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ABSTRACT 

 

Melanoma is a highly metastatic and deadly form of cancer. Invasive melanoma cells 

overexpress integrin αvß3, which is a well-known target for Arg-Gly-Asp-based (RGD) 

peptides. We developed a sophisticated method to synthetize mg amounts of a targeted vector 

that allows the RGD-mediated targeting, internalization and release of a mitochondria-

disruptive peptide derived from the pro-apoptotic Bax protein. We found that 2.5 µM of Bax 

[109-127] was sufficient to destabilize the mitochondria in 10 different tumor cell lines, even 

in the presence of the anti-apoptotic Bcl2 protein, which is often involved in tumor resistance. 

This pore-forming peptide displayed antitumor activity when it was covalently linked by a 

disulfide bridge to the tetrameric RAFT-c[RGD]4-platform and after intravenous injection in a 

human melanoma tumor model established in humanized immuno-competent mice. In 

addition to its direct toxic effect, treatment with this combo induced the release of the 

immuno-stimulating factor MCP1 in the blood and a decrease in the level of the pro-

angiogenic factor FGF2. Our novel multifunctional, apoptosis-inducing agent could be further 

customized and assayed for potential use in tumor-targeted therapy. 
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Introduction 

 

Melanoma is a common and devastating form of skin cancer. It is highly metastatic and 

resistant to chemotherapy and radiotherapy. It is known to progress initially in a radial growth 

phase. In this phase, melanoma cells accumulate mutations. This process is followed by a 

vertical phase, in which the cells invade the dermis and produce angiogenic factors that 

induce new blood vessel formation. This ‘angiogenic switch’ has been associated with 

aggressiveness and is characterized by the modulation of the expression of several genes, 

including those encoding for αvß3 integrin 1-8 and VEGF receptors. Antagonists of αvß3 

integrin, such as cyclic Arg-Gly-Asp (RGD)-containing peptides and c[RGDfV] 9, 10, have 

been under investigation as antiangiogenic agents for decades 11. These investigations 

produced Cilengitide (EMD 121974) 12, which initially showed promising results for breast 

tumor therapy. 13 Phase II trials were then conducted for the treatment of prostate cancer 14, 15, 

followed by phase III trials for the treatment of glioblastoma; however, it was ultimately 

discontinued as an anticancer drug because it did not improve outcomes. 16 This failure was 

explained by the observation that low doses of Cilengitide actually stimulate VEGF-induced 

angiogenesis instead of producing the expected antiangiogenic activity 17 and that Cilengitide 

can enhance tumor growth by augmenting the activity of tumor-promoting M2 macrophages 

18. 

RGD-based peptides have been more successful as targeted imaging probes 19, as shown in 

melanoma patients 20. At the preclinical level, it also served as a drug delivery system 21-25. In 

previous work, we took advantage of the integrin-clustering capacity of a tetravalent cRGD-

containing peptide 26 to generate more effective antagonists with augmented specificity for 

tumors 27-30, improved cellular uptake 31, 32 and enhanced toxicity upon association with pro-
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apoptotic peptides. 33, 34 The tumor-targeted delivery of cytotoxic peptides (e.g., 

(KLAKLAK)2) was initially of interest for the treatment of tumors 35-38, particularly 

melanoma, when targeted by cRGD 39 or with a Cell-Penetrating Peptide, such as TAT 40. 

However, despite promising results, no follow-up studies have been reported on these 

compounds, certainly because of the modest activity of (KLAKLAK)2 41. 

The aim of this study was to develop an original pathway to generate second-generation 

RGD-targeted toxic peptides derived from the putative pore-forming domain of Bax (a pro-

apoptotic protein belonging to the Bcl-2 family) that would directly induce the release of 

mitochondrial cytochrome c. We previously demonstrated that a synthetic peptide derived 

from the 5th helix of Bax exhibits high mitochondrial membrane-destabilizing activity 42 and 

induces the caspase-dependent apoptosis of cancer cells when fused to a polyarginine cell-

penetrating peptide 43. Our data indicated that mitochondrial perforation, which ultimately 

leads to cell suicide, is very rapid and occurs independently of endogenous executors of the 

Bcl-2 family, such as Bax and Bak. Preliminary in vivo studies using mouse xenograft models 

further demonstrated that this molecule, named “poropeptide,” has potent anticancer activity 

after intratumoral administration. Here, we describe the truncation, optimization and 

characterization of this active peptide grafted to the RGD-presenting platform, yielding a 

conjugate termed Poro-Combo, through a set of in vitro and in vivo experiments in humanized 

mice bearing human melanoma tumors. 
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Material and Methods 

 

Cell Culture 

Three different adherent malignant human melanoma cell lines were used in the study: A375, 

Colo829 and Me275. Colo829 and A375 cells lines were purchased from ATCC (American 

Type Culture Collection, Molsheim, France) and cultured at 37°C and 5% CO2 in DMEM 

and RPMI-1640, respectively, (PAA) supplemented with 10% FBS, 1% penicillin-

streptomycin and 2 mM L-glutamine (Sigma-Aldrich). Me275 cells are not commercialized 

and were kindly provided by Pr J-C Cerottini (Ludwig Institute for Cancer Research, 

Epalinges, Switzerland). Me275 cells were cultured at 37°C and 5% CO2 in RPMI-1640 

(PAA) supplemented with 10% FBS, 1% penicillin-streptomycin and 2 mM L-glutamine 

(Sigma-Aldrich). Stable transfectants of NIH 3T3 cells expressing GFP or GFP-Bcl-2 were 

kindly provided by Dr. Nathalie Bonnefoy (INSERM U851). MeWo and SK-MEL-28 cells 

were obtained from the CelluloNet Biobank (BB-0033-00072, Centre de Ressources 

Biologiques of UMS3444/US8). 

 

Peptides 

The sequences of the peptides are shown in Supp Table 1. Colicin, delta-endotoxin and 

diphtheria toxin peptide derivatives were purchased from GeneCust EUROPE (Dudelange, 

Luxembourg) at a 2 or 5 mg scale with purity > 95%. Other peptides were synthesized by the 

SynBio3 IBISA platform, Montpellier or the ICMG Chemistry Nanobio, Grenoble facilities. 

The assembly of all linear protected peptides was performed either manually or automatically 

by solid-phase peptide synthesis (SPPS) using the standard 9-

fluorenylmethoxycarbonyl/tertiobutyl (Fmoc/tBu) protection strategy. Cyclization reactions 
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were carried out as described 26. RAFT-c[RGD]4 was obtained using oxime ligation in 

solution as previously described 33.  

RAFT-c[RGD]4-S-S-depsi-cgg-Poro2D was obtained from the depsi cgg-Poro2D peptide (6.8 

mg, 2.43 μmol) and nitro-pyridine sulfenyl-containing RAFT-c[RGD]4 (10 mg, 2.42 μmol) 

dissolved in 500 μL of ACN/PBS (pH 4.8, 1/3) under argon. The reaction mixture was stirred 

for 5 min at room temperature under argon. The product was purified by RP-HPLC and 

obtained as a white powder (8.4 mg, 1.33 μmol, 55%). RAFT-c[RAD]4 was used as negative 

control that did not bind the integrin. Indeed, c[-RßADfK-] was a nonsense peptide in which 

the Gly residue of Arg-Gly-Asp (RGD) had been changed to ßAla. 

 

Mitochondrial assays 

Crude, intact mitochondria were prepared as previously described 42. In brief, cells were 

mechanically broken using a 2 mL glass/glass dounce homogenizer (Kontes) (30 strokes). 

The homogenates were cleared at 1500 g, and the mitochondria were spun down at 10 000 g. 

Cholesterol depletion in the mitochondrial membranes was achieved by treatment with Me-β-

cyclodextrin (β-MCD, Sigma-Aldrich) as previously described 44. Cholesterol enrichment was 

achieved by incubating isolated mitochondria with a cholesterol-BSA complex as described in 

45. For cytochrome c release assays, 30 mg of crude mitochondria was resuspended at 1 

mg/mL in KCl buffer supplemented with succinate (5 mM) and EGTA (0.5 mM). Peptides 

were added to the samples at various concentrations, and incubations were carried out at 30°C 

under agitation (300 rpm). At the indicated time points, the samples were centrifuged (5 min, 

10 000 g, 4°C) The supernatants and pellets were recovered and analyzed by immunoblotting 

for cytochrome c. Western blot analysis was performed according to standard procedures 

using monoclonal anti-cytochrome c antibody (BD Pharmingen) or Anti mPDK1 (Abcam) or 



 7

Anti mHSP70 (Abcam) as primary antibody and HRP-conjugated goat anti-mouse (Dako) as 

secondary antibody. 

 

Cellular viability evaluation 

The cellular viability of Me275 and Colo829 tumor cells was evaluated using a colorimetric 

MTT test measuring mitochondrial activity. A375 and Colo829 cells were plated in 96-well 

plates at 1.5x104 cells/well. 24 h later, the cells were treated with RAFT-c(RGD)4-poro2 at 1, 

2.5, 5 or 10 μM, while control group received the vehicle alone. A positive control of 

apoptosis was done by treating cells with 1 μM staurosporine. One day after treatment, the 

cell culture medium was replaced by 100 μL of uncolored DMEM-containing 10% MTT 

(Calbiochem®). The cells were incubated for 4 h at 37°C. The MTT crystals were solubilized 

with 100 μL of a solution containing 12.5 mL Triton 100%, 1.25 mL HCl 10N and 125 mL 

anhydrous isopropanol. The optical density was evaluated using a Beckamn Coulter AD340 

spectrophotometer at 570 nm and 620 nm. 

 

Apoptosis assays 

Me275, Colo829 and A375 cells were seeded in 12-well plates. The cells were treated for 24 

hours with RAFT-c(RGD)4-poro2 at concentrations ranging between 0.5 and 10 μM. Control 

cells were treated with RAFT-c(RGD)4 or the vehicle alone. Active Caspase 3 was evaluated 

by flow cytometry using Active Caspase 3 Apoptosis Kit (Becton Dickinson, Pont de Claix, 

France) on an Accuri-C6 flow cytometer with a filter (585/42 nm) and the CflowPlus 

software. 
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Biodistribution and tumor targeting in vivo 

One million A375 or Colo829 human melanoma cells were implanted on the right flank of 

humanized mice. Then, 200 µL of RAFT-c(RGD)4-A700 50 µM (Fluoptics, France) was 

intravenously injected into the mice. 2D-Fluorescence reflectance imaging was performed as 

previously described 24 h after the injection on isolated organs using a Hamamatsu photonics 

device 27. Fluorescence was visualized at 660 nm (i) and quantified (ii) in different organs 

using the Wasabi® software.  

 

In vivo anti-tumor activity of Poro-Combo in Humanized mice 

NOD-SCID IL2RγC-/- immunodeficient mice (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) were 

purchased from Jackson ImmunoResearch Laboratories (Bar Harbor, USA) and bred at the 

Plateforme de Haute Technologie Animale (PHTA, La Tronche, France). Humanized mice 

were constructed by transplanting intravenously 1-2.105 HLA-A0201+ CD34+ hematopoietic 

progenitor cells purified from umbilical cord blood into sub-lethally irradiated 4-week-old 

NOD-SCID IL2RγC-/- mice (100-110 cGy). The CD34+ hematopoietic progenitor cells (HPC) 

were positively isolated from the mononuclear fraction using anti-CD34 magnetic microbeads 

and MS separation columns (Miltenyi Biotec). The purity was routinely approximately 90%. 

Twelve weeks after reconstitution, 106 human melanoma tumor cells (Me275 cell line) were 

subcutaneously implanted into the flank of humanized mice. The animals were then treated 

with daily intraperitoneal injections of 200 µl of either saline (PBS) or a solution containing 

0.132 µmol of the following molecules: Poro 2, RAFT-c(RGD)4, RAFT-c(RAD)4-poro 2, or 

RAFT-c(RGD)4-poro 2. Note that we did not evaluate the absence of targeting with the 

RAFT-c(RAD)4 peptide because we have already tested this in many different tumor models 

27, 29, 34, including melanoma 46. Tumor size was monitored every day, and tumor volume was 

calculated using the formula: (short diameter)2 x long diameter/2. The procedures for human 
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cells were approved by the French Blood Service’s Institutional Review Board. Animal 

studies were carried out in accordance with European regulations and the French National 

Charter guidelines. The protocol was approved by the Ethics Committee from Grenoble 

(approval # 211-UHTA-U823-CA-08) and registered at the National Ministry under the 

number #01993. 

 

Immunohistology 

At the end of the treatment, tumors were taken and frozen in Tissue-Tek® (Sakura Finetek, 

Villeneuve d’Ascq) and stored at -80°C. Immunohistology was then performed on 7 μm 

tumor slices. Tumor cell proliferation was evaluated using a rabbit anti-mouse Ki67 antibody 

(DakoCytomation) associated with the rabbit anti-rat HRP secondary antibody 

(DakoCytomation) on tumor slices fixed in acetone. Apoptosis was evaluated using a rabbit 

primary antibody against cleaved caspase 3 (Asp 175) (Cell signaling) associated with the 

secondary antibody anti-rabbit IgG HRP (Trueblot). Blood vessels were observed by 

immunohistology on tumor slices fixed with acetone using a rabbit primary anti-CD31 

antibody (Abcam®) associated with the secondary antibody anti-rabbit IgG HRP (Trueblot). 

All staining was observed using an Olympus BX41 microscope and the AnalySIS software 

with a color DP70 camera. 

 

Dosage of angiogenic factors and chemokines in the plasma 

Blood was collected before and at different time points after the start of the treatment. Human 

angiogenin, FGF-2, MCP1 and IP10 were quantified in the plasma by a Cytometric Bead 

Array (CBA, BD) using a FACSCanto II and the FCAP Array software (BD). 
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Evaluation of anti-tumor immunity 

At the end of the treatment, the infiltration and functional status of immune cells were 

evaluated at the tumor site, in the draining lymph nodes (DLN), in the control lymph nodes 

(CLN) and in the spleen by flow cytometry. The organs were digested 30 min at 37°C with 2 

mg/ml collagenase D (Roche Diagnostics). The resultant cell suspensions were washed with 

PBS with 2% FCS, stained using anti-human antibodies and submitted to flow cytometry 

analysis on a FACSCalibur using the CellQuest Pro software (BD). The anti-human CD45, 

CD3, CD8, CD56 (Beckman), CD69, and CD107 (BD) antibodies were used, as was HLA-

A*0201/MelA dextramers (Immudex). 

 

Statistical analysis 

Student’s t-tests were run to compare the different groups using the GraphPad Prism 6® 

software. 
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Results 

1/ Poropeptide selection 

We previously developed a first-generation active peptide derived from the sequence of Bax 

(106NWGRVVALFYFASKLVLKALSTKVPELIR134, herein termed Bax [106-134]) 43, a 

protein evolutionarily functionalized to form pores in the mitochondrial outer membrane. This 

natural peptide is able to specifically target and permeabilize mitochondrial membranes, 

unlike analogous segments derived from structurally similar pore-forming toxins (Supp 

Figure 1). This peptide can also induce cell death at 10 µM 43, but only if it is covalently 

linked to a Cell-Penetrating Peptide, such as R8. Because this pore-forming peptide was 29 

amino acids (aa) long, our first objective was to define its smallest toxic domain (Figure 1A). 

A series of eleven shorter C-terminally amidated analogues of Bax [106-134] were 

synthesized (Sup Table 1). The sequences were truncated both at the C- and N- terminus and 

assayed for their capacity to induce cytochrome-c release from purified mitochondria in vitro 

in comparison with the original Bax [106-134] peptide. As shown in Figure 1A, Bax [109-

127] was efficient at 2.5 µM instead of 10 µM. All attempts to further reduce its length while 

keeping substantial pore-forming activity against mitochondria were unsuccessful. Indeed, the 

removal of the residues at the N-terminus proved to be deleterious to its activity (cf. Bax 

[112-127]), as was the removal of residues at the C-terminus (cf. Bax [109-124], Bax [109-

125] and Bax [109-126]). We thus selected the peptide Bax [109-127], H-

RVVALFYFASKLVLKALST-NH2, called Poro2, and verified that it was sufficient to 

permeabilize the mitochondria extracted from 10 different tumor cell lines (Figure 1B). 

Because cholesterol 47 and Bcl2 can potentially reduce the toxicity of this pore-forming 

peptide, we also demonstrated that Poro2 activity was insensitive to the concentration of 

cholesterol or to the presence of Bcl2 in purified mitochondria (Sup Figure 2). This result is 

important because it shows that Poro2 will be toxic on a large panel of target cells (including 
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cancer cells) with variable cholesterol and Bcl2 contents, consistent with the positive data 

obtained using multiple cell lines (Figure 1B).  

The next step was the derivatization of a Poro2 lead sequence for conjugation via a disulfide 

bridge and a spacer to the targeting scaffold RAFT-c[RGD]4. We introduced a sulfhydryl 

group at the N-terminus of Poro2 by adding a Cysteine-Glycine-Glycine sequence. We used 

D-amino acids to reduce protease degradation, forming the so-called cgg-Poro2D pore-

forming peptide that was still active on purified mitochondria (Figure 1C), while sparing the 

plasma membranes of cultured human cells (Supp Figure 3). 

 

2/ Scaled-up production of the peptides 

 

Before grafting our second-generation poropeptide to the targeting moiety RAFT-c[RGD]4, 

we sought to optimize the synthesis strategy of cgg-Poro2D. Indeed, the handling and 

purification of cgg-Poro2D was troublesome because of its poor solubility. This difficulty, 

although it is classical in the field of pharmaceuticals, represents a serious limitation for its 

use, even during the conjugation step. We hypothesized that the amphipathic helical structure 

of poro-derivatives contributes to their poor solubility. To overcome this limitation, we 

utilized the residue Serine118, which is located in the center of the active sequence, to design 

a depsipeptic derivative of cgg-Poro2 (Figure 2). The displacement of the peptidic chain from 

the α amino group to the hydroxyl of a serine side chain was proposed simultaneously by the 

groups of Kiso 48 and Mutter 49 to handle the synthesis of aggregating sequences. The O-

acylated derivative of the peptide may undergo an O-N acyl shift in neutral or basic 

conditions to yield the desired linear peptide sequence. The depsipeptidic derivative offers a 

double advantage for solubility enhancement. First, after cleavage from the resin and the 

removal of the N-protecting group of serine in acidic conditions, the depsipeptide ‘gains’ a 
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protonatable functional group, such as the Nα-amino group of the serine residue, which 

enhances its solubility. Second, the depsipeptide is a β-branched peptide in which the amide 

bond is replaced by an ester. These modifications impact the establishment of intra- and inter-

molecular hydrogen bonding, thereby affecting the formation of secondary structures and 

aggregation. Before performing the synthesis with expensive D-amino acids, the strategy was 

first evaluated for Poro2 (Sup Figure 4), and the optimized strategy was then applied to depsi 

cgg-Poro2D. After purification and freeze drying, the overall yield was 7%. More than two 

hundred mg of the depsi cgg-Poro2D form of Bax[109-127] were obtained for conjugation 

with the Npys cysteine derivative of RAFT-c[RGD]4. 

A modular synthesis strategy was then adopted to construct the bifunctional molecules 

(Figure 3). We chose chemoselective ligations, such as stable oxime bonds, to connect the 

aldehyde-bearing ‘homing’ RGD motif and a cleavable disulfide linker serving to attach the 

pro-apoptotic depsi-cgg-Poro2D peptide. The synthesis of a cyclodecapeptidic intermediate 

bearing protected an aminooxy functional group was then carried out using Nε-modified 

lysine in which the aminooxy moiety is protected by a 1-ethoxyethylidene group (Eei). This 

protective group was shown to be fully compatible with standard SPPS conditions 50. The 

Alloc protective group at a lysine side chain was necessary to append a cysteine 

encompassing the activating nitro-pyridine sulfenyl residue. To append the targeting elements 

to the cyclodecapeptidic scaffold, we performed an aminooxy deprotection and an oxime 

ligation of the appropriate cyclopentapeptidic cyclo[-RGDfK(-COCHO)-] in one-pot reactions. 

The subsequent ligation of depsi-cgg-Poro2D was carried out under mild acidic conditions 

(pH 4.8) under argon for 5 min. The reactions were carefully monitored by HPLC (Figure 4). 

After 5 minutes, the disulfide bond formation in the soluble depsi cgg-Poro2D peptide (Figure 

4 (b)) and the RAFT c[RGD]4 (Figure 4 (a)) was complete, providing the expected final 
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compound (Figure 4 (c)). The products were directly recovered after RP-HPLC purification in 

satisfying yields (~ 55%).  

 

3/ In vitro evaluation of RAFT-c[RGD]4-S-S- depsi-cgg-Poro2D 

 

The toxicity of RAFT-c[RGD]4-S-S-depsi-cgg-Poro2D containing Bax[109-127]D 

(subsequently called Poro-Combo) was then tested on melanoma tumor cell lines (Figure 5). 

The cell viability was evaluated using an MTT assay one day after incubation with Poro-

Combo, as shown in Figure 5A. Dose-dependent toxicity was visible, and only 40% of 

melanoma cells were still alive in the presence of 10 µM Poro-Combo. This cytotoxic effect 

is identical to that observed with 1 µM of the positive control Staurosporine. 

Cell death was associated with the activation of caspase 3 (Figure 5B), indicating that the 

toxic peptides were inducing caspase-dependent apoptosis. This cell-death-inducing activity 

was not detectable when the cells were incubated with the control RAFT-RGD peptides 

devoid of the Poro2 moiety.  

 

4/ In vivo evaluation 

 

Human melanoma xenografts are exciting experimental models that mimic the biological 

behavior of malignant melanoma, which is a highly dangerous form of skin cancer. Before 

investigating the antitumor activity of Poro-Combo in vivo, we verified that the fluorescent 

RAFT-c[RGD]4-Alexa Fluor700 compound was able to target human Me275 melanoma 

xenografts implanted in mice (Sup Figure 5). Subcutaneous tumors were found to be strongly 

fluorescent 5 h and 24 h after the intravenous injection of the targeting agent, and the 

fluorescence intensity of the tumor site was only slightly lower than that of the kidneys. Using 
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confocal fluorescence imaging of the cryosections of these tumors, we detected the presence 

of intracellular RAFT-c(RGD)4-A700 in the tumor cells located in the immediate vicinity of 

afferent blood vessels (Sup. Fig. 5C). 

 

To evaluate the direct anti-tumor activity of Poro-Combo in vivo and the possible appearance 

of an anti-tumor immune response because of the induction of an immunogenic tumor cell 

death, we developed a human tumor model in NOD-SCID IL2RγC-/- mice reconstituted with 

a human immune system. This was performed by first engrafting human CD34+ 

hematopoietic progenitor cells (HPCs) and then human tumor cells. Three months after the 

graft of human CD34 HPCs, the humanized mice received a subcutaneous injection of Me275 

melanoma cells on their flank. One week later, these animals were treated with repeated daily 

IP injections of 200 µL of a solution containing 0.132 µmol of the different polypeptides (Sup 

Figure 6). Poro-Combo treatment resulted in a statistically significant prevention of tumor 

growth (p=0.0095) (Figure 6 A and B), in contrast to all other treatments. 

Immunohistology performed on the different tumors demonstrated that a significant reduction 

of tumor cell proliferation was induced by the Poro-Combo treatment (Figure 7), as shown 

after Ki67 immunostaining. This effect did not reflect a statistically significant induction of 

tumor cell apoptosis. In contrast, no detectable differences were found between the number of 

CD31-positive blood vessels counted in the different tumors. 

No acute toxicity was observed in all treated animals. Liver and kidney biopsies also showed 

unaffected tissues, which confirms the absence of non-specific cell killing activity in these 

major organs (Sup Fig. 8). 

We finally examined whether Poro-Combo-mediated cell death induced an antitumor immune 

reaction. We detected an infiltration of human CD45+ immune cells in the treated tumors that 

was composed of potential anti-tumor effectors, such as T cells and NK cells. However, no 
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differences in the term of proportion of infiltrating cells, activation level (CD69) and function 

(CD107 level) of these cells could be found among the groups, nor for tumor-specific CD8 T 

cells assessed using dextramer staining (Sup Figure 7).  

The dosages of the plasmatic levels of Angiogenin, FGF-2, MCP1 and IP10 were assessed 

during the mice treatments. As shown in Figure 8, an interesting augmentation of the chemo-

attractant molecule MCP1 was detected specifically in the plasma of Poro-Combo-treated 

mice, suggesting that immune infiltration and activation were promoted at the tumor site. 

Interestingly, Poro-Combo treatment was associated with a clear diminution of the plasmatic 

levels of the pro-angiogenic factor FGF-2, which became undetectable as soon as 2 days after 

the start of the treatment (d9). This effect could be related to Poro-Combo toxicity of tumor 

cells and tumor-activated stromal cells and possible anti-angiogenic potential. 
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Discussion 

 

In the present study, we generated a chemically sophisticated tumor-targeted therapeutic 

peptide that contains a multivalent RGD-targeting head and a toxic “poro2” small fragment 

derived from the Bax pro-apoptotic protein. To overcome solubility issues, a special method 

was applied that yielded the successful synthesis of a depsipeptic derivative of the “poro2” 

moiety. This engineered compound offers the benefit of enhanced solubility and the ability to 

switch and return to a classical peptidic sequence under physiological pH. This toxic peptide 

is covalently anchored to the targeting head via a cleavable disulfide bridge, thus allowing it 

to be released into the cytoplasm. 

Since the pioneering work of Ellerby et al. in 1999 35, many efforts have been made to 

generate tumor-targeted toxic peptides initially based on the 14-amino-acid antimicrobial 

peptide KLAKLAKKLAKLAK, called (KLAKLAK)2. Since then, different death-inducing 

peptides were targeted for tumor cells via various specific ligands, such as CNGRC, RGD, 

anti Neuropilin-1 (NRP-1) or E-selectin binding peptides, as well as with small ligands, such 

as folic acid 51-54. The amphipathic toxic peptides are characterized by their positive charges, 

which enable them to bind to negatively-charged cell membranes and cause their disruption, 

eventually leading to cell death. Their mode of action can vary. It was shown that they can 

induce necrosis after plasma membrane disruption, depending on their L- or D- chirality 55, 56, 

apoptosis by the up-regulation of caspases 57, the influx of extracellular Ca2
+, Ca2

+-mediated 

ΔΨm disruption and mitochondrial O2
.− generation 58. However, the cationic peptide 

(KLAKLAK)2 has been reported to have a potency that is too low for it to be used as an 

effective anticancer drug 41. 

As BH3-only proteins either directly or indirectly inhibit prosurvival BCL-2 family members, 

such as BCL-2, BCL-xL and MCL-1, to increase cellular sensitivity to anticancer agents, 



 18

efforts were made to develop so-called BH3 mimetics 59 . Some have entered clinical trials 

(reviewed in 60). A short peptide derived from the orphan nuclear receptor Nur77 was shown 

to bind the N-terminal regulatory region of the anti-apoptotic protein Bcl-2 and convert it into 

a pro-apoptotic killer protein 61. More recently, a pro-necrotic peptide derived from Noxa, a 

BH3-only protein of the Bcl-2 family, was described for its capacity to induce necrosis in 

tumor cells in a caspase-independent manner when associated with a NRP-1-targeting peptide 

51.  

However, one major limitation common to both the BH3-mimetic approach and the targeting 

of non-BH3 sites is their strict dependency on the endogenous levels of the anti-apoptotic Bcl-

2 family of proteins expressed in tumor cells. Moreover, such molecules are also expected to 

be less effective in tumor cells that are mutated or deficient in pro-apoptotic Bax or Bak, 

which are two critical complementary effectors of apoptosis. The pro-apoptotic Bax protein 

contains structurally defined membrane-interacting regions 62, some of them (α1, α9, α5, α6 

and a central α5α6-hairpin motif) with presumed membrane-targeting functions 63-65. It has 

been previously shown that peptides corresponding to the first and/or second helix of the 

central domain of Bax can reproduce the poration activity displayed by the full-length parent 

protein. Hence, the central helices (α5-α6) of Bax carry the minimal structural information to 

form pores in lipid membranes, similar to amphipathic peptide antibiotics 66-70. We previously 

established that a 29-residue peptide (Poro1) corresponding to the extended 5th helix of Bax 

can disrupt the mitochondrial membrane, inducing ΔΨm loss and cytochrome c release 43. 

This Bax-derived peptide was more efficient than (KLAKLAK)2 or the BH3 peptidic domain 

of Bax in inducing apoptosis in tumor cells in vitro. Finally, when it was fused to a 

polyarginine transduction motif, it had potent anticancer activity in nude mice bearing human 

cancer xenografts.  
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In the present work, we reduced the length of this first-generation Bax-derived poropeptide to 

its minimal toxic domain and showed that this so-called Poro2 peptide was efficient in 

inducing cytochrome-c release from mitochondria from a large panel of tumor cell lines 

(n=10). Furthermore, its mitochondria-disruptive activity was insensitive to the presence of 

cholesterol or antiapoptotic Bcl2. This was still true when the active peptide was synthesized 

as a D-enantiomer form, and we proved that it did not affect the integrity of the plasma 

membrane, instead acting preferentially on the mitochondrial compartment. Based on these 

promising results, we decided to link this second-generation poropeptide via a labile bond to a 

multimeric RGD-based tumor targeting agent. We chose RAFT-c[RGD]4, as our previous 

results established that this cargo is an excellent tumor targeting vector, but more importantly, 

because it allows the active clustering and internalization of the αvβ3 integrin receptor 31, 

followed by an efficient intra-cytoplasmic release after reduction of the S-S bridge 71. Our 

data demonstrate that in its final conjugated form (Poro-Combo), our functionalized cargo 

actively targeted melanoma tumors in vivo after intravenous injection and induced tumor 

growth inhibition. We paid particular attention to the tumor model that we chose because we 

wanted to evaluate whether the therapeutic activity generated in vivo also involved antitumor-

immune activity that would be primed by Poro-Combo 72, 73. Indeed, melanoma is a form of 

cancer characterized by its high immunogenicity, which is also known to generate an 

immunosuppressive microenvironment 74. Thus, it was important to evaluate whether the 

death of tumor cells triggered by Poro-Combo could provoke an immunogenic response. To 

this end, we generated humanized mice carrying human melanoma tumors. In this model, 

apoptosis induction was not very strong, and the most obvious phenotype under treatment was 

a reduction of tumor cell proliferation. In particular, we did not observe a significant increase 

in the number of infiltrating cells or their immune activation, which could have indicated the 

presence of activated T lymphocytes or tumor-cytolytic NK cells. However, in addition to the 
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direct toxicity of Poro-Combo for αvβ3 integrin-positive cells, the observed antitumor activity 

was associated with a clear diminution of the systemic level of FGF-2 associated with a 

concomitant increase in the chemoattractant molecule MCP1 in treated animals. This effect is 

of particular interest and needs to be further investigated. 

In conclusion, herein, we described the design, synthesis and evaluation of a novel 

multifunctional, apoptosis-inducing agent that could be further customized, assayed and 

potentially used for tumor-targeted therapy. 
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Legends  

 

 
Figure 1. 
(A) Mitochondrial cytochrome c release assays with truncated Bax[106-134] peptide 
variants. Peptides at different concentrations (2.5 or 10µM) were incubated with isolated 
mitochondria for the indicated durations (min), and the presence of either mitochondrial-
HSP70 or Mitochondrial Pyruvate dehydrogenase kinase 1 (mPDK1) and cytochrome c in the 
mitochondria (M) or in the mitochondrial supernatant (SN) were assessed by immunoblotting 
(IB). MOCK: control lanes with buffer-treated mitochondria. Mitochondria were purified 
from A375 cells. Among the assayed peptides (synthesized with L-amino acids), the first-
generation peptide Bax[106-134] was active at 10µM, 6 peptides were inactive (italics), 2 
were active at 10µM and Bax[109-127] was active at 2.5 µM (bold). Two truncated versions 
of this latter peptide lacking one or two C-terminal amino acids were inactive at 2.5µM 
(bottom). Bax[109-127] was selected as the minimal active peptide. 
. 
(B) (B) Mitochondrial cytochrome c release assays with the Bax[109-127] minimal active 
peptide using mitochondria isolated from various cancerous cell lines. 
Mitochondria isolated from a variety of hematological (top panel) and melanoma (bottom) 
cell lines were incubated with the Bax[109-127] peptide at different concentrations for the 
indicated durations (min), and the presence of mPDK1 or cytochrome c in the mitochondria 
(M) or in the mitochondrial supernatant (SN) was assessed by immunoblotting (IB). MOCK: 
control lanes with buffer-treated mitochondria. For all the assayed cell lines except MeWo, 
mitochondrial cyt-c release was observed at 5µM after 5 min incubation with the peptide  
(C) Mitochondrial cytochrome c release assays with the Bax[109-127] peptide in the all-
D configuration.  
Synthetic all-D peptides were incubated at the concentration of 10µM with isolated 
mitochondria for the indicated durations (min), and the presence of mPDK1 or cytochrome c 
in the mitochondria (M) or in the mitochondrial supernatant (SN) was assessed by 
immunoblotting (IB). MOCK: control lanes with buffer-treated mitochondria. Mitochondria 
were purified from Colo829 cells. A CGG triplet peptide was added to the N-terminal 
position of the Bax[109-127] peptide for allowing subsequent conjugation to the 
RAFT(cRGD) cargo. CGG-Bac[109-127]D induced cytochrome-c release in 5 min at a 
concentration of 10µM, whereas an N-terminally truncated variant peptide (Bax[115-127]D) 
or a control peptide (CGG-Scr-Bax[109-127]D) with a scrambled amino acid sequence of 
peptide Bax[109-127] were inactive (even at 25µM, not shown). 
 
Figure 2: Synthesis of soluble depsi derivative of cgg-Poro2D 
 
Figure 3: Synthesis of Poro-Combo compounds 
 
Figure 4. Disulfide bridge formation of RAFT-(c[RGDfK-]4) and depsi cgg-Poro2D peptide. 
HPLC traces of (a) RAFT-(c[RGDfK-]4), (b) depsi cgg-Poro2D peptide, (c) RAFT-
(c[RGDfK-]4- depsi-cgg-Poro2D) 
 
 
Figure 5: Evaluation of the impact of Poro-Combo (RAFT-c[RGD]4-S-S-depsi-cgg-Poro2D) 
on cellular viability  with a MTT test (A) on two melanoma cell lines Me275 (i) and Colo829 
(ii). (B) Evaluation of the impact of Poro-Combo on cellular apoptosis by measuring Caspase 
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3 activation in three melanoma cell lines Me275 (i), Colo875 (ii) and A375 (iii). The control 
group received saline which is the vehicle for the other groups. Staurosporine (STS) is a 
positive control known to have a submicromolar IC50. Results are presented as mean ±SD. 
Statistical analysis were performed with Student t-test using GraphPad Prism® 6 software. 
 
Figure 6: Inhibition of in vivo tumor growth by RAFT-c(RGD)4-poro2. (A) Melanoma cells 
Me275 were subcutaneously implanted on humice’s right flank. After 6 days, mice received 
one daily intraperitoneal injection of saline (n=6), RAFT-c(RGD)4 (n=8), poro2 (n=7), 
RAFT-c(RAD)4-poro2 (n=4) or the treatment RAFT-c(RGD)4-poro2 (n=7). Mice received 
injections between day 7 and day 13 (arrow). 24 hours after the last injection mice were 
sacrificed. Tumor volume was measured before and during the treatment. (B) At the end of 
the treatment, day 14, tumor volumes were compared between different groups of humice. 
Results are expressed as mean ± SEM. Statistical analysis were performed with Student t-test 
using GraphPad Prism® 6 software. 
 
Figure 7: Poro-Combo induced cell proliferation inhibition and apoptosis in vivo. 
Representative images of sections from tumor xenografts obtained from control mice or mice 
treated with RAFT-cRGD, Poro2, RAFT-RAD-poro2 or Poro-Combo peptides, as indicated. 
Staining of Ki-67, a proliferation marker (left column, objective x40), active caspase-3 to 
measure apoptosis (middle column, objective x40), and of CD31 to visualize angiogenesis 
(right column, objective x10) were shown. Tumor slides from control and treated mice were 
visualized under microscope and Ki67 and cleaved caspase-3 positive cells were quantified. 
Six fields per sample were analyzed, counting 1000 cells per slide in randomly selected fields. 
Histograms represent the percentage of Ki67 and cleaved caspase-3 positive cells ± SEM in 4 
mice. CD31 staining was counted in ten randomly selected fields. Data represent the 
arithmetic mean of CD31 per field ± SEM of 4 mice. 
 
Figure 8 : Impact of RAFT-c(RGD)4-poro2 treatment on angiogenic factors and 
chemokines in the plasma 
Melanoma cells Me275 were subcutaneously implanted on Humice’s right flank. After 6 
days, mice received one daily intraperitoneal injection of saline (n=6), RAFT-c(RGD)4 (n=8), 
poro2 (n=7), RAFT-c(RAD)4-poro2 (n=4) or RAFT-c(RGD)4-poro2 (n=6). Angiogenic 
factors and immune-related chemokines were quantified in the plasma of mice at different 
time points. (A) Quantification of human angiogenin and FGF-2. (B) Quantification of human 
MCP1 and IP10. 
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