belongs to L(U, E). Also, note that the operator B and the function h * are defined by using Riesz's representation theorem. The function q could be nonconvex. Nevertheless, it is a regular function in the sense of Clarke. Moreover, it satisfies the equality q 0 (s; θ) = j(s)θ,f o r a l l s, θ ∈ R,

where q 0 (s; θ) denotes the generalized directional derivative of J at the point s in the direction θ.

On the other hand, using a standard argument (Theorem 3.47 in [START_REF] Migórski | Nonlinear inclusions and hemivariational inequalities. Models and analysis of contact problems[END_REF]orLemma8(vi)in [START_REF] Sofonea | Variational-hemivariational inequalities with applications[END_REF], for instance), we have J 0 (u; v) = q 0 (u(1); v(1)) for all u, v ∈ V,

where J 0 (u; v) denotes the generalized directional derivative of J at the point u in the direction v. With these preliminaries, using notation (67)-(71) and equalities (74)-(77), it is easy to see that inequality (59)-(61) could be written, equivalently, as follows: 

u(t) ∈ K, Bu ( 
u(t) ∈ SOL(K; B, h(t, x(t)), ϕ, J),f o r a l l t ∈ I,

x(0) = x 0 .

(81)

Recall that here SOL(K; B, h(x(t), •), ϕ, J) s t a n d sf o rt h es e to fs o l u t i o no ft h eh e m i v a r i a t i o n a l inequality (78). The existence of a unique solution of the system (79)-( 81) is provided by the following result. Proof: The proof of is based on Theorem 3.6 with the choice E = L 2 (0, 1), U being the space defined by (65). For this reason, we check in what follows the validity of the conditions of the theorem. First, note that as already mentioned, the operator A satisfies condition H(A) 2 .Moreover ,conditions H(f * ) and H(g * ) imply that the functions f and g defined by (72) and (73) satisfy conditions H(f ) 2 and H(g) 2 ,respectively,withL f = L f * and L g = L g * . The proof is based on standard arguments and, therefore we skip it. Next, since k > 0itisclearthatconditionH(K) holds. We now use condition H(B) of the function B to see that the operator B given by (68) satisfies assumption H(B) [START_REF] Pang | Differential variational inequalities[END_REF] with m B = m B .Moreover,B satisfies Bu -Bv U * ≤ L B uv U , ∀ u, v ∈ L 2 (0, 1), i.e. is Lipschitz continuous. We conclude from here that B satisfies assumption H(B)(1),too.

In addition, it is easy to see that the function ϕ defined by (69) satisfies condition H(ϕ) with α ϕ = 0. Moreover, using the standard arguments on subdifferential calculus, we see that the function J defined

Lemma 2 . 1 ([ 21 ,

 2121 Proposition 2.1.2] and [22,P r o po s i t io n5 ] ) : If J : U → R is a locally Lipschitz function, then the following statements hold.

( 15 )

 15 Then, for each x 0 ∈ E, there exists a unique function x ∈ C(I; E) such thatx(t) = T(t)x 0 + t 0 T(ts) f (s, x(s)) ds for all t ∈ I.(16) Lemma 3.1 represents a well-known result in the study of differential equation in Banach spaces. It states the existence of a unique mild solution of the Cauchy problem

Theorem 5 . 1 :

 51 Assume that H(f * ),H (g * ),H (B),H (j),H(h * ) and H(0) hold. Moreover, assume that m B >α j .Then,Problem(79)-(81)hasauniquemildsolution(x, u) ∈ C(I; E) × C(I; U)).

Definition 2.2 ([23, Definition 3.65]): An

  operator B : U → U * is said to be: (a) monotone, if for all u, v ∈ U,wehave Bu -Bv, uv ≥0; (b) bounded, if B maps bounded sets of U into bounded sets of U * ; (c) pseudomonotone, if it is bounded and u n → u weakly in U with lim sup Bu n , u n -u ≤0 imply lim inf Bu n , u n

  t), v -u(t) +ϕ(u(t), v)ϕ(u(t), u(t))+ J 0 (u(t); v -u(t)) ≥ h(t, x(t)), v -u(t) for all v ∈ K,(78)for all t ∈ I. Moreover, in what follows we skip the dependence of the variables on z,i.e.wesimply write x(t) instead of x(t, z) and u(t) instead of u(t, z). Therefore, using the definition (63) of the operator A, we deduce that Problem P ca nbef o rm ula ted,eq uivalen tly ,inaf o rmo fthef ollo win g differential variational-hemivariational inequality.

(DHVI) P . Find x : I → Eandu: I → Us uc ht h a t x ′ (t) = Ax(t) + f (t, x(t)) + g(t, x(t))u(t),a . e . t ∈ I,
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by (71) satisfies the hypothesis H(J). In fact, using (77), ( 76) and (66) we have

Finally, we note that assumption H(h * ) on the function h * guarantees that the function h defined by (74) satisfies condition H(h) and we recall that condition H(0) holds. We also note that inequality m B >α j implies that the smallness condition (19) holds, too.

We are now in a position to apply Theorem 3.6 to conclude the proof. Now, we also proceed with the following globally exponentially stability result.

Theorem 5.2: Assume that H(f * ),H (g * ),H (B),H (j),H (h * ) and H(0) hold. Moreover, assume that m B >α j and, in addition,

Then the mild solution of ( 79)-( 81) is globally exponentially stable.

Proof: Note that (82) combined with inequality (64) and assumption H(B)(4) guarantees that condition (52) holds. Therefore, Theorem 5.2 is a direct consequence of Theorem 4.1.
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