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EXOTIC G a -QUOTIENTS OF SL 2 × A 1

Every deformed Koras-Russell threefold of the first kind Y = {x n z = y mt r + xh(x, y, t)} in A 4 is the algebraic quotient of proper Zariski locally trivial Ga-action on SL

* ֒→ V is the categorical quotient in the category of affine schemes of q -1 m (V 0 ) by the G a,k -action induced by ν m . Now let Z be an arbitrary scheme and let f : X m → Z be a G a,k -invariant morphism. Since X m is irreducible, to show that f : X m → Z factorizes as f • q m for a unique morphism f : A 2 * → Z, we may assume without loss of generally that Z is irreducible. Since q m : X m → A 2 * is a surjective smooth morphism, hence in particular a faithfully flat morphism, it follows from faithfully flat descent that f descends to a morphism f : A 2 * → Z if and only if it is constant on the fibers of q m . This is clear for m = 1 as q

* is a G a,k -torsor. We now consider the case m ≥ 2. Since the restriction of q m : X m → A 2 *

INTRODUCTION

Deformed Koras-Russell threefolds (of the first kind) were introduced in [8] as a familly of smooth affine threefolds generalizing the famous Koras-Russell threefolds (of the first kind) [17,21].

Definition. A deformed Koras-Russell threefold of the first kind over an algebraically closed field k of characteristic zero is a smooth affine threefold Y isomorphic to a hypersurface Y (m, n, r, h) of A 4 k = Spec(k[x, y, z, t] defined by an equation of the form

x n z = y m -t r + xh(x, y, t),
where n ≥ 2, m, r ≥ 1 are coprime integers, and where h(x, y, t) ∈ k[x, y, t] is a polynomial such that h(0, 0, 0) ∈ k * . All these threefolds share the property to come equipped with a flat fibration pr x :

Y → A 1 k restricting to a trivial A 2 -bundle (A 1 k \ {0}) × A 2 k = Spec(k[x ±1 ][y, t]) over A 1 k \ {0}
and whose fiber over {0} is reduced, isomorphic to the product of the irreducible rational curve C = {y mt r = 0} ⊂ A 2 k with A 1 k = Spec(k[z]). If m or r is equal to 1, then C ∼ = A 1 k and pr x : Y → A 1 k is isomorphic to the trivial A 2 k -bundle [24], and hence Y is isomorphic to the affine space A 3 k . Otherwise, if m, r ≥ 2 then pr -1 x (0) is not isomorphic to A 2 k so that so that Y cannot be isomorphic to A 3 k by [15]. In these cases, it is known more precisely that the fibration pr x : Y → A 1 k is invariant under every algebraic action of the additive group G a,k . This property turns out to fails for the cylinders Y × A ℓ k , ℓ ≥ 1, with the consequence that the known invariants associated to G a,k -actions do no longer suffice to distinguish cylinders Y ×A ℓ k , ℓ ≥ 1, over threefolds Y non isomorphic to A 3 k from affine spaces A ℓ+3 k . The question whether any deformed Koras-Russell threefold Y ∼ = A 3 k has a cylinder Y × A ℓ k isomorphic to an affine space is totally open. The projection pr x,y,t : Y → A 3 k is a birational morphism which represents Y as the affine modification of A 3 k = Spec(k[x, y, t]) with center as the closed subscheme Z Y with defining ideal J Y = (x n , y mt r + xh(x, y, t)) and principal divisor D Y = {x n = 0} in the sense of [START_REF] Kaliman | Affine modifications and affine hypersurfaces with a very transitive automorphism group[END_REF]. Equivalently, the coordinate ring of Y is isomorphic to the quotient of the Rees algebra

s≥0 J s Y • υ s ⊂ k[x, y, t][υ]
of the ideal J Y ⊂ k[x, y, t] by the ideal generated by 1x n υ. Over the field C of complex numbers, the fact that the associated closed subscheme Z Y is supported on the topologically contractible curve {y mt r = 0} inside the topologically contractible divisor Supp(D Y ) = A 2 C implies by [START_REF] Kaliman | Affine modifications and affine hypersurfaces with a very transitive automorphism group[END_REF]Theorem 3.1] that every deformed Koras-Russell threefolds is a topologically contractible complex threefold, which is actually even diffeomorphic to R 6 [21]. For arbitrary algebraically closed fields k of characteristic zero, it is known by [3] 2000 Mathematics Subject Classification. 14R05; 14R20; 14L30. This work received support from ANR Project FIBALGA ANR-18-CE40-0003-01 and the "Investissements d'Avenir" program, project ISITE-BFC (contract ANR-lS-IDEX-OOOB). . Morel and Voevodsky [23]. The question whether every Y = Y (m, n, r, h) is contractible in this category for arbitrary h ∈ k[x, y, t] such that h(0, 0, 0) ∈ k * is open, but it was established recently in [START_REF] Dubouloz | A 1 -contractibility of affine modifications[END_REF] by a combination of the techniques developed in [14] and [3] that every such Y becomes contractible in H(k) after a single suspension with the simplicial circle S 1 .

that if h ∈ k[x] \ xk[x] then a deformed Koras-Russell threefold Y (m, n, r, h) ∼ = A 3 k is contractible in the A 1 -homotopy category H(k) of
One of the steps in the proofs of these contractibility results in the A 1 -homotopy category H(k) consists in determining the A 1 -homotopy type of the complement in Y of the curve

ℓ = {x = y = t = 0} ∼ = Spec(k[z]).
Over the field of complex number, the inclusion ℓ ֒→ Y defines a smooth proper embedding of the underlying differential manifold R 2 of ℓ into the underlying differentiable manifold R 6 of Y . Since every two smooth proper embeddings of R 2 into R 6 are ambiently isotopic [13, Chapter 8], it follows that Y \ ℓ is diffeomorphic to the complement of R 2 embedded into R 6 as a linear subspace, hence to

(R 4 \{0})×R 2 . The A 1 -homotopic counterpart that Y \ ℓ is A 1 -weakly equivalent to the complement A 3 k \ A 1 k ∼ = (A 2 k \ {0}) × A 1 k of an affine line A 1 k embedded into A 3
k as a linear subspace was established in [3,[START_REF] Dubouloz | A 1 -contractibility of affine modifications[END_REF] by constructing for every Y an explicit A 1 -weak equivalence between Y \ ℓ and A 3 k \ A 1 k in the form of a quasi-affine fourfold W which is simultaneously the total space of a G a,k -torsor over Y \ ℓ and A 3 k \ A 1 k . Since it was not important in the next steps of the constructions in loc. cit., the precise structure of this variety W was not elucidated. But since then, it has become a kind of folklore fact that it should be affine, and actually isomorphic to the product of SL 2 = {xvyu = 1} ⊂ A 4 k with the affine line A 1 k , independently of the given deformed Koras-Russell threefold Y . The purpose of this article is to give a complete and detailed proof of this folklore fact, in the form of the the following theorem: Theorem 1. Let k be an algebraically closed field of characteristic zero and let

Y = Y (m, n, r, h) = {x n z = y m -t r + xh(x, y, t)} ⊂ A 4
k be a deformed Koras-Russell threefold. Then there exists a proper Zariski locally trivial G a,k -action on

SL 2 × A 1 k whose algebraic quotient (SL 2 × A 1 k )//G a,k = Spec(Γ(SL 2 × A 1 k , O SL2×A 1 k ) G a,k ) is isomorphic to Y . Furthermore, the quotient morphism SL 2 × A 1 k → Y restricts to a G a,k -torsor over Y \ ℓ.
This implies in particular that the coordinate rings of all Koras-Russell threefolds of the first kind can be realized as rings of invariants of G a,k -actions on the single affine fourfold SL 2 × A 1 k . In contrast, it is an open question raised by Freudenburg [12] whether these can be realized as rings of invariants of G a,k -actions on the affine space A 4 k . It is also an open question whether all proper Zariski locally trivial G a,k -actions on A 4 k are conjugate (see e.g. [START_REF] Dubouloz | Proper triangular Ga-actions on A 4 are translations[END_REF]16] and the references therein for known partial results on this problem). Since by [8, Theorem 1], for every fixed pair (m, r) with m, r ≥ 2 and for every fixed big enough n ≥ 2, there exists uncountably many pairwise non isomorphic deformed Koras-Russell threefolds Y (m, n, r, h), the above theorem implies that this property fails very badly for SL 2 × A 1 : Corollary 2. There exists uncountably many pairwise non-conjugate proper Zariski locally trivial G a,kactions on SL 2 × A 1 .

The proof of Theorem 1 draws as in [3,[START_REF] Dubouloz | A 1 -contractibility of affine modifications[END_REF] on the study of categorical quotients of certain G a,k -actions on deformed Koras-Russell threefolds in the category of algebraic spaces. The algebraic spaces which come into play are a particular class of "non-separated surfaces with an m-fold curve" which already appeared in the context of the study of proper G a,k -actions on A 4 k in [5,[START_REF] Dubouloz | Proper triangular Ga-actions on A 4 are translations[END_REF] and, for some special cases, in [2] and [7] in relation to the Zariski Cancellation problem for threefolds. In many respects, these spaces tend to be natural and necessary replacements in higher dimension of the non-separated curves first considered by Danielewski [1] in its famous counter-example to the Cancellation problem in dimension two, and which became ubiquitous in the study A 1 -fibered affine surfaces after the work of Fieseler [START_REF] Fieseler | On complex affine surfaces with C + -action[END_REF]. With the hope to make the use of these techniques accessible to a larger community, we collect various complementary descriptions of these spaces which can be found disseminated in the literature.

1. PRELIMINARIES: SOME NON PROPER G a -ACTIONS ON EXOTIC AFFINE 3-SPHERES Let m ≥ 1 be an integer and let X m ⊂ A 4 k = Spec(k[x, y, u, v]) be the smooth closed sub-variety of dimension 3 defined by the equation x m vyu = 1. The projection pr x,y : X m → A 2 * = A 2 k \ {(0, 0)} is a Zariski locally trivial A 1 -bundle which is the structure morphism of a Zariski locally trivial G a,k -torsor for the G a,k -action on X m defined by t • (x, y, u, v) = (x, y, u + tx m , v + ty). For every m, m ′ ≥ 1, the fiber product W = X m × A 2 * X m ′ is thus simultaneously the total space of a G a,k -torsor over X m and X m ′ via the first and second projection respectively. Since X m and X m ′ are affine, the vanishing of H 1 (X m , O Xm ) and H 1 (X m ′ , O X m ′ ) implies that these two G a,k -torsors are trivial so that we get isomorphisms (1.1)

X m × A 1 k ∼ = W ∼ = X m ′ × A 1 k . In particular, for every m ≥ 1, X m × A 1 k is isomorphic to X 1 × A 1 k ∼ = SL 2 × A 1 k . Remark 3.
Over the field of complex numbers C, the underlying 6-dimensional real smooth manifold X diff m of X m is diffeomorphic to that of X 1 for every m ≥ 1. Moreover, X diff 1 is homotopically equivalent to the sphere S 3 ⊂ R 4 . It was established in [START_REF] Dubouloz | On exotic affine 3-spheres[END_REF] that for every m > 1, X m is not isomorphic to X 1 as an algebraic variety. The threefolds X m , m > 1, were consequently named exotic affine 3-spheres.

Each threefold X m carries another fixed point free G a,k -action

ν m : G a,k × X m → X m defined by the locally nilpotent k[y, v]-derivation ∂ m = y ∂ ∂x + mx m-1 v ∂ ∂u of its coordinate ring A m = k[x, y, u, v]/(x m v -yu -1). The projection q m = pr y,v : X m → A 2 * = Spec(k[y, v]) \ {(0, 0)} is a smooth G a,k -invariant morphism which restricts to the trivial G a,k -torsor over the principal affine open subset A 2 k,y = Spec(k[y ±1 , v)) of A 2 * . 1.1. Categorical quotients in the category of schemes. If m = 1 then q 1 : X 1 → A 2
* is again a Zariski locally trivial G a,k -torsor. This is no longer the case when m > 1 since then the restriction of q m over the curve

C ∼ = Spec(k[v ±1 ]) in A 2
* with equation y = 0 factors as the composition of the trivial G a,k -torsor

pr x : X m | C ∼ = Spec(k[x, u, v]/(x m v -1)) → C = Spec(k[x ±1 ]) with the cyclic étale cover f : C → C, x → v = x -m of order m. Lemma 4. For every m ≥ 1, the morphism q m : X m → A 2 * is the categorical quotient of X m by the G a,k -action ν m in the category of schemes. Proof. Since the ring of G a,k -invariant functions on X m is equal to sub-algebra k[y, v] ⊂ A m , it follows that the composition of q m : X m → A 2 over the principal affine open subset A 2 k,y = A 2 * \ C of A 2 * is a G a,k -torsor, f is constant on the fibers of q m | Xm\q -1 m (C)
, and it remains to check that f is constant on the fibers of

q m | q -1 m (C) : q -1 m (C) → C. Since G a,k acts on q -1 m (C) ∼ = C × A 1
k by translations on the second factor and f is G a,k -invariant, the image of q -1 m (C) by f is either a point and we are done, or its closure in Z is a curve D dominated by C.

In the second case, let U ⊂ Z be an affine open subset such that D ∩ U is not empty. Since X m is affine, f is an affine morphism. It follows that f

-1 (U ) is a G a,k -invariant affine open subset of X m such that f -1 (U ) ∩ q -1 m (C) is not empty. Since q m is smooth, hence open, q m (f -1 (U )) is an open subset of A 2 * such that q m (f -1 (U )) ∩ C is not empty. Let V 0 be a principal affine open subset of A 2 * contained in q m (f -1 (U )) and intersecting C. Then q -1 m (V 0 ) is contained in f -1 (U ). Indeed, first note that by the choice of V 0 , q -1 m (V 0 ∩ C) ∩ f -1 (U ) is not empty. Since q -1 m (V 0 ) is affine and X m is separated, q -1 m (V 0 ) ∩ f -1 (U ) is an affine open subset of q -1 m (V 0 ). It follows that q -1 m (V 0 )\(q -1 m (V 0 )∩f -1 (U )
) is either empty or a closed subset of pure codimension one in q -1 m (V 0 ). On the other hand, since f is constant on the fibers of

q m | Xm\q -1 m (C) , we have q -1 m (V 0 \ C) = q -1 m (V 0 ) \ q -1 m (C) = f -1 (U ) \ q -1 m (C). So q -1 m (V 0 ) \ (q -1 m (V 0 ) ∩ f -1 (U )) is contained in q -1 m (V 0 ∩ C). Since q -1 m (V 0 ∩ C) is irreducible and of pure codimension one in q -1 m (V 0 ) and q -1 m (V 0 ∩ C) ∩ f -1 (U ) = ∅, it follows that q -1 m (V 0 ) \ (q -1 m (V 0 ) ∩ f -1 (U )) is empty. Since U is affine and V 0 is the categorical quotient of q -1 m (V 0 ) ⊆ f -1 (U )
in the category of affine schemes, it follows that there exists a unique morphism f :

V 0 → U such that f | q -1 m (V0) = f • q m | q -1 m (V0)
. This implies that f is generically constant, hence constant, on the fibers of q m | q -1 m (C) : q -1 m (C) → C as desired. 1.2. Categorical quotients in the category of algebraic spaces. On the other hand, since the G a,k -action ν m on X m is fixed point free, it admits a categorical quotient in the larger category of algebraic spaces, in the form of an étale locally trivial G a,k -torsor ρ m : X m → X m /G a,k over a certain algebraic space X m /G a,k of finite type and dimension 2 (see e.g. [22, 10.4]), which is smooth as

X m is smooth. If m = 1 then X 1 /G a,k = A 2 * . But if m ≥ 2, it follows from Lemma 4 that X m /G a,
k cannot be a scheme. Furthermore, X m /G a,k is not separated for otherwise, being smooth of dimension 2 and of finite type over k, it would be a quasi-projective k-variety by Chow Lemma. Since ρ m : X m → X m /G a,k is a G a,k -torsor, this implies that for every m ≥ 2 the injective morphism

ν m × pr 2 : G a,k × X m ∼ = X m × Xm/G a,k X m → X m × X m
is not a closed immersion, hence that the action ν m is not proper.

Since ρ m : X m → X m /G a,k is a categorical quotient in the category of algebraic spaces, the surjective morphism q m : X m → A 2 * factors as q m = qm • ρ m for a unique surjective morphism qm :

X m /G a,k → A 2 * . Since the restriction of q m over A 2 k,y = A 2 * \ C is already a G a,k -torsor, qm restricts to an isomorphism over A 2 * \ C. On the other hand, since q -1 m (C) ∼ = C × A 1 k on which G a,k acts by translations on the second factor, it follows that q-1 m (C) ∼ = ( C × A 1 k )/G a,k ∼ = C. So X m /G a,k is somehow obtained from A 2
* by replacing the closed curve C = {y = 0} by the total space of the cyclic étale cover

f : C → C, x → v = x -m of order m.
Let us recall from [5, § 1.1] an explicit construction of an algebraic space S m with this property. Let

U = A 1 k × C = Spec(k[y, v ±1 ]) ⊂ A 2 * , U * = U \ ({0} × C) = Spec(k[y ±1 , v ±1 ], Ũ = A 1 k × C = Spec(k[y, x ±1 ]) and let ϕ = id × f : Ũ = A 1 k × C → A 1 k × C = U be the étale morphism deduced from f : C → C. Let diag : Ũ ֒→ Ũ × Ũ be the diagonal embedding and let j : ( Ũ × U * Ũ ) \ Diag ֒→ Ũ × Ũ be the natural immersion. Then the pair of morphisms (1.2) (pr 1 • (diag ⊔ j), pr 2 • (diag ⊔ j)) : R = Ũ ⊔ ( Ũ × U * Ũ ) \ Diag ⇒ Ũ
is an étale equivalence relation on Ũ . Letting Ũ /R be the algebraic space defined by this étale equivalence relation, it follows that ϕ : Ũ → U descends to a morphism β : Ũ /R → U . By construction, the restriction 

R * of R to ϕ -1 (U * ) = Ũ \ ({0} × C) is equal to the equivalence relation defined by the diagonal embedding ϕ -1 (U * ) ֒→ ϕ -1 (U * ) × U * ϕ -1 (U * ), whose quotient ϕ -1 (U * )/R * is isomorphic to U * . It
-1 m (A 2 k,y ) ∼ = q-1 m (A 2 k,y ) and q-1 m (U ) ∼ = δ -1 m (U ) which coincide over A 2 k,y ∩ U = U * . By construction, we already have isomorphisms δ -1 m (A 2 k,y ) ∼ = A 2 k,y ∼ = q-1 m (X m /G a,k ) as schemes over A 2 k,y . It remains to construct a compatible isomorphism q-1 m (U ) ∼ = δ -1 m (U ) = Ũ /R of algebraic spaces over U = A 2 k,v . Consider the morphism Φ : Ũ × G a,k = Spec(k[x ±1 , y]) × G a,k -→ X m | U ((x, y), t)
→ ν m (t, (x, y, 0, x -m )) = (x + ty, y, P (x, y, t), x -m )

where

P (x, y, t) = n≥1 ∂ n m u n! | v=x -m t n = m n=1 m! (m -n)!n! x -n y n-1 t n = m n=1 m n (x -1 t) n y n-1 .
By definition, Φ is G a,k -equivariant for the action by translations on the second factor on Ũ × G a,k and the action ν m on X m | U . Furthermore, since ∂P ∂t (x, 0, t) = mx -1 does not vanish on Ũ × G a,k , it follows that the Jacobian matrix

J(Φ) =     1 t y 0 1 0 ∂P ∂x ∂P ∂y ∂P ∂t -mx -m-1 0 0     of Φ has rank 3 at every point of Ũ ×G a,k . So Φ : Ũ ×G a,k → X m | U is an étale trivialization of the restriction of the G a,k -action ν m on X m | U . The coordinate ring B of the fiber product ( Ũ × G a,k ) × Xm|U ( Ũ × G a,k ) is isomorphic to the quotient of k[x ±1 1 , x ±1
2 , y, t 1 , t 2 ] by the ideal I generated by the elements

x -m 1 -x -m 2 , x 1 -x 2 + y(t 1 -t 2 )
, and P (x 1 , y, t 1 ) -P (x 2 , y, t 2 ).

Writing x -m 1 -x -m 2 = (x -1 1 -x -1 2 )R(x -1 1 , x - 1 
2 ), B decomposes as the product of the rings

B 0 ∼ = k[x ±1 1 , x ±1 2 ][y, t 1 , t 2 ]/(x -1 1 -x -1 2 , x 1 -x 2 + y(t 1 -t 2 ), P (x 1 , y, t 1 ) -P (x 2 , y, t 2 )) and 
B 1 = k[x ±1 1 , x ±1 2 ][y, t 1 , t 2 ]/(R(x -1 1 , x -1 2 ), x 1 -x 2 + y(t 1 -t 2 ), P (x 1 , y, t 1 ) -P (x 2 , y, t 2 )). Since P (x 1 , y, t 1 ) -P (x 1 , y, t 2 ) = x -1 1 (t 1 -t 2 )(1 + yS(x -1 1 , y, t 1 , t 2 )) it follows that the homomorphism k[x ±1 , y][t] → B 0 , (x, y, t) → (x 1 , y, t 1 )
is an isomorphism. On the other hand, since

x 1 -x 2 in invertible in k[x ±1 1 , x ±1 2 ]/(R(x -1 1 , x -1 2 )), y is invertible in B 1 and we get an isomorphism k[x ±1 1 , x ±1 2 ]/(R(x -1 1 , x -1 2 ))[y ±1 ][t] → B 1 , (x 1 , x 2 , y, t) → (x 1 , x 2 , y, t 1 ). Summing up, ( Ũ × G a,k ) × Xm|U ( Ũ × G a,k ) is G a,k -equivariantly isomorphic to the disjoint union of Spec(B 0 ) ∼ = Ũ × G a,k and Spec(B 1 ) ∼ = ( Ũ × U * Ũ ) \ Diag × G a,k
on which G a,k acts by translations on the second factors, and we get a cartesian square of étale equivalence relations

R × G a,k ∼ = ( Ũ × G a,k ) × Xm|U ( Ũ × G a,k ) pr 1 / / pr 2 / / pr R Ũ × G a,k pr Ũ R pr 1 •(diag⊔j) / / pr 2 •(diag⊔j) / / Ũ
where diag ⊔ j is the morphism defined in (4) and where the vertical morphisms are trivial G a,k -torsors. By [20, I.5.8], the right-hand side morphism descends to a G a,k -torsor

π : X m | U = ( Ũ × G a,k )/(R × G a,k ) → Ũ /R = δ -1 m (U ). Since ρ m | U : X m | U → q-1 m (U )
is also by definition a G a,k -torsor, it follows that there exists a unique isomorphism α : Ũ /R

∼ = → q-1 m (U ) such that ρ m | U = α • π.
This completes the proof. 1.3. Another description of the algebraic space quotients. An alternative complementary description of the algebraic space β : Ũ /R → U constructed in subsection 1.2 was given in [5] in a more general context. Since this description is sometimes more convenient to use in practice, let us review it in detail in our particular situation. We use the notation of subsection 1.2.

The Galois group µ n = Spec(k[ε]/(ε m -1)) of m-th roots of unity in k * acts on the finite étale cover

f : C = Spec(k[x ±1 ]) → C = Spec(k[v ±1 ]), x → v = x -m
by x → εx. We let V m be the scheme obtained by gluing m copies Ũi 

, i ∈ Z/mZ, of Ũ = Spec(k[y, x ±1 ]) = A 1 k × C
m : V m /µ m → U is U -isomorphic to β : Ũ /R → U .
Proof. Indeed, letting α : µ m × V m → V m be the µ m -action on V m , the algebraic space V m /µ m is by definition the quotient of V m by the étale equivalence relation (α, pr 2 ) : µ m ×V m ⇒ V m . It is straightforward to check with the definition of α and R that the composition σ :

V m → Ũ /R of π m : V m → Ũ with the quotient morphism Ũ → Ũ /R is a quasi-finite µ m -invariant morphism, which descends to a bijective quasi- finite U -morphism σ : V m /µ m → Ũ /R.
To prove that σ is an isomorphism, it now suffices to construct a section of it. Let i 0 : Ũ → V m be the section of π m defined by the inclusion of Ũ as the open subset Ũ0 ⊂ V m . Since the restriction of id × f : Ũ → U over U * is a finite étale µ m -cover, there exists an isomorphism

Ũ × U * Ũ ∼ = → ( Ũ \ ({0} × C)) × µ m which maps the diagonal Diag onto Ũ \ ({0} × C) × {1}. This yields an isomorphism ( Ũ × U * Ũ ) \ Diag ∼ = → ( Ũ \ ({0} × C)) × (µ m \ {1}) Vm πm C Ũ = A 1 k × C Vm/µm C C U = A 1 k × C ξ γm γm FIGURE 1.1. Construction of Ũ /R as a quotient of V m by a free µ m -action
hence an open embedding

ζ 0 : R = Ũ ⊔ ( Ũ × U * Ũ ) \ Diag ֒→ V m × {1} ⊔ V m × (µ m \ {1}) whose image is the union of the open subsets Ũ0 × {1} of V m × {1} and ( Ũ0 \ ({0} × C)) × (µ m \ {1}) of V × (µ m \ {1}). By construction of ζ 0 , the diagram R = Ũ ⊔ ( Ũ × U * Ũ ) \ Diag diag⊔j / / ζ0 Ũ × Ũ i0×i0 V × µ m α×pr2 / / V × V is cartesian. It follows that the section i 0 : Ũ → V m of π m : V m → Ũ descends to a U -morphism Ũ /R → V m /µ m which is a section of σ.
A practical consequence of Lemma 6 is the following:

Criterion 7. A morphism τ : Y → U from a scheme Y factors through a morphism τ : Y → Ũ /R if and only if the µ m -equivariant morphism pr 2 : Y × U Ũ → Ũ lifts to a µ m -equivariant morphism pr 2 : Y × U Ũ → V m such that pr 2 = π m • pr 2 .
1.4. An application. To finish this section, let us give a first concrete application of Criterion 7. Given integers m, n, r ≥ 1 such that gcd(m, r) = 1, we let X(m, n, r) be the smooth threefold in

A 4 k = Spec(k[x, y, u, v]) defined by the equation x m v r -y n u = 1. We thus have X(m, 1, 1) = X m . The locally nilpotent k[y, v]-derivation ∂ = y n ∂ ∂x + mx m-1 v r ∂ ∂u of the coordinate
ring of X(m, n, r) defines a fixed point free G a,k -action on X(m, n, r). As for X m , the projection q (m,n,r) = pr y,v : X(m, n, r)

→ A 2 * = Spec(k[y, v]) \ {(0, 0)} is a smooth G a,k -invariant morphism which restricts to the trivial G a,k -torsor over the principal affine open subset A 2 k,y = Spec(k[y ±1 , v)) of A 2 * .
Proposition 8. The morphism q (m,n,r) : X(m, n, r) → A 2 * factors through an étale locally trivial G a,ktorsor ρ (m,n,r) : X(m, n, r) → S m . Proof. By construction of S m as the gluing of Ũ /R and A 2 k,y described in subsection 1.2, it is enough to check as in the case of X(m, 1, 1) that q (m,n,r)

| U : X(m, n, r)| U → U factors through a G a,k -torsor over Ũ /R ∼ = V m /µ m . Let Ũ = Spec(k[y, λ ±1 ]) → U be the étale µ m -cover defined by (y, λ) → (y, λ -m ).
The fiber product Ỹ = Y × U Ũ is isomorphic to the closed subscheme in Ũ × Spec(k[x, u]) defined by the equation y n u = (λ -r x) m -1 on which µ m acts by (y, λ, x, u) → (y, ελ, x, u), where ε ∈ k * is a primitive m-th root of unity. The induced G a,k -action on X(m, n, r)| U lifts on Ỹ to the G a,k -action commuting with the action of µ m defined by the locally nilpotent k[y, λ ±1 ]-derivation

∂ = y n ∂ ∂x + mx m-1 λ r ∂ ∂u .
Since gcd(m, r) = 1, the inverse image by pr 2 : Ỹ → Ũ of the curve

C = {y = 0} ∼ = Spec(k[λ ±1 ]) is the disjoint union of m irreducible surfaces Si = Ci × Spec(k[u]), where Ci = Spec(k[λ ±1 , x]/(λ -r x -ε ri )) ∼ = Spec(k[λ ±1 ]), i ∈ Z/mZ.
Furthermore, the group µ m acts transitively on pr -1 2 ( C) by Si ∋ (λ, u) → (ελ, u) ∈ Si+1 . For every i ∈ Z/mZ, the Ũ -morphism

Ũi × A 1 k = Spec(k[y, λ ±1 ][v i ]) → Ỹ , (y, λ, v i ) → (y, λ, y n v i + (ε i λ) r , λ -mr v i j =i (y n v i + λ r (ε ri -ε rj )) induces a Ũ -isomorphism between Ũi ×A 1 k ∼ = Ũ ××A 1 k and the G a,k -invariant open subset Ỹ \ j =i Sj of Ỹ . Furthermore, using the expression v i = y -n (x -(ε i λ) r ) as a rational function on Ỹ , we see that ∂(v i ) = 1 so that Ỹ \ j =i Sj is G a,k -equivarianlty isomorphic to Ũi × A 1
k on which G a,k acts by translations on the second factor. The restriction of pr 2 to Ỹ \ j =i Sj is thus the trivial G a,k -torsor over Ũi . It follows that pr 2 : Ỹ → Ũ factors through a G a,k -torsor pr 2 : Ỹ → V m with gluing isomorphisms defined by

(y, λ ±1 , v i ) → (y, λ ±1 , v i + y -n λ r (ε ri -ε rj )).
By construction pr 2 : Ỹ → V m is equivariant for the µ m -actions on Ỹ and V m respectively. So pr 2 : Ỹ → V m descends to an étale locally trivial G a,k -torsor ρ (m,n,r),U : Ỹ

/µ m = X(m, n, r)| U → V m /µ m = Ũ /R such that q (m,n,r) | U = β • ρ (m,n,r),U as desired.
It seems that the discrete family of threefolds X(m, n, r) has not been studied yet in the literature. In particular, to the author's knowledge, the dependence of their isomorphism types in terms of the parameters m, n and r is unknown. The following result implies that some of these could provide new types of exotic affine 3-spheres: Corollary 9. For every triple (m, n, r) of positive integers such that gcd(m, r) = 1, the affine fourfold

X(m, n, r) × A 1 k is isomorphic to SL 2 × A 1 k . Proof. Since ρ (m,n,r) : X(m, n, r) → S m
is the total space of an étale locally trivial G a,k -torsor, it follows that the fiber product X(m, n, r) × Sm X(m, 1, 1) is simultaneously the total space of an étale G a,k -torsor over X(m, n, r) and X m = X(m, 1, 1) via the first and second projection respectively. Since X m and X(m, n, r) are affine, these torsors are the trivial ones, which yields isomorphisms

X(m, n, r) × A 1 k ∼ = X(m, n, r) × Sm X(m, 1, 1) ∼ = X m × A 1 k . The result follows since on the other hand X m × A 1 k ∼ = X 1 × A 1 k = SL 2 × A 1 k by (1.1). 2. FIXED POINT FREE G a,k -ACTIONS ON PUNCTURED DEFORMED KORAS-RUSSELL THREEFOLDS Every deformed Koras-Russell threefold Y = Y (m, n, r, h) = {x n z = y m -t r + xh(x, y, t)} ⊂ A 4
k admits a G a,k -action defined by the locally nilpotent derivation k[y, t]-derivation

x n ∂ ∂y + (my m-1 + x ∂h ∂y (x, y, t)) ∂ ∂z of its coordinate ring. The fixed point locus of this action is equal to the affine line

ℓ = {x = y = t = 0} ∼ = Spec(k[z]),
so that the action restricts to a fixed point free G a,k -action on the quasi-affine threefold Y * = Y \ ℓ.

The proof of Theorem 1 we give in the next subsection then essentially follows from the basic observation that the categorical quotient Y * /G a,k taken in the category of algebraic spaces is isomorphic to the algebraic space S m described in subsection 1.2. 

π : Y | B ∼ = Spec(k[y, t ±1 , z]/(y m -t r )) → B = Spec(k[y, t ±1 ]/(y m -t r ))
with the projection f : B → B, (y, t) → t. Since gcd(m, r) = 1, the curves B and B are both isomorphic to the punctured affine line A 1 \ {0}, and f is a finite cyclic étale cover of order m. This strongly suggests that Y * /G a,k should be isomorphic to S m , and this is indeed the case: Proposition 10. The categorical quotient Y * /G a,k in the category of algebraic spaces is isomorphic to S m .

Proof. The result can be extracted from the proof of Lemma 4.6 in [START_REF] Dubouloz | A 1 -contractibility of affine modifications[END_REF] (see also [3, Lemma 3.2]). Let us nevertheless sketch the main steps which proceed along the same lines as the method employed in the proof of Proposition 8. Since the restriction of π over A 2 k,x is the trivial G a,k -torsor, it is again enough to check that the restriction of π over 

U = A 2 k,t = Spec(k[x, t ±1 ]) factors through a G a,k -torsor over Ũ /R ∼ = V m /µ m , where Ũ = Spec(k[x, λ ±1 ]) → U is étale µ m -
(ε i λ) r ) ∼ = Spec(k[λ ±1 ]), i ∈ Z/mZ.
The restriction of the G a,k -action on each Si is given by the locally nilpotent k[λ ±1 ]-derivation m(ε i λ) r(m-1) ∂ ∂z , so that the projection pr Bi : Si → Bi is a trivial G a,k -torsor. Furthermore, the group µ m acts transitively on pr -1 2 ( B) by Si ∋ (λ, z) → (ελ, z) ∈ Si+1 . For every i ∈ Z/mZ, pr 2 restricts on the open subset Ỹ \ j =i Sj of Ỹ to a surjective G a,k -invariant smooth morphism pr 2,i : Ỹ \ j =i Sj → Ũi whose fibers each consist of a unique G a,k -orbit. It follows that pr 2,i is a G a,k -torsor, hence is isomorphic to the trivial one as Ũi ∼ = Ũ is affine. We conclude that pr 2 : Ỹ → Ũ factors in a unique way through a G a,k -torsor pr 2 : Ỹ → V m equivariant for the µ m -actions on Ỹ and V m respectively. So pr 2 : Ỹ → V m descends to an étale locally trivial G a,k -torsor π :

Ỹ /µ m = Y | U → V m /µ m = Ũ /R which factors the projection π : Y | U → U .
We can now finish the proof of Theorem 1 as follows. By Proposition 5 and Proposition 10, X m and Y * are étale locally trivial G a,k -torsors over the same algebraic space S m . This implies that the fiber product W m = Y * × Sm X m is simultanesouly the total space of étale G a,k -torsors over Y * and X m via the first and second projection respectively. Since Y * is separated, the G a,k -action on W m corresponding the G a,k -torsor pr 1 : W m → Y * is proper. Furthermore, since Y * is a scheme, pr 1 : W m → Y * is in fact locally trivial in the Zariski topology [11]. On the other hand, since X m is affine pr

2 : W m → X m is the trivial G a,k -torsor. Thus W m ∼ = X m × A 1 k and hence W m ∼ = SL 2 × A 1 k by (1.1
). The G a,k -action on W m defining the G a,k -torsor pr 1 : W m → Y * thus corresponds via these isomorphisms to a proper and Zariski locally trivial G a,k -action on SL

2 × A 1 k , whose categorical quotient (SL 2 × A 1 k )/G a,k in the category of algebraic spaces is isomorphic to the quasi-affine variety Y * = Y \ ℓ. Lemma 11. The categorical quotient (SL 2 ×A 1 k )//G a,k = Spec(Γ(SL 2 ×A 1 k , O SL2×A 1 k ) G a,k
) in the category of affine schemes is isomorphic to Y .

Proof. The universal properties of the categorical quotient pr

1 : W m → W m /G a,k = Y * and the affinization morphism W m /G m,k → Spec(Γ(W m /G m,k , O Wm/G m,k )) imply that W m //G a,k = Spec(Γ(W m /G m,k , O Wm/G m,k )) = Spec(Γ(Y * , O Y * )).
Since Y is a smooth, hence normal, affine variety and ℓ has pure codimension 2 in Y , we have

Γ(Y * , O Y * ) = Γ(Y, O Y ). Thus (SL 2 × A 1 k )//G a,k ∼ = W m //G a,k ∼ = Spec(Γ(Y, O Y )) = Y.
2.2. Complements. The proof of Theorem 1 provides a systematic method to construct for each given deformed Koras-Russell threefold Y = Y (m, n, r, h) an explicit locally nilpotent derivation δ of the coordinate ring of SL 2 × A 1 k with kernel isomorphic to Γ(Y, O Y ), usually at the cost of a series of tedious calculations. To explain the scheme of this method, let A 2

x,t = Spec(k[x, t]), A 2 x,v = Spec(k[x, v]
), and choose the coordinates so that Y = Y (m, n, r, h) and X m are given by the equations The commutativity of the diagram then implies that the locally nilpotent derivation δ of the coordinate ring of SL 2 × A 1 k corresponding to δ m through the isomorphisms

x n z = y m -t r + xh(x, y, t) and v m t -xu = 1 in A 2 x,t × Spec(k[y, z]) and A 2 x,t × Spec(k[u, v]) = A 2 x,v × Spec(k[u, t]) respectively. Let ∂ = x n ∂ ∂y + (my m-1 + x ∂h ∂y (x, y, t)) ∂ ∂z and ∂ m = mv m-1 t ∂ ∂u + x ∂ ∂v
W m = Y * × Sm X m 6⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ % % ❏ ❏ ❏ ❏ ❏ ❏ ❏ ❏ ❏ ❏ ❏ ❏ ❏ ❏ ❏ ❏ ❏ ❏ ❏ ❏ ❏ ∼ = / / X m × A 1 k ∼ = / / X m × A 2 x,v X 1 { { ✇ ✇ ✇ ✇ ✇ ✇ ✇ ✇ ✇ ✇ ✇ ✇ ✇ ✇ ✇ ✇ ✇ ✇ ! ! ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ∼ = / / SL 2 × A 1 k Y * ' ' ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ X m u u • • • • • • • • • • • • • • • • • • • " " ❊ ❊ ❊ ❊ ❊ ❊ ❊ ❊ ❊ ❊ ❊ ❊ ❊ ❊ ❊ ❊ ❊ ❊ ❊ ❊ X 1 = SL 2 ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ S m A 2 x,t ) ) ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ A 2 x,v v v ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ A 1 x =
X m × A 1 k ∼ = X m × A 2 x,v X 1 ∼ = SL 2 × A 1 k of schemes over Spec(k[x, v]) is a k[x]-derivation. Explicit isomorphisms X m × A 1 k ∼ = SL 2 × A 1 k
for each m ≥ 2 can be constructed by finding explicit trivializations of the G a,k -bundles pr 1 : X m × A 2

x,v X 1 → X m and pr 2 : X m × A 2

x,v X 1 → X 1 . In practice, this amounts to describe these bundles in terms Čech 1-cocyles with values in O Xm and O X1 on suitable open cover of X m and X 1 respectively, and find explicit expressions of each of these 1-cocyles as coboundaries. 

  follows that β : Ũ /R → U restricts to an isomorphism over U * . On the other hand, since R restricts to the trivial equivalence relation on the closed subset {0} × C ⊂ Ũ , it follows that β -1 ({0} × C) ∼ = {0} × C. Now we let S m be the algebraic space obtained by gluing A 2 k,y = Spec(k[y ±1 , v] and Ũ /R along the open subsets U * =Spec(k[y ±1 , v ±1 ] and β -1 (U * ) by the isomorphism β -1 (U * ) ∼ = U * induced by β. Then there exists a unique morphism δ m : S m → A 2 * whose restrictions to the corresponding open subsets A 2 k,y and Ũ /R of S m are equal to the open inclusion A 2 k,y ֒→ A 2 * and the composition of β with the open inclusion U = A 2 k,v ֒→ A 2 * respectively. Proposition 5. For every m ≥ 1, qm : X m /G a,k → A 2 * and δ m : S m → A 2 * are isomorphic algebraic spaces over A 2 * . Proof. By construction, S 1 is isomorphic to A 2 * . If m ≥ 2, then since A 2 * is covered by the principal affine open subsets A 2 k,y and U = A 2 k,v , it suffices to show that there exists local isomorphism δ

Lemma 6 .

 6 by the identity outside the curves {0} × C ⊂ Ũi . The group µ m now acts freely on V m by Ũi ∋ (y, x) → (y, εx) ∈ Ũi+1 , i ∈ Z/mZ, and the local isomorphisms id : Ũi → Ũ , glue to a global morphism π m : V m → Ũ which is equivariant for the µ m -action (y, x) → (y, εx) on Ũ . Since the so-defined µ m -action on V m has trivial isotropies, a quotient ξ : V m → V m /µ m exists in the category of algebraic spaces in the form of an étale µ m -torsor over a certain algebraic space V m /µ m . The µ m -invariant morphismγ m = (id × f ) • π m : V m → U descends to a morphism γ m : V m /µ m → U which restricts to an isomorphism over U * = U \ ({0} × C). In contrast, γ m -1 ({0} × C) is isomorphic as a scheme over C to the quotient of µ m × C by the diagonal action of µ m , hence to C. The algebraic space γ

2. 1 .

 1 Proof of Theorem 1. Since the G a,k -action on Y * defined above is fixed point free, the categorical quotient Y * → Y * /G a,k exists in the form of an étale locally trivial G a,k -torsor over a certain algebraic space X * /G a,k . The G a,k -invariant projection pr x,t : Y → A 2 k induces a surjective morphism π : Y * → A 2 * = A 2 k \ {(0, 0)}, which restricts further over the principal affine open subset A 2 k,x = Spec(k[x ±1 , t]) to the trivial G a,k -torsor. On the other hand, the restriction of π over the curve B ∼ = Spec(k[t ±1 ]) in A 2 * with equation x = 0 factors as the composition of the trivial G a,k -torsor

  cover defined by (x, λ) → (x, λ m ). The fiber product Ỹ = Y × U Ũ is isomorphic to the closed subscheme in Ũ × Spec(k[y, z]) defined by the equationx n z = y mλ mr + xh(x, y, λ m ),on which µ m acts by (x, y, λ, z) → (x, y, ελ, z), where ε ∈ k * is a primitive m-th root of unity. The induced G a,k -action on Y | U lifts on Ỹ to the G a,k -action commuting with the action of µ m defined by the locally nilpotent k[x, λ ±1 ]-derivation ∂ = x n ∂ ∂y + (my m-1 + x ∂h ∂y (x, y, λ m )) ∂ ∂z Since gcd(m, r) = 1, the inverse image by pr 2 : Ỹ → Ũ of the curve B = {x = 0} ∼ = Spec(k[λ ±1 ]) is the disjoint union of the G a,k -invariant irreducible surfaces Si = Bi × Spec(k[z]), where Bi = Spec(k[λ ±1 , y]/(y -

  be the locally nilpotent derivations defining the G a,k -actions on Y and X m respectively with algebraic spaces quotients Y * /G a,k ∼ = S m ∼ = X m /G a,k . By the construction used in the proof of Theorem 1, we have a commutative diagram

  Spec(k[x]).Let ∂m and ∂ be the commuting locally nilpotent k[x, t]-derivations of the coordinate ring of W m with kernels equal toΓ(Y, O Y ) and Γ(X m , O Xm ) corresponding to the G a,k -torsors pr 1 : W m = Y * × Sm X m → Y * and pr 2 : W m = Y * × Sm X m → X m respectively. Via the left-hand side isomorphism ψ : W m → X m × A 1k of the top line of the diagram, the derivation ∂ corresponds to the locally nilpotent derivation∂ ∂w of the coordinate ring Γ(X m , O Xm )[w] of X m × A 1 k , whereas ∂m corresponds to the unique k[x, t]derivation δ m commuting with ∂ ∂w , whose restriction to Ker( ∂ ∂w ) = Γ(X m , O Xm) is equal to ∂ m and such that δ m (w) = ψ( ∂m (ψ -1 (w)). In practice, the element ψ -1 (w) ∈ Ker ∂ as well as its image by ∂m can be explicitly determined by considering an étale cover of S → S m of S m on which the G 2 a,k -torsor W m → S m becomes trivial.

1 k∼ 1 k

 11 Note in addition that letting X(m, n, r) = {v m t rx n u = 1}, where gcd(m, r) = 1, endowed with the G a,k -action determined by the locally nilpotent k[x, t]-derivation∂ (m,n,r) = mv m-1 t r ∂ ∂u + x n ∂ ∂v ,we have by Proposition 8 isomorphismsX m × A = X m × Sm X(m, n, r) ∼ = X(m, n, r) × A of schemes over A 2 x,t . The derivation ∂m corresponds via these isomorphisms to a unique k[x, t]-derivation δ (m,n,r) of the coordinate ring Γ(X(m, n, r), O X(m,n,r) )[ω] of X(m, n, r) × A 1k commuting with ∂ ∂ω and whose restriction to Ker( ∂ ∂ω ) = Γ(X(m, n, r), O X(m,n,r) ) is equal to ∂ (m,n,r) . Depending on the deformed Koras-Russell threefold Y , the element δ (m,n,r) (ω) ∈ Γ(X(m, n, r), O X(m,n,r) ) can be easier to determine for suitably chosen n and r than the element δ m (w) ∈ Γ(X m , O Xm ). For instance, we have:Example 12. The fixed point free G a,k -actions onX (2,2,3) × A 1 k = Spec(k[x, t, u, v][ω]/(v 2 t 3x 2 u -1)) whose algebraic quotients are the deformed Russell cubic threefolds Y α ⊂ A 4 k with equations x 2 z = y 2t 3 + x(1 + αt), α ∈ k, are given by the locally nilpotent k[x, t]-derivations δ (2,2,3),α = 2vt 3 ∂ ∂u + αt)xt 3 ) ∂ ∂ω .