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We study the asymptotic behaviour for asymmetric neuronal dynamics in a network of Hopfield neurons. The randomness in the network is modelled by random couplings which are centered Gaussian correlated random variables. We prove that the annealed law of the empirical measure satisfies a large deviation principle without any condition on time. We prove that the good rate function of this large deviation principle achieves its minimum value at a unique Gaussian measure which is not Markovian. This implies almost sure convergence of the empirical measure under the quenched law. We prove that the limit equations are expressed as an infinite countable set of linear non Markovian SDEs.

Introduction

We revisit the problem of characterizing the large-size limit of a network of Hopfield neurons. Hopfield [START_REF] Hopfield | Neural networks and physical systems with emergent collective computational abilities[END_REF] defined a broad class of neuronal networks and characterized some of their computational properties [START_REF] Hopfield | Neurons with graded response have collective computational properties like those of two-state neurons[END_REF][START_REF] Hopfield | Computing with neural circuits-a model[END_REF], i.e. their ability to perform computations. Inspired by his work Sompolinsky and co-workers studied the thermodynamic limit of these networks when the interaction term is linear [START_REF] Crisanti | Dynamics of spin systems with randomly asymmetric bonds: Langevin dynamics and a spherical model[END_REF] using the dynamic mean-field theory developed in [START_REF] Sompolinsky | Relaxational dynamics of the Edwards-Anderson model and the mean-field theory of spin-glasses[END_REF] for symmetric spin glasses. The method they use is a functional integral formalism used in particle physics and produces the self-consistent mean-field equations of the network. This was later extended to the case of a nonlinear interaction term, the nonlinearity being an odd 1 Université Côte d'Azur, Inria, CNRS, LJAD, France. Olivier.Faugeras@inria.fr, 2 New-Jersey Institute of Technology, USA. james.n.maclaurin@njit.edu, 3 Université Côte d'Azur, Inria, France. Etienne.Tanre@inria.fr 1 sigmoidal function [START_REF] Sompolinsky | Chaos in Random Neural Networks[END_REF]. A recent revisit of this work can be found in [START_REF] Crisanti | Path integral approach to random neural networks[END_REF]. Using the same formalism the authors established the self-consistent mean-field equations of the network and the dynamics of its solutions which featured a chaotic behaviour for some values of the network parameters. A little later the problem was picked up again by mathematicians. Ben Arous and Guionnet applied large deviation techniques to study the thermodynamic limit of a network of spins interacting linearly with i.i.d. centered Gaussian weights. The intrinsic spin dynamics (without interactions) is a stochastic differential equation where the drift is the gradient of a potential. They prove that the annealed (averaged) law of the empirical measure satisfies a large deviation principle and that the good rate function of this large deviation principle achieves its minimum value at a unique measure which is not Markovian [START_REF] Guionnet | Dynamique de Langevin d'un verre de spins[END_REF][START_REF] Ben Arous | Large deviations for langevin spin glass dynamics[END_REF][START_REF] Guionnet | Averaged and quenched propagation of chaos for spin glass dynamics[END_REF]. They also prove averaged propagation of chaos results. Moynot and Samuelides [START_REF] Moynot | Large deviations and mean-field theory for asymmetric random recurrent neural networks[END_REF] adapt their work to the case of a network of Hopfield neurons with a nonlinear interaction term, the nonlinearity being a sigmoidal function, and prove similar results in the case of discrete time. The intrinsic neural dynamics is the gradient of a quadratic potential.

We extend this paradigm by including correlations in the random distribution of network connections. There is an excellent motivation for this, because it is commonly thought that neural networks have a small-world architecture, such that the connections are not completely random, but display a degree of clustering [START_REF] Sporns | Networks of the Brain[END_REF]. It is thought that this clustering could be a reason behind the correlations that have been observed in neural spike trains [START_REF] Buzsaki | Rhythms of the Brain[END_REF].

We propose a different method to obtain the annealed LDP to previous work by Ben Arous and Guionnet [START_REF] Ben Arous | Large deviations for langevin spin glass dynamics[END_REF][START_REF] Guionnet | Averaged and quenched propagation of chaos for spin glass dynamics[END_REF], Faugeras and MacLaurin [START_REF] Faugeras | Asymptotic description of stochastic neural networks. i. existence of a large deviation principle[END_REF]. The analysis of these papers centres on the Radon-Nikodym derivative between the coupled state and the uncoupled state, demonstrating that this converges as the network size asymptotes to infinity. By contrast, our analysis centres on the SDE governing the finite-dimensional annealed system. It bears some similarities to the coupling method developed by Sznitman [START_REF] Sznitman | Topics in propagation of chaos[END_REF] for interacting particle systems, insofar as we demonstrate that the finite-dimensional SDE converges to the limiting system superexponentially quickly.

Our method is more along the lines of recent work that uses methods from stochastic control theory to determine the Large Deviations of interacting particle systems [START_REF] Budhiraja | Large deviation properties of weakly interacting processes via weak convergence methods[END_REF]. It is centered on the idea of constructing an exponentially good approximation of the annealed law of the empirical measure under the averaged law of the finite size system.

Outline of model and main result

Let I n = [-n • • • n]
, n ≥ 0 be the set of 2n + 1 integers between -n and n, N := 2n + 1.

For any positive integer n, let J n = (J ij n ) i, j∈In ∈ R N ×N , and consider the system S N (J n ) of N stochastic differential equations

S N (J n ) := dV i t = j∈In J ij n f (V j t )dt + σdB i t i ∈ I n V i 0 = 0 (1) 
where (B i ) i∈In is an N -dimensional vector of independent Brownian motions. We assume for simplicity that V i 0 = 0, i ∈ I n . σ is a positive number. The function f : R → R + is bounded and Lipschitz continuous. We may assume without loss of generality that f (R) ⊂ [0, 1] and that its Lipschitz constant is equal to 1. A typical example is

f (x) = 1 1 + e -4x .
(2)

The weights J n := J jk n j,k∈In are, under the probability γ on (Ω, A), centered correlated Gaussian random variables with a shift invariant covariance function given by

E γ J ij n J kl n = 1 N R J ((k -i) mod I n , (l -j) mod I n ) (3) 
Remark 2.1. Expectations w.r.t. γ are noted E γ throughout the paper.

Remark 2.2. Model (1) is a slightly simplified version of the full Hopfield model which includes a linear term and a general initial condition:

S N f ull (J n ) := dV i t = -αV i t dt + j∈In J ij n f (V j t )dt + σdB i t i ∈ I n . Law(V 0 ) = µ ⊗N 0 (4)
α is a positive constant and µ 0 is a probability measure on R with finite variance.

Adding the extra linear term and a more general initial condition does not change the nature of the mathematical problems we address but complicates the notations.

Here R J is independent of n and such that 1.

|R J (k, l)| ≤ a k b l [START_REF] Buzsaki | Rhythms of the Brain[END_REF] where the two positive sequences (a k ) and (b l ) are such that 

a k = O 1/|k| 3
2. There exists a centered Gaussian stationary process (J ij ) i,j∈Z with autocorrelation R J .

Because of [START_REF] Buzsaki | Rhythms of the Brain[END_REF] this process has a spectral density noted RJ given by

RJ (ϕ 1 , ϕ 2 ) = k,l∈Z R J (k, l)e -ikϕ 1 e -ilϕ 2 , (8) 
with i = √ -1. We assume that this spectral density is strictly positive: RJ (ϕ 1 , ϕ 2 ) > 0 [START_REF] Ellis | Entropy, large deviations, and statistical mechanics[END_REF] for all ϕ 1 , ϕ 2 ∈ [-π, π[.

Remark 2.3. The hypotheses [START_REF] Crisanti | Dynamics of spin systems with randomly asymmetric bonds: Langevin dynamics and a spherical model[END_REF] guarantee that the Fourier transform

R(ϕ, 0) = k,l∈Z R J (k, l)e -ikϕ
is three times continuously differentiable on [-π, π]. We provide a short proof.

Proof. Define Q J (k) := l∈Z R J (k, l). This is well defined since the series in the right hand side is absolutely convergent. Because |Q J (k)| ≤ ba k , Q J (k) is O(1/|k| 3 ) and hence its Fourier transform RJ (ϕ, 0) (see [START_REF] Dembo | Large deviations techniques[END_REF]) is three times continuously differentiable.

We have the following Proposition.

Proposition 2.4. For each J n ∈ R N ×N , S N (J n ) has a unique weak solution.

Proof. For each J n , we have a standard system of stochastic differential equations with smooth coefficient (Lipschitz continuous). Existence and uniqueness of the solution is well known.

The solution V n := (V j ) j∈In to the above system defines a T N -valued random variable, where T = C([0, T ], R).

Given a metric space X, in what follows X = T , T N , or T Z , and the corresponding distance d we consider the measurable space (X, B d ), where B d is the Borelian σ-algebra induced by the topology defined by d, and note P(X) the set of probability measures on (X, B d ).

We note P ∈ P(T ), the law of each scaled Brownian motion σB i , P ⊗N ∈ P(T N ) the law of N independent scaled Brownian motions σB j , j ∈ I n , and P ⊗Z ∈ P(T Z ) the law of (σB j t ) j∈Z . We also note P N (J n ) ∈ P(T N ) the law of the solution to S N (J n ).

We note u = (u i ) i∈Z an element of T Z and u n = (u i ) i∈In its projection on T N . Given µ ∈ P(T Z ) we note µ In ∈ P(T N ) its marginal over the set of coordinates of u n .

Because of the shift invariance of the covariance R J we are naturally led to consider stationary probability measures on T Z . For this, let S i be the shift operator acting on T Z by (S i u) j = u i+j , u ∈ T Z , i, j ∈ Z, and let P S T Z be the space of all probability measures that are invariant under S. This property obviously implies the invariance under S i , for all integers i. The periodic empirical measure μn : T N → P S (T Z ) is defined to be

μn (u n ) = 1 N i∈In δ S i un,p , (10) 
where u n,p ∈ T Z is the periodic interpolant of u n , i.e. such that u j n,p := u j mod In n . Let Π n (J n ) = P N (J n ) • μ-1 n ∈ P P S (T Z ) be the (quenched) law of μn (V n ) under P N (J n ), and

Π n := E γ [Π n (J n )] = E γ P N (J n ) • μ-1
n ∈ P P S (T Z ) be the annealed (averaged) law of μn (V n ) under the averaged law Q n := E γ [P N (J n )]. Finally let Π n 0 = P ⊗N • μ-1 n be the law of μn (σB n ), i.e. the law of the empirical measure under P ⊗N .

We metrize the weak topology on T Z with the following distance

d T (u, v) = i∈Z b i f (u i ) -f (v i ) T (11) 
where f (u i ) -f (v i ) T = sup t∈[0,T ] |f (u i t ) -f (v i t )| and the positive sequence b i is defined by [START_REF] Buzsaki | Rhythms of the Brain[END_REF].

We use the Wasserstein-1 distance to metrize the weak topology on P(T Z ): given µ, ν ∈ P(T Z ) we define

D T (µ, ν) = inf ξ∈C(µ,ν) d T (u, v) dξ(u, v), (12) 
where C(µ, ν) denotes the set of probability measures on T Z × T Z with marginals µ and ν on the first and second factors (couplings).

The following is our main result.

Theorem 2.5.

(i) The sequence of laws Π n n∈Z + satisfies a Large Deviation Principle with respect to the weak topology on P S (T Z ), with good rate function H(µ) : P S T Z → R.

(ii) The rate function H has the following structure. If it is not the case that µ In P ⊗N for all n, then H(µ) = ∞, otherwise H(µ) = inf ζ∈P S (T Z ):Ψ(ζ)=µ

I (3) (ζ) , (13) 
where the measurable function Ψ : P S (T Z ) → P S (T Z ) is defined in Section 3.2. and 3) in Theorem 2.6.

I (
(iii) H has a unique zero µ * = Ψ(P ⊗Z ).

(iv) µ * is the law of the unique weak solution Z of the following system of McKean-Vlasovtype equations,

Z j t = σW j t + σ t 0 θ j s ds (14) 
θ j t = σ -2 i∈Z t 0 L i-j µ * (t, s)dZ i s .
The sequence of processes σW j j∈Z is distributed as P ⊗Z , and L µ * is defined in Remark 3.3 and Appendix C.1. Furthermore µ * is Gaussian.

The proof of this theorem uses the following, classical, theorem [START_REF] Bryc | Large deviations and strong mixing[END_REF] and [START_REF] Dembo | Large deviations techniques[END_REF]Section 6]. Recall that Π n 0 is the law of the empirical measure under P ⊗N . Theorem 2.6. The sequence of laws Π n 0 n∈Z + satisfies a large deviation principle with good rate function I (3) on P S (T Z ). The specific relative entropy is

I (3) (µ) = lim n→∞ 1 N I (2) µ In |P ⊗N , (15) 
where, for measures ν and ρ on R N , the relative entropy I (2) is defined by

I (2) (ρ|ν) =    R N log dρ dν (x)ν(dx) if ρ ν +∞ otherwise,
see e.g. [START_REF] Ellis | Entropy, large deviations, and statistical mechanics[END_REF]. The unique zero of I (3) is P ⊗Z .

A standard argument yields that the averaged LDP of the previous theorem implies almost sure convergence of the empirical measure under the quenched law [START_REF] Ben Arous | Large deviations for langevin spin glass dynamics[END_REF]. This is stated in the following corollary.

Corollary 2.7. For almost every realization of the weights and Brownian motions,

μn (V n ) → µ * as N → ∞.
Proof. The proof is standard. It follows from an application of Borel-Cantelli's Lemma to Proposition 2.9.

Remark 2.8. Note that this implies that for all f ∈ C b (T Z ) and for almost all ω ∈ Ω. lim

N →∞ 1 N T N i∈In E P N (Jn)(ω) f (S i V n,p ) = T Z f (v) dµ * (v) (16) 
Proposition 2.9. For any closed set F of P S (T Z ) and for almost all J n , lim sup

N →∞ 1 N log P N (J n )(μ n ∈ F ) ≤ -inf µ∈F H(µ).
Proof. The proof, found in [1, Th. 2.7], follows from an application of Borel-Cantelli's Lemma.

Remark 2.10. Note that in the case we assume the synaptic weights to be uncorrelated, equations [START_REF] Hopfield | Neural networks and physical systems with emergent collective computational abilities[END_REF] reduce to

Z t = σW t + σ -1 t 0 s 0 L µ * (s, u)dZ u ds (17) 
which is exactly the one found in [START_REF] Ben Arous | Large deviations for langevin spin glass dynamics[END_REF]Th. 5.14].

3 Proof of Theorem 2.5

Our strategy is partially inspired from the one in [START_REF] Ben Arous | Large deviations for langevin spin glass dynamics[END_REF][START_REF] Guionnet | Averaged and quenched propagation of chaos for spin glass dynamics[END_REF]. We apply Girsanov's Theorem to S N (J n ) to obtain the Radon-Nikodym derivative of the measure P N (J n ) with respect to the measure P ⊗N of the system of N uncoupled neurons. We then show that the average Q n of P N (J n ) w.r.t. to the weights is absolutely continuous w.r.t. P ⊗N and compute the corresponding Radon-Nikodym derivative which characterizes the averaged (annealed) process. As in the work of Ben Arous and Guionnet [START_REF] Ben Arous | Large deviations for langevin spin glass dynamics[END_REF], the idea is to deduce our LDP from the one satisfied by the sequence (Π n 0 ) n∈N . We differ from the work of Ben Arous and Guionnet in that in order to obtain the Large Deviation Principle that governs this process we approximate the averaged system of SDEs with a system with piecewise constant in time coefficients by discretizing the time interval [0, T ] into m subintervals of size T /m, for m an integer. This system allows us to construct a sequence of continuous maps Ψ m : P S (T Z ) → P S (T Z ) and a measurable map Ψ : P S (T Z ) → P S (T Z ) such that the sequence Ψ m converges uniformly toward Ψ on the level sets of the good rate function of the LDP satisfied by Π n 0 . We then show that for a specific choice m(n) of m as a function of n the sequence Π n 0 • (Ψ m(n) ) -1 is an exponentially good approximation of the sequence Π n . The LDP for Π n and the corresponding good rate function then follow from a Theorem by Dembo and Zeitouni, [START_REF] Dembo | Large deviations techniques[END_REF]Th. 4.2.23].

In more details, we use Girsanov's Theorem to establish in Section 3.1 the SDEs whose solution's law is the averaged law Q n . In Section 3.2 we construct an approximation of these equations by a) discretizing the time interval [0, T ] with m subintervals and b) cutting off the spatial correlation of the weights so that it extends over [-q m , q m ] rather than over [-n, n], q m ≤ n. We then use this approximation to construct the family (Ψ m ) m∈N of continuous maps. Section 3.3 contains the proof of our main Theorem 2.5. This proof contains two main ingredients, the exponential tightness of (Π n ) n∈Z + proved in Section 3.4, and the existence of an exponential approximation of the family of measures (Π n ) n∈Z + by the family of measures (Π m,n ) m,n∈Z + = Π n 0 • (Ψ m ) -1 constructed from the law of the solutions to the approximate equations. The existence of this exponential approximation and the possible choices for m and q m as functions of n are proved in Section 3.5. The unique minimum of the rate function is characterized in Section 3.6.

The SDEs governing the Finite-Size Annealed Process

For every J n ∈ R N ×N , P N (J n ) is a probability measure on T N and as a consequence of Girsanov's theorem

dP N (J n ) dP ⊗N F T = exp 1 σ i∈In T 0 j∈In J ij n f (X j t ) dB i t - 1 2σ 2 i∈In T 0 j∈In J ij n f (X j t ) 2 dt    ,
where

X j t = σB j t (18) 
In Proposition 3.4 below, we demonstrate that the Radon-Nikodym derivative of Q n w.r.t. P ⊗N exists and is a function of the empirical measure. To facilitate this, we must introduce intermediate centered Gaussian Processes (G i t ) i∈In,t∈[0,T ] , for which it turns out that their probability law is entirely determined by the empirical measure, i.e.

G i t = j∈In J ij n f (X j t ), i ∈ I n . (19) 
It can be verified that the covariance is entirely determined by the empirical measure, i.e., according to equation ( 3)

E γ G i t G k s = Ω G i t (ω)G k s (ω) dγ(ω) = 1 N l,j∈In R J ((k -i) mod I n , (l -j) mod I n )f (X j t )f (X l s ) = m∈In R J ((k -i) mod I n , m) 1 N j∈In f (X j t )f (X (j+m) mod In s ) = m∈In R J ((k -i) mod I n , m) T Z f (v 0 t )f (v m s ) dμ n (X n )(v) := K k-i μn(Xn) (t, s). ( 20 
)
Remark 3.1. Note that we have shown that under γ, the sequence G i , i ∈ I n , is centered, stationary with covariance K μn(Xn) . To make this dependency explicit we write γ μn(Xn) the law under which the Gaussian process (G i t ) i∈In,t∈[0,T ] has mean 0 and covariance K μn(Xn) .

Before we prove the following proposition which is key to the whole approach we need to introduce a few more notations. We note

Λ t (G) := exp -1 2σ 2 i∈In t 0 (G i s ) 2 ds E γ μn(Xn) exp -1 2σ 2 i∈In t 0 (G i s ) 2 ds , (21) 
and define the new probability law γ μn(Xn)

t := Λ t (G) • γ μn(Xn) . ( 22 
)
Remark 3.2. More generally given a measure µ in P S (T Z ) we note γ µ the law under which the Gaussian process (G i t ) i∈In,t∈[0,T ] has mean 0 and covariance K µ such that

K k µ (t, s) = m∈In R J (k, m) T Z f (v 0 t )f (v m s ) dµ(v)
and

γµ t := Λ µ t (G) • γ µ , where Λ t (G) := exp -1 2σ 2 i∈In t 0 (G i s ) 2 ds E γ µ exp -1 2σ 2 i∈In t 0 (G i s ) 2 ds .
The properties of K µ are proved in Appendix C. Note that we do not make explicit the dependency of Λ on µ since it is always clear from the context, see next remark.

Remark 3.3. To each covariance K µ defined in Remark 3.2 we associate a new covariance

L t µ such that L t,k µ (s, u) = E γ µ Λ t (G)G 0 s G k u = E γµ t G 0 s G k u for all 0 ≤ s, u ≤ t.
The properties of L t µ , in particular the fact that it is a covariance, are stated and proved in Appendix C. For the sake of simplicity and because it is always clear from the context, we drop the upper index t and write L k µ instead of L t,k µ .

Proposition 3.4. The measures Q n and P ⊗N are equivalent, with Radon-Nikodym derivative over the time interval [0, t] equal to

dQ n dP ⊗N Ft = exp j∈In t 0 θ j s dB j s - 1 2 j∈In t 0 θ j s 2 ds , where (23) 
θ j t = σ -2 E γ μn(Xn) t i∈In G j t t 0 G i s dB i s . (24) 
Proof. As stated above, by the Girsanov's Theorem we have

dP N (J n ) dP ⊗N Ft = exp 1 σ i∈In t 0 j∈In J ij n f (X j s ) dB i s - 1 2σ 2 i∈In t 0 j∈In J ij n f (X j s ) 2 ds    .
Applying the Fubini-Tonelli theorem to the positive measurable function dP N (Jn)

dP ⊗N
we find that Q n < < P ⊗N and

dQ n dP ⊗N Ft = E γ exp 1 σ i∈In t 0 j∈In J ij n f (X j s ) dB i s - 1 2σ 2 i∈In t 0 j∈In J ij n f (X j s ) 2 ds
Moreover, under γ, j∈In J ij n f (X j t ), i ∈ I n , t ≤ T is a centered Gaussian process with covariance K μn(Xn) , thanks to [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF] and [START_REF] Shiryaev | Probability[END_REF]. Therefore we have:

dQ n dP ⊗N Ft = E γ μn(Xn) exp 1 σ i∈In t 0 G i s dB i s × exp - 1 2σ 2 i∈In t 0 G i s 2 ds .
Divide and multiply the right hand side by

E γ μn(Xn) exp -1 2σ 2 i∈In t 0 (G i s )
2 ds to obtain, thanks to ( 21) and ( 22):

E γ μn(Xn) exp 1 σ i∈In t 0 G i s dB i s - 1 2σ 2 i∈In t 0 G i s 2 ds = E γ μn(Xn) exp - 1 2σ 2 i∈In t 0 G i s 2 ds × E γ μn(Xn) t exp 1 σ i∈In t 0 G i s dB i s ( 25 
)
By Gaussian calculus and ( 22)

E γ μn(Xn) t exp 1 σ i∈In t 0 G i s dB i s = exp    1 2σ 2 E γ μn(Xn) t   i∈In t 0 G i s dB i s 2      = exp    1 2σ 2 E γ μn(Xn)   i∈In t 0 G i s dB i s 2 Λ t (G)      This shows that dQ n dP ⊗N Ft = E γ μn(Xn) exp - 1 2σ 2 i∈In t 0 G i s 2 ds ×exp    1 2σ 2 E γ μn(Xn)   i∈In t 0 G i s dB i s 2 Λ t (G)      (26) 
The above expression demonstrates that Q n |Ft is equivalent to P ⊗N |Ft for all t ∈ [0, T ], since the above exponential cannot be zero on any set A ∈ B(T N ) such that P ⊗N (A) = 0. Thus by Girsanov's Theorem [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF],

Z t = exp j∈In t 0 θ j s dB j s - 1 2 j∈In t 0 θ j s 2 ds ,
where Z t = dQ n dP ⊗N Ft , and

θ j t = d dt log Z • , B j • t . θ j t = d dt B j • , 1 2σ 2 E γ μn(Xn)   i∈In • 0 G i s dB i s 2 Λ •   t + d dt B j • , log E γ μn(Xn) exp - 1 2σ 2 i∈In • 0 G i s 2 ds t . (27) 
the second bracket only contains a finite variation process, so its bracket with B j is 0.

Furthermore the probability measure γ μn(Xn) ∈ P S (T Z ) does not change with time, hence we may commute the bracket and expectation as follows,

θ j t =E γ μn(Xn)   d dt B j • , 1 2σ 2 Λ • (G) i∈In • 0 G i s dB i s 2 t   = 1 2σ 2 E γ μn(Xn) 2 i∈In Λ t (G)G j t t 0 G i s dB i s , (28) 
since Λ t is time-differentiable, and we have used Ito's Lemma. To be sure, we have carefully double checked (using multiple applications of Ito's Formula) that the time-differentiable terms in (27) are of the correct form. We thus have proved the Proposition, using [START_REF] Sompolinsky | Relaxational dynamics of the Edwards-Anderson model and the mean-field theory of spin-glasses[END_REF] again.

Remark 3.5. By writing G j , G i and Λ t (G) as functions of the synaptic weights in (28) and using their stationarity, θ j t can be rewritten as

θ j t = σ -2 i∈In E γ μn(Xn) t G 0 t t 0 G i s dB i+j s = σ -2 i∈In E γ μn(Xn) Λ t (G)G 0 t t 0 G i s dB i+j s = σ -2 i∈In E γ Λ t (G)G 0 t t 0 G i s dB i+j s and G i t = k∈In J ik n f (X k t )
, with indexes taken modulo I n .

Since Q n and P ⊗N are equivalent, by Girsanov's Theorem we obtain the following immediate corollary of Proposition 3.4. Part (ii) of the corollary is immediate from the definitions.

Corollary 3.6. (i) Let V n ∈ T N have law Q n .
There exist processes W j t that are independent Brownian motion under Q n and such that V n is the unique weak solution to the following equations

V j t = σW j t + σ t 0 θ j s ds (29) 
θ j t = σ -2 i∈In E γ μn(Vn) t G 0 t t 0 G i s dV i+j s . ( 30 
) (ii) The law of μn (σW n ) under Q n is Π n 0 .
3.2 Approximation of the Finite-Size Annealed Process and construction of the sequence of maps Ψ m

It is well known that Large Deviations Principles are preserved under continuous transformations. However we cannot in general find a continuous mapping Γ n on P S (T Z ) such that Γ n μn (σW n ) = μn (V n ), where V n is defined in Corollary 3.6. Therefore to prove the LDP, we will use 'exponentially equivalent approximations'. This technique approximates the mapping μn (σW n ) → μn (V n ) by a sequence of continuous approximations. Our next step therefore is to define the continuous map Ψ m : P S (T Z ) → P S (T Z ) (for positive integers m),

which will be such that for any δ > 0, the probability that D T Ψ m (μ n (σW n )), μn (V n ) > δ is superexponentially small. These approximations will converge to the map Ψ that is defined in the proof of Theorem 2.5. This is done in two steps: First approximate the system (29)-(30) by discretizing the time and cutting off the correlation between the synaptic weights and, second, by using this approximation to construct the map Ψ m from P S (T Z ) to itself.

Approximation of the system of equations (29)-(30)

To this aim, we use an Euler scheme type approximation: the integrand of V j t is replaced by a piecewise constant in time version. Let ∆ m , m a strictly positive integer, be a partition of [0, T ] with steps η m := T m into the (m + 1) points pη m , for p = 0 to m, and for any t ∈ [0, T ], write t (m) := pη m such that t ∈ [pη m , (p + 1)η m ).

To obtain the Large Deviation Principle, we need to approximate the expression for V n in Corollary 3.6 by a continuous map. The approximate system has finite-range spatial interactions. The spatial interactions have range Q m = 2q m + 1 (with 0 < q m < n). The parameters m and q m are specified as functions of n in Remark D.2 in the proof of Lemma 3.21.

More precisely, following (29), the approximate system is of the form, for

j ∈ I n V m,j t = σ -1 i∈Iq m t 0 E γ μn(V m n ) Λ s (m) (G m )G m,0 s (m) s (m) 0 G m,i u (m) dV m,i+j u ds + σW j t (31) 
indexes i + j are taken modulo I n . The I qm -periodic centered stationary Gaussian process (G m,i t ) i∈Iq m ,t∈[0,T ] is defined by

G m,i t = k∈In J ik n,m f (V m,k t ), i ∈ I qm , (32) 
where the {J ik n,m } i∈Iq m ,k∈In are centered Gaussian Random variables with covariance (remember (3))

E γ J ij n,m J kl n,m = 1 N R J (k -i mod I qm , l -j mod I n ) 1 Iq m (l -j mod I n ), (33) 
where 1 Iq m is the indicator function of the set I qm . Note that the sum in (32) is for k ∈ I n .

The W j t s are Brownian motions and (remember ( 21))

Λ t (m) (G m ) := exp -1 2σ 2 t (m) 0 i∈Iq m (G m,i s ) 2 ds E γ μn(V m n ) exp -1 2σ 2 t (m) 0 i∈Iq m (G m,i s ) 2 ds , (34) 
It is important for the upcoming definition of the map Ψ m that the covariance between the Gaussian variables (G m,i t ) can be written as a function of the empirical measure μn (V m n ) which we now demonstrate. One verifies easily that

Cov(G m,i t , G m,k s ) = j,l∈In Cov(J ij n,m , J kl n,m )f (V m,j t )f (V m,l s ) = 1 N j,l∈In R J (k -i mod I qm , l -j mod I n ) 1 Iq m (l -j mod I n )f (V m,j t )f (V m,l s ) = K∈Iq m R J (k -i mod I qm , K) 1 N j∈In f (V m,j t )f (V m,j+K s ) = K∈Iq m R J (k -i mod I qm , K) f (w 0 t )f (w K s ) dμ n (V m n )[w] = K∈Iq m R J (k -i mod I qm , K)E μn(V m n ) f (w 0 t )f (w K s ) . (35) 
This implies that (31) can be rewritten

V m,j t = σ -1 k∈Iq m t 0 E γ μn(V m n ) s (m) G m,0 s (m) s (m) 0 G m,k u (m) dV m,k+j u ds + σW j t , j ∈ I n (36) or          V m,j t = σW j t + σ t 0 θ m,j s ds θ m,j t = σ -2 k∈Iq m E γ μn(V m n ) t (m) G m,0 t (m) t (m) 0 G m,k s (m) dV m,k+j s , j ∈ I n (37)

Construction of the sequence of maps Ψ m

In order to construct the map Ψ m we rewrite (36) in terms of the increment of

V m t -V m t (m)
of the process V m :

V m,j t = V m,j t (m) +σ -1 k∈Iq m t t (m) E γ μn(V m n ) s (m) G m,0 s (m) s (m) 0 G m,k u (m) dV m,k+j u ds+σ(W j t -W j t (m) ), j ∈ I n . (38) 
We can now generalize (38) by considering a general measure ν in P S (T Z ) and simply replacing γ μn(V m n ) s by γν s in this equation. This is the basic idea but we have to be slightly more careful.

In detail, following Remark 3.1, given ν = (ν 1 , ν 2 ) ∈ P S ((T Z ) 2 ) we define the I qm - periodic centered stationary Gaussian process (G m,i t ) i∈Iq m ,t∈[0,T ] , i.e. its covariance function, by (patterning after (35))

Cov(G m,i t , G m,k s ) = E γ ν 1 G m,i t G m,k s = K∈Iq m R J (k -i mod I qm , K)E ν 1 f (w 0 t )f (w K s ) . (39) 
Given two elements X and Y of T Z we define the m elements

Z u of T Z for u = 0, • • • , m -1 by ∀t ∈ [uη m , (u + 1)η m ], j ∈ Z, Z u,j t = Y j uηm + σ -1 i∈Iq m t uηm E γν 1 uηm G m,0 uηm u-1 v=0 (v+1)ηm vηm G m,i vηm dY u,i+j v ds + σ(X j t -X j uηm ) (40) Z u,j t = Y j t , t ≤ uη m , u > 0 and Z u,j t = Z u,j (u+1) 
ηm , t ≥ (u + 1)η m . Remark 3.7. Note that (a) if X j t and Y j t are N -periodic, so is Z j t .

(b) the expected value E This defines the sequence of mappings ψ m u :

P S ((T Z ) 2 ) × (T Z ) 2 → (T Z ) 2 , u = 0, • • • , m - 1, by ψ m u (ν, Y, X) = (Z u , X), (41) 
the sequence of mappings Ψ m u :

P S ((T Z ) 2 ) → P S ((T Z ) 2 ), u = 0, • • • , m -1 by Ψ m u (ν) = ν • ψ m u (ν, •, •) -1 , (42) 
and finally the mapping Ψ m : P S (T Z ) → P S (T Z ) by

Ψ m (µ) = (Ψ m m-1 • • • • • Ψ m 0 • Ψ 0 (µ)) 1 , (43) 
where Ψ 0 : P(T Z ) → P((T Z ) 2 ) is defined by

Ψ 0 (µ) = µ • ι, (44) 
and ι : T Z → (T Z ) 2 is defined as

ι(x) j = (0, x j ) ( 45 
)
We then have the following Lemma.

Lemma 3.8. The function Ψ m defined by (43) is continuous in (P S (T Z ), D T ) and satisfies

Ψ m (μ n (σW n )) = μn (V m n ),
where V m n is the solution to (36). Proof. Ψ m is continuous: Recall the formula (40) for Z u,j t :

Z u,j t = Y j uηm + σ -1 i∈Iq m t uηm E γν 1 uηm G m,0 uηm u-1 v=0 (v+1)ηm vηm G m,i vηm dY u,i+j v ds + σ(X j t -X j uηm )
Note that

(v+1)ηm vηm G m,i vηm dY u,i+j v = G m,i vηm Y u,i+j (v+1)ηm -Y u,i+j vηm ,
and hence 

E γν 1 uηm G m,0 uηm u-1 v=0 (v+1)ηm vηm G m,i vηm dY u,i+j v = E γ ν 1 Λ uηm (G m )G m,0 uηm u-1 v=0 G m,i vηm Y u,i+j (v+1)ηm -Y u,i+j vηm = u-1 v=0 E γ ν 1 Λ uηm (G m )G m,0 uηm G m,i vηm Y u,i+j ( 
Z u,j t = Y j uηm + σ -1 i∈Iq m t uηm u-1 v=0 L i ν 1 (uη m , vη m )(Y u, i+j (v+1)ηm -Y u, i+j vηm ) ds + σ(X j t -X j uηm ), t ∈ [uη m , (u + 1)η m ]
The quantities L i ν 1 (uη m , vη m ) are defined in Remark 3.3 and in Appendix C. The continuity of ψ m u follows from the facts that this equation is linear in X, Y and Z, and the mapping ν → L ν 1 is continuous, see Proposition C.10. The continuity of Ψ m u follows from (42) and that of Ψ m from (43) and the continuity of Ψ 0 defined by (44) and (45).

Ψ m (μ n (σW n )) = μn (V m n )
, where V m n is the solution to (36): We use the following Lemma. Lemma 3.9.

(i) We have μn (X n )•ι = μn (0 n , X n ) ∈ P S ((T Z ) 2 ) for all X n ∈ T N , where 0 n = (0, • • • , 0) ∈ T N . (ii) Let X n,2 = (X 1 n , X 2 n ) be an element of (T N ) 2 , and μn (X n,2 ) = 1 N i∈In δ (S i X 1 n,p ,S i X 2 n,p )
(remember [START_REF] Faugeras | Asymptotic description of stochastic neural networks. i. existence of a large deviation principle[END_REF]) the corresponding empirical measure in P S ((T Z ) 2 ). Let ϕ : (T Z ) 2 → (T Z ) 2 , be a measurable function. Then it is true that

μn (X n,2 ) • ϕ -1 = μn (ϕ(X n,2 )),
where, with a slight abuse of notation, if X n,2,p ∈ (T Z ) 2 is the periodic extension of

X n,2 ∈ (T N ) 2 , i.e. (X 1 n,p , X 2 n,p ), and ϕ(X n,2,p ) = (Y 1 , Y 2 ) ∈ (T Z ) 2 we define ϕ(X n,2 ) = ϕ(X n,2,p ) = ((Y 1 -n , • • • , Y 1 n ), (Y 2 -n , • • • , Y 2 n ))
. We first prove that Lemma 3.9 is enough to conclude the proof of Lemma 3.8. First, statement (i) of Lemma 3.9 implies

Ψ 0 (μ n (σW n )) = μn (σW n ) • ι = μn (0 n , σW n ).
Going one step further, and using the definition (42) and statement (ii) of Lemma 3.9

Ψ m 0 (Ψ 0 (μ n (σW n ))) = Ψ m 0 (μ n (0 n , σW n )) = μn (0 n , σW n ) • ψ m 0 (μ n (0 n , σW n ), •, •) -1 = μn (ψ m 0 (μ n (0 n , σW n ), 0 n , W n )) = μn ( 0 V m , σW n ), where 0 V m is equal to the solution of (36) on the time interval [0, η m ]. According to Re- mark 3.7, 0 V m,j t is N -periodic in the variable j for t ∈ [0, η m ]. Next we have Ψ m 1 (Ψ m 0 (Ψ 0 (μ n (σW n )))) = Ψ m 1 (μ n ( 0 V m , σW n )) = μn ( 0 V m , σW n ) • ψ m 1 (μ n ( 0 V m , σW n ), •, •) -1 = μn (ψ m 1 (μ n ( 0 V m , σW n ), 0 V m , σW n )) = μn ( 1 V m , σW n )
, where 1 V m is equal to the solution of (36) on the time interval [0, 2η m ], and again N -periodic.

One concludes that

Ψ m m-1 • • • • • Ψ m 0 • Ψ 0 (μ n (σW n )) = μn ( m-1 V m , σW n )
, where m-1 V m is equal to the N -periodic solution of (36) on the time interval [0, mη m ] = [0, T ] i.e. V m n . Therefore,

Ψ m (μ n (σW n )) = (Ψ m m-1 • • • • • Ψ m 0 • Ψ 0 (μ n (σW n ))) 1 = (μ n ( m-1 V m , σW n )) 1 = μn ( m-1 V m ) = μn (V m n )
We now prove Lemma 3.9.

Proof of Lemma 3.9.

(i) For any Borelian of (T Z ) 2 we have μn

(X n ) • ι(A) = μn (X n )(ι -1 (A)) = μn (X n )((A ∩ {0 × T Z }) 2 )
, where (A ∩ {0 × T Z }) 2 is the second coordinate y of the elements of A of the form (0, y). This means that μn (X n ) • ι = μn (0 n , X n ).

(ii) Let A be a Borelian of (T Z ) 2 . We have

(μ n (X n,2 ) • ϕ -1 )(A) = μn (X n,2 )(ϕ -1 (A)) = μn (ϕ(X n,2 ))(A),
and the conclusion of the Lemma follows.

Proof of Theorem 2.5.(i)-(iii)

It turns out to be convenient, in order to prove the Theorem, to use the L 2 distance on T Z

given by

d L 2 (u, v) = i∈Z b i f (u i ) -f (v i ) L 2 (46) 
where

f (u i ) -f (v i ) 2 L 2 = T 0 f (u i t ) -f (v i t ) 2 dt.
The reason for this is that we are then able to use the tools of Fourier analysis since the measures we consider are shift invariant, i.e. invariant to spatial translations.

Let D T,L 2 be the corresponding Wasserstein-1 metric on P(T Z ) induced by d L 2 (u, v). Remark 3.10. The topology induced by D T,L 2 on P(T Z ) is coarser than the one induced by D T . Hence it will suffice for us to prove the LDP with respect to the topology on P(T Z ) induced by the metric D T,L 2 . This is because we prove in Lemma 3.15 that the sequence Π n is exponentially tight for the topology induced by D T on P(T Z ). We can then use [START_REF] Dembo | Large deviations techniques[END_REF]Corollary 4.2.6] which states that if Π n satisfies an LDP for a coarser topology, then it does satisfy the same LDP for a finer topology. Lemma 3.15 is proved in Section 3.4.

We use [START_REF] Dembo | Large deviations techniques[END_REF]Th. 4.2.23] to prove the LDP for μn (V n ) on P S (T Z ) induced by the metric D T,L 2 . The common probability space in which we perform the exponentially equivalent approximations is (T N , Q n ) which contains the random variable (V j t ), as well as (as explained in Corollary 3.6) the random variables (σW j t ) which are distributed as P ⊗N . We approximate μn (V n ) by Ψ m μn (σW n ) . It is noted in Lemma 3.8 that the approximations Ψ m are continuous with respect to the topology induced by D T , so that they must also be continuous with respect to the topology induced by D T,L 2 .

The proof is based on Lemma 3.16. According to this Lemma for any j ∈ N * , we have

lim m→∞ lim n→∞ 1 N log Q n D T,L 2 Ψ m μn (σW n ) , μn (V n ) > 2 -j-1 = -∞.
We define m j to be the smallest integer strictly bigger than m j-1 such that sup

m≥m j lim n→∞ 1 N log Q n D T,L 2 Ψ m μn (σW n ) , μn (V n ) > 2 -j-1 ≤ -j. ( 47 
)
By construction, the sequence (m j ) j≥1 is strictly increasing and hence lim j→∞ m j = ∞.

Next define the sets

A j = µ : D T,L 2 Ψ m j (µ), Ψ m j+1 (µ) ≤ 2 -j , j ∈ N * , (48) 
and the set

A = lim inf k A k = j∈N + k≥j A k . ( 49 
)
The following Lemma shows that A is not empty.

Lemma 3.11.

If I (3) (µ) < ∞, then µ ∈ A.
Proof. We prove that if I (3) (µ) < j, then µ ∈ A j and so we also have µ ∈ k≥j A k . By Theorem 2.6, we know that

-inf µ∈A c j I (3) (µ) ≤ lim n→∞ 1 N log Π n 0 A c j ≤ lim n→∞ 1 N log Π n 0 A c j . (50) 
But

A c j ⊂ {µ, D T,L 2 Ψ m j (µ, μn (V n ) > 2 -(j+1) } ∪ {µ, D T,L 2 Ψ m j+1 (µ), μn (V n ) > 2 -(j+1) }.
We deduce by Corollary 3.6 that

Π n 0 A c j ≤ Π n 0 D T,L 2 Ψ m j (µ), μn (V n ) > 2 -(j+1) + Π n 0 D T,L 2 Ψ m j+1 (µ), μn (V n ) > 2 -(j+1) ≤Q n D T,L 2 Ψ m j μn (σW n ) , μn (V n ) > 2 -(j+1) + Q n D T,L 2 Ψ m j+1 μn (σW n ) , μn (V n ) > 2 -(j+1) ≤Q n D T,L 2 Ψ m j μn (σW n ) , μn (V n ) > 2 -(j+1) + Q n D T,L 2 Ψ m j+1 μn (σW n ) , μn (V n ) > 2 -(j+2)
In addition, using log(a + b) ≤ log(2 max(a, b)) = log(2) + max(log(a), log(b)) and (47), we obtain

lim n→∞ 1 N log Π n 0 A c j ≤ max lim n→∞ 1 N log Q n D T,L 2 Ψ m j μn (σW n ) , μn (V n ) > 2 -(j+1) , lim n→∞ 1 N log Q n D T,L 2 Ψ m j+1 μn (σW n ) , μn (V n ) > 2 -(j+2) ≤ max -j, -(j + 1) = -j.
Then, by (50) we conclude that ∀µ ∈ A c j we have I (3) (µ) ≥ j. It ends the proof.

We define Ψ : A → P S T Z as follows

Ψ(µ) = lim j→∞ Ψ m j (µ), (51) 
It follows from the definitions (48) and (49) that Ψ m j (µ) j∈N * is Cauchy so that the limit in (51) exists. In effect given j ≥ 0 it is true that µ ∈ k≥j A k . since, by the triangle inequality:

D T,L 2 (Ψ m j (µ), Ψ m j+k (µ)) ≤ k-1 l=0 D T,L 2 (Ψ m j+l (µ), Ψ m j+l+1 (µ)) ≤ k-1 l=0 2 -(j+l) ≤ 2 -(j-1) ,
it is true that lim j,k→∞ D T,L 2 (Ψ m j (µ), Ψ m j+k (µ)) = 0.

In the notation of [8, Th. 4.2.23], = N -1 , μ = Π n , f := Ψ, µ = Π n 0 and f j := Ψ m j .

Step 1: Exponential equivalence The 'exponentially equivalent' property requires that for any δ > 0, and recalling the definition of V n in Corollary 3.6 and the fact that the law of μn (V n ) is Π n (also in Corollary 3.6),

lim j→∞ lim n→∞ 1 N log Q n D T,L 2 Ψ m j μn (σW n ) , μn (V n ) > δ = -∞. (52) 
This is an immediate consequence of (47) which in turn follows from Lemma 3.16.

Step 2: Uniform Convergence on Level Sets of I (3) The second property required for [START_REF] Dembo | Large deviations techniques[END_REF]Th. 4.2.23] is the uniform convergence on level sets, 3) , that is we must prove that for any α > 0,

L I (3) (α) := µ : I (3) (µ) ≤ α , of I (
lim j→∞ sup µ∈L I (3) (α) D T,L 2 Ψ m j (µ), Ψ(µ) = 0. ( 53 
)
Note that the fact that for all j ≥ α + 1,

sup µ∈L I (3) (α) D T,L 2 Ψ m j (µ), Ψ m j+1 (µ) ≤ 2 -j . (54) 
follows from Lemma 3.11 and this suffices because

D T,L 2 Ψ m j (µ), Ψ(µ) ≤ ∞ k=j D T,L 2 Ψ m k (µ), Ψ m k+1 (µ) ≤ ∞ k=j 2 -k -→ j→∞ 0. ( 55 
)
for all µ ∈ L I (3) (α).

Step 3: Rate Function We have thus established the LDP. It remains for us to prove that the rate function is of the form noted in the theorem, and its unique minimum is given by µ * . According to [START_REF] Dembo | Large deviations techniques[END_REF]Th. 4.2.23] ,

H(µ) = inf ζ∈P S (T Z ):Ψ(ζ)=µ I (3) (ζ) , (56) 
where In this section we prove in Lemma 3.15 the exponential tightness of (Π n ) n∈Z + for the topology induced by D T on P S (T Z ). As pointed out in Remark 3.10 it is necessary to prove Theorem 2.5. Lemma 3.13 is crucial for comparing the system with correlations with the uncorrelated system via Girsanov's Theorem. It is used in the proof of the exponential tightness of Π n n∈Z + in Lemma 3.15 and is used, as well as Lemma 3.14, several times in the sequel. Just as for several of the Lemmas below it makes good use of the Discrete Fourier Transform (DFT) of the relevant variables. The corresponding material and notations are presented in Appendix B. As a general notation, given an I n -periodic sequence (β j ) j∈In , we note ( βp ) p∈In its length N DFT defined by βp = j∈In

H(µ) := ∞ if
β j F -jp N F N = e 2iπ N with i 2 = -1.
Lemma 3.13. For any M > 0, there exists C M > 0 such that

lim n→∞ 1 N log Q n 1 N sup t∈[0,T ] j∈In θ j t 2 ≥ C M ≤ -M. ( 57 
)
Proof. The proof is rather typical of many of the proofs in this paper. It uses some definitions and results that are given in Appendix B. It follows three steps.

Step 1: Go to the Fourier domain By Parseval's Theorem, 1

N j∈In θ j t 2 = 1 N 2 p∈In θp t 2 . ( 58 
)
Taking Fourier transforms in (29) and using Lemma B.1, we find that

Ṽ p t = σ W p t + σ t 0 θp s ds, (59) 
where

θp s = σ -2 E γ μn(Vn) Λ s (G)G 0 s s 0 G-p r d Ṽ p r . (60) 
Next we write

G 0 s = 1 N q∈In Gq s . θp s = σ -2 E γ μn(Vn) Λ s (G)( 1 N q∈In Gq s ) s 0 G-p r d Ṽ p r = 1 N σ -2 q∈In E γ μn(Vn) Λ s (G) Gq s s 0 G-p r d Ṽ p r .
According to Corollary B.12 and its proof q∈In

E γ μn(Vn) Λ s (G) Gq s s 0 G-p r d Ṽ p r = E γ μn(Vn) Λ s (G) Gp s s 0 G-p r d Ṽ p r = E γ μn(Vn) Λ|p| s ( G) Gp s s 0 G-p r d Ṽ p r .
This allows us to rewrite (60) as

θp s = N -1 σ -2 E γ μn(Vn) Λ|p| s ( G) Gp s s 0 G-p r d Ṽ p r . (61) 
We substitute (59) into the right hand side of (61) and obtain

θp t = 1 σN t 0 E γ μn(Vn) Λ|p| t G Gp t G-p s θp s ds + 1 σN E γ μn(Vn) Λ|p| t G Gp t t 0 G-p s d W p s ( 62 
)
Step 2: Find an upper bound for the Fourier transformed quantities: Applying twice the Cauchy-Schwarz inequality to (62),

θp t 2 ≤ 2t σ 2 N 2 t 0 E γ μn(Vn) Λ|p| t ( G) Gp t G-p s 2 θp s 2 ds+ 2 σ 2 N 2 E γ μn(Vn) Λ|p| t ( G) Gp t t 0 G-p s d W p s 2 .
By Lemma B.14,

E γ μn(Vn) Λ|p| t ( G) Gp t G-p s 2 ≤ (C J ) 2 j∈In f (V j s ) 2 k∈In f (V k t ) 2 ≤ N 2 (C J ) 2
and

E γ μn(Vn) Λ|p| t ( G) Gp t t 0 G-p s d W p s 2 ≤ (C J ) 2 j∈In f (V j t ) 2 k∈In t 0 f (V k s )d W p s 2 ≤ N (C J ) 2 k∈In t 0 f (V k s )d W p s 2 .
Applying Parseval's Theorem to the right hand side of the previous inequality,

p∈In E γ μn(Vn) Λ|p| t ( G) Gp t t 0 G-p s d W p s 2 ≤ N 2 (C J ) 2 j,k∈In t 0 f (V k s )dW j s 2 .
This means that

1 N 2 p∈In θp t 2 ≤ 2σ -2 (C J ) 2 t t 0 1 N 2 p∈In θp s 2 ds + 2 N 2 σ -2 (C J ) 2 j,k∈In t 0 f (V k s )dW j s 2 .
We thus find through Gronwall's Inequality that

1 N 2 p∈In θp t 2 ≤ 2 σ 2 N 2 (C J ) 2 exp 2σ -2 (C J ) 2 T 2 sup r∈[0,t] j,k∈In r 0 f (V k s )dW j s 2 .
Step 3: Apply Doob's submartingale inequality:

Now j,k∈In t 0 f (V k s )dW j s 2
is a submartingale, hence, for any κ > 0,

ζ t := exp κ 2σ -2 N -1 (C J ) 2 exp 2σ -2 (C J ) 2 T 2 j,k∈In t 0 f (V k s )dW j s 2
is also a submartingale. By Doob's submartingale inequality, for an K > 0,

Q n sup t∈[0,T ] 1 N 2 p∈In θp t 2 ≥ K = Q n sup t∈[0,T ] exp κ N p∈In θp t 2 ≥ exp κN K ≤ Q n sup t∈[0,T ] ζ t ≥ exp κN K ≤ exp -κN K E ζ T .
Now for κ small enough, by Lemma A.1 and the boundedness of f there exists a constant

C such that E ζ T ≤ exp N C for all N ∈ Z + .
We thus find that

Q n 1 N sup t∈[0,T ] j∈In θ j t 2 ≥ K =Q n 1 N 2 sup t∈[0,T ] p∈In θp t 2 ≥ K ≤ exp N (C -κK) ,
from which we can conclude the Lemma by taking K to be sufficiently large.

We have a similar result for θ m,j defined in (37).

Lemma 3.14. For any M > 0, there exists C M > 0 such that

lim n→∞ 1 N log Q n 1 N sup t∈[0,T ] j∈In θ m,j t 2 ≥ C M ≤ -M. ( 63 
)
Proof. The proof is similar to that of Lemma 3.13 and is left to the reader.

Note that the DFT Ṽ m,p of the approximation V m,j satisfies the following system of SDEs, analog to (59):

Ṽ m,p t = σ W p t + σ t 0 θm,p s ds (64) 
As pointed out in the introduction to Section 3.3 the exponential tightness is a key step in proving the LDP for Π n . Lemma 3.15. The family of measures Π n n∈Z + is exponentially tight with respect to the topology on P S (T Z ) induced by D T . That is, for any M > 0, there exists a compact set

K M ⊂ P S (T Z ) such that lim n→∞ 1 N log Π n K c M ≤ -M.
Proof. Consider the event K n,M defined by

K n,M = 1 N sup t∈[0,T ] j∈In θ j t 2 ≥ C M (65) 
By Lemma 3.13, we can find

C M such that lim n→∞ 1 N log Q n K n,M ≤ -M. ( 66 
)
For any compact set

K M of P S (T Z ), we have Π n K c M = Q n (μ -1 n (K c M )) so that, by (66) lim n→∞ 1 N log Π n K c M ≤ max lim n→∞ 1 N log Q n μ-1 n (K c M ) ∩ K c n,M , lim n→∞ 1 N log Q n K n,M ≤ max lim n→∞ 1 N log Q n μ-1 n (K c M ) ∩ K c n,M , -M ,
so that it suffices for us to prove that

lim n→∞ 1 N log Q n μ-1 n (K c M ) ∩ K c n,M ≤ -M. (67) 
By Proposition 3.4, and using the Cauchy-Schwarz Inequality,

Q n μ-1 n (K c M ) ∩ K c n,M = μ-1 n (K c M )∩K c n,M exp j∈In T 0 θ j s dB j s - 1 2
Using the definition of K n,M in (65), and since Π n

0 = P ⊗N • μ-1 n μ-1 n (K c M )∩K c n,M exp j∈In T 0 θ j s 2 ds dP ⊗N (B) ≤ exp N T C M P ⊗N μ-1 n (K c M ) = exp N T C M Π n 0 K c M .
Now Π n 0 n∈Z + is exponentially tight (a direct consequence of Theorem 2.6), which means that we can choose K M to be such that

lim n→∞ 1 N log Π n 0 K c M ≤ -2M + T C M ,
so that we can conclude (67) as required.

Exponentially Equivalent Approximations using Ψ m

The following Lemma, which is central in the proof of Theorem 2.5, is the main result of this section. Its proof is long and technical and uses four auxiliary Lemmas, Lemmas 3.20-3.23 whose proofs are found in Appendix D.

Lemma 3.16. For any δ > 0,

lim m→∞ lim n→∞ 1 N log Q n (D T,L 2 (Ψ m (μ n (σW n )) , μn (V n )) > δ) = -∞. (68) 
Proof. The proof uses the following ideas. By Lemma 3.8, Ψ m μn (σW n ) = μn (V m n ). By Lemma 3.17, we can find an upperbound of D T,L 2 (μ n (V m n ), μn (V n )) using the L 2 distance between V m n and V n , so that the proof boils down to comparing the solution V n to the system of equations ( 29) and (30) to the solution V m n to the approximating system of equations (37) constructed in Section 3.2.1 by an L 2 distance. By equations (37) and (29) this is equivalent to comparing the L 2 distance between θ m and θ. As already mentioned, it is technically easier to work in the Fourier domain with the L 2 distance between θm,p and θp , p ∈ I n , the Fourier transforms of (θ m,j ) j∈In and (θ j ) j∈In . This distance naturally brings in the operators Lt μn(Vn) and Lt

μn(V m n ) defined in Appendix C, in effect their Fourier transforms.
The following Lemma (proved page 32) relates the Wasserstein distance D T,L 2 between two empirical measures associated with two elements of T N to the L 2 distance between these elements. Lemma 3.17. For all X n , Y n ∈ T N we have

D T,L 2 (μ n (X n ), μn (Y n )) 2 ≤ b 2 N k∈In X k -Y k 2 L 2
where b is defined by [START_REF] Crisanti | Path integral approach to random neural networks[END_REF].

D T,L 2 (Ψ m (μ n (σW n )) , μn (V n )) 2 ≤ b 2 N j∈In V m,j -V j 2 L 2 . By Parseval's Theorem, 1 N j∈In V m,j -V j 2 L 2 = 1 N j∈In T 0 V m,j t -V j t 2 dt = 1 N 2 p∈In T 0 Ṽ m,p t -Ṽ p t 2 dt,
In order to prove (68) it therefore suffices for us to prove that for any arbitrary M, δ > 0, which are now fixed throughout the rest of this proof,

lim m→∞ lim n→∞ 1 N log Q n sup t∈[0,T ] 1 N 2 p∈In Ṽ m,p t -Ṽ p t 2 > δ 2 /T ≤ -M. ( 69 
)
Using the expression in (59), it follows from the Cauchy-Schwarz inequality that for any

t ∈ [0, T ], 1 N 2 p∈In Ṽ m,p t -Ṽ p t 2 ≤ tσ 2 N 2 p∈In t 0 θp s -θm,p s 2 ds ≤ T σ 2 N 2 p∈In t 0 θp s -θm,p s 2 ds. (70) 
In order to continue our plan we introduce the discrete time approximation m θp s (m) of θp

s m θp s (m) = 1 N σ 2 E γ μn(Vn) Λ|p| s (m) ( G) Gp s (m) s (m) 0 G-p r (m) d Ṽ p r . ( 71 
)
We obtain in the following Lemma a characterization of m θp

s (m) Lemma 3.18. Assume s (m) = vη m , v = 0, • • • , m. We have m θp vηm = σ -2 Lp μn(Vn) δ Ṽ p (vη m ),
where Lp μn(Vn) is the

(v + 1) × (v + 1) matrix ( Lp μn(Vn) (wη m , uη m )) w, u=0,••• ,v defined by Lp μn(Vn) (vη m , wη m ) = N -1 E γ μn(Vn) Λ|p| vηm ( G) Gp vηm G-p wηm ,
and δ Ṽ p is the v + 1-dimensional vector

δ Ṽ p w = 0 w = 0 Ṽ p wηm -Ṽ p (w-1)ηm w = 1, • • • , v (72) 
Proof. We give a short proof. Since s (m) = vη m , v = 0, • • • , m, and using Remark 3.3 and the notations of Appendix C

m θp vηm = σ -2 N -1 E γ μn(Vn) Λ|p| vηm ( G) Gp vηm vηm 0 G-p r (m) d Ṽ p r = σ -2 v-1 w=0 N -1 E γ μn(Vn) Λ|p| vηm ( G) Gp vηm G-p wηm ( Ṽ p (w+1)ηm -Ṽ p wηm ) = σ -2 v-1 w=0 Lp μn(Vn) (vη m , wη m )( Ṽ p (w+1)ηm -Ṽ p wηm ) = σ -2 Lp μn(Vn) δ Ṽ p (vη m ),
where Lp μn(Vn) is the (v+1)×(v+1) matrix ( Lp

μn(Vn) (wη m , uη m )) w, u=0,••• ,v defined in Remark 3.3 and Appendix C.2.
The autocorrelation function L μn(Vn) (resp. L μn(V m n ) ) involved in the sequence (V j ) j∈In (resp. (V m,j ) j∈In ) and hence in the sequence (θ j ) j∈In (resp. (θ m,j ) j∈In ) arises from the values of the autocorrelation function R J , defined in (3), on a grid

I n × I n (resp. I qm × I n ).
Since we are working in the discrete Fourier domain, it is natural, as explained in Appendix C.2, and in fact necessary, to consider the following four operators (in the discrete time setting, matrixes) in order to compare θp and θm,p . In detail, Lp μn(Vn) , (resp. Lp

μn(V m n ) ), p ∈ I n is obtained by taking the length N DFT of the length N sequence (L i μn(Vn) ) i∈In (resp. (L i μn(V m n ) ) i∈In ). Similarly, Lqm,p μn(Vn) , (resp. Lqm,p μn(V m n ) ), p ∈ I n is obtained by taking the length N DFT of the length Q m sequence (L i μn(Vn) ) i∈Iq m (resp. (L i μn(V m n ) ) i∈Iq m ) padded with N -Q m zeros.
We then use the following decomposition

θp s -θm,p s ≤ θp s -m θp vηm + σ -2 Lp μn(Vn) -Lqm,p μn(Vn) δ Ṽ p (vη m ) + σ -2 Lqm,p μn(Vn) -Lp μn(V m n ) δ Ṽ p (vη m ) + σ -2 Lp μn(V m n ) δ Ṽ p -δ Ṽ m,p (vη m ) + σ -2 Lp μn(V m n ) δ Ṽ m,p (vη m ) -θm,p s ,
Each term on the right hand side performs a specific comparison: Second term: Allows to compare the operator Lp μn(Vn) with its space/correlation truncated and Fourier interpolated version Lqm,p μn(Vn) .

Third term: Allows to compare the operator Lqm,p μn(Vn) with the operator Lp μn(V m n ) corresponding to the approximated solution.

Fourth term: Allows to compare the time discretized versions of the Ṽn and Ṽ m n processes.

Fifth term Allows to compare the space/correlation truncated and Fourier interpolated opertor Lqm,p μn(V m n ) with its Fourier interpolation θm,p . By slightly changing the order of the terms we write, remember that s

(m) = vη m , 1 N 2 p∈In θp s -θm,p s 2 ≤ 5 N 2 p∈In θp s -m θp vηm 2 α 1 s + 5 N 2 σ 4 p∈In Lp μn(Vn) -Lqm,p μn(Vn) δ Ṽ p (vη m ) 2 α 2 vηm + 5 N 2 p∈In σ -2 Lp μn(V m n ) δ Ṽ m,p (vη m ) -θm,p s 2 α 3 vηm + 5 N 2 σ 4 p∈In Lqm,p μn(Vn) -Lp μn(V m n ) δ Ṽ p (vη m ) 2 α 4 vηm + 5 N 2 σ 4 p∈In Lp μn(V m n ) δ Ṽ p -δ Ṽ m,p (vη m ) 2 α 5 vηm . (73) 
Our first action is to remove the term α 5 through the use of Gronwall's Lemma. Since, by Proposition C.8, | Lp

μn(V m n ) (vη m , wη m )
| is uniformly bounded by some constant K > 0 independent of w, v, p, q m , n, V m n , and according to equations (59), ( 64) and (72)

α 5 vηm ≤ 5K 2 N 2 σ 4 p∈In v w=1 |δ Ṽ p w -δ Ṽ m,p w | 2 = 5K 2 N 2 σ 2 p∈In v-1 w=0 (w+1)ηm wηm ( θp r -θm,p r ) dr 2 ≤ 5vη m K 2 N 2 σ 2 p∈In vηm 0 θp r -θm,p r 2 dr ≤ 5T K 2 N 2 σ 2 p∈In s 0 θp r -θm,p r 2 dr
Inserting this uppper bound for α 5 vηm in the right hand side of (73) and applying Gronwall's Lemma we obtain

1 N 2 p∈In θp s -θm,p s 2 ≤ C sup r∈[0,s] α 1 r + 4 i=2 α i r (m) , with C = exp 5T 2 σ -2 K 2 . ( 74 
)
Hence, by (70)

1 N 2 p∈In Ṽ m,p t -Ṽ p t 2 ≤ T Cσ 2 t 0 sup r∈[0,s] α 1 r + 4 i=2 α i r (m) ds ≤ T Cσ 2 t 0 sup r∈[0,s] α 1 r ds + 4 i=2 t 0 sup r∈[0,s] α i r (m) ds . ( 75 
)
The next step in the proof is the definition of the following stopping time. For c > 0 and

≤ exp -cT δ 2 /T , define τ ( , c) = inf t ∈ [0, T ] : 1 N 2 p∈In Ṽ m,p t -Ṽ p t 2 = exp tc . ( 76 
)
Remark 3.19. The random time τ ( , c) is the time at which the L 2 distance between the N trajectories V n and V m n differ on average by more than exp (-c(T -t)) δ 2 /T (≤ δ 2 /T ). The crucial idea of the proof is to upper bound the left hand side of (69) by

lim n→∞ 1 N log m max u=0,••• ,m-1 Q n ({τ ( , c) ∈ [uη m , (u + 1)η m ]}) , see (78) below. 
The proof proceeds iteratively through the time steps: we show that if τ ( , c) ≥ uη m , for u = 0, • • • , m -1 then with very high probability τ ( , c) ≥ (u + 1)η m . We show in the proof of Lemma 3.23 that there exists c > 0 such that for any < δ 2 exp(-cT )/T , for all m sufficiently large, for all 0 ≤ u < m,

lim n→∞ 1 N log Q n τ ( , c) ∈ uη m , (u + 1)η m ] ≤ -M. (77) 
Indeed this suffices for proving Lemma 3.16. We have

1 N 2 p∈In Ṽ m,p t -Ṽ p t 2 = δ 2 T =⇒ τ ( , c) ≤ t. So sup t∈[0,T ] 1 N 2 p∈In Ṽ m,p t -Ṽ p t 2 ≥ δ 2 /T ⊂ {τ ( , c) ≤ T } ,
and we can conclude that

Q n sup t∈[0,T ] 1 N 2 p∈In Ṽ m,p t -Ṽ p t 2 > δ 2 /T ≤ m-1 u=0 Q n ({τ ( , c) ∈ [uη m , (u + 1)η m ]}) . This commands that lim n→∞ 1 N log Q n sup t∈[0,T ] 1 N 2 p∈In Ṽ m,p t -Ṽ p t 2 > δ 2 /T ≤ lim n→∞ 1 N log m max u=0,••• ,m-1 Q n ({τ ( , c) ∈ [uη m , (u + 1)η m ]}) ≤ -M, (78) 
by ( 77), so that we may conclude that (69) holds. It remains to prove (77) which requires the four technical Lemma 3.20 to 3.23 below. Proof of (77): Fix < δ 2 exp -cT /T . We first establish that

Q n τ ( , c) ∈ uη m , (u + 1)η m ] ≤ Q n 3 j=1 (B j ) c u v=0 (B 4 v ) c and τ ( , c) ≥ uη m , (79) 
for the following events

B j = sup s∈[0,T ] α j s (m) ≤ 3T 2 Cσ 2 , j = 1, 2, 3 (80) 
B 4 v = α 4 vηm ≤ c T Cσ 2 exp (vη m c) , v = 0, • • • , u, (81) 
the constant C being defined in (74). Taking the complements of the events, (79) is equivalent to

Q n 3 j=1 B j u v=0 B 4 v or τ ( , c) < uη m ≤ Q n τ ( , c) / ∈ uη m , (u + 1)η m ) .
Now, using the equality P(A ∪ B) = P(A ∩ B c ) + P(B),

Q n 3 j=1 B j u v=0 B 4 v or τ ( , c) < uη m = Q n 3 j=1 B j u v=0 B 4 v and τ ( , c) ≥ uη m + Q n τ ( , c) < uη m , (82) 
and

Q n τ ( , c) / ∈ uη m , (u + 1)η m ) = Q n τ ( , c) < uη m + Q n τ ( , c) ≥ (u + 1)η m .
It therefore suffices for us to prove that

Q n 3 j=1 B j u v=0 B 4 v and τ ( , c) ≥ uη m ≤ Q n τ ( , c) ≥ (u + 1)η m . (83) 
Indeed, if the above conditions {B j }, j = 1, 2, 3 it follows from (75) and (80), that for t ∈ [uη m , (u + 1)η m ], i.e. for t

(m) = uη m , 1 N 2 p∈In Ṽ m,p t -Ṽ p t 2 ≤ T Cσ 2 t 0 sup r∈[0,s] α 1 r ds + 3 j=2 t 0 sup r∈[0,s] α j r (m) ds + t 0 sup r∈[0,s] α 4 r (m) ds ≤ + T Cσ 2 t 0 sup r∈[0,s] α 4 r (m) ds. ( 84 
)
Because the conditions (81),

{B 4 v }, v = 0, • • • , u
, are all satisfied we can write

t 0 sup r∈[0,s] α 4 r (m) ds = u-1 v=0 (v+1)ηm vηm sup r∈[0,s] α 4 r (m) ds + t uηm sup r∈[0,s] α 4 r (m) ds = η m u-1 v=0 sup r∈[0,vηm] α 4 r (m) + t uηm sup r∈[0,s] α 4 r (m) ds ≤ cη m T Cσ 2 u-1 v=0 exp cvη m + t uηm sup r∈[0,s] α 4 r (m) ds = cη m T Cσ 2 u-1 v=0 exp cvη m + t uηm sup r∈[0,uηm] α 4 r (m) ds ≤ cη m T Cσ 2 u-1 v=0 exp cvη m +(t-uη m ) c T Cσ 2 exp cuη m ≤ cη m T Cσ 2 u v=0 exp cvη m = cη m T Cσ 2 exp c(u + 1)η m -1 exp cη m -1 . Since x ≤ exp x -1 for x ≥ 0, it follows that t 0 sup r∈[0,s] α 4 r (m) ds ≤ T Cσ 2 (exp c(u + 1)η m -1) ,
and, because of (84),

1 N 2 p∈In Ṽ m,p t -Ṽ p t 2 ≤ exp c(u + 1)η m . ( 85 
) for t ∈ [uη m , (u + 1)η m ].
This means that if conditions (80)-( 81) are satisfied, and τ ( , c) ≥ uη m , then τ ( , c) ≥ (u + 1)η m , and we have established (83). Now

Q n 3 j=1 (B j ) c u v=0 (B 4 v ) c and τ ( , c) ≥ uη m ≤ 3 j=1 Q n (B j ) c + u v=0 Q n (B 4 v ) c and τ ( , c) ≥ uη m . ( 86 
)
We use the following four Lemmas Lemma 3.20. For any M > 0, for all m ∈ N sufficiently large,

lim n→∞ 1 N log Q n sup s∈[0,T ] α 1 s ≥ 3T Cσ 2 ≤ -M.
Lemma 3.21. For any M > 0, for all m ∈ N sufficiently large,

lim n→∞ 1 N log Q n sup s∈[0,T ] α 2 s (m) ≥ 3T Cσ 2 ≤ -M, (87) 
if the function ψ(n, q m ) : N → R + defined in the proof is such that lim n,m→∞ N mψ(n, q m ) = 0.

Lemma 3.22. For any M > 0, for all m ∈ N sufficiently large,

lim n→∞ 1 N log Q n sup s∈[0,T ] α 3 s (m) ≥ 3T Cσ 2 ≤ -M.
Lemma 3.23. For any M > 0, there exists a constant c such that for all m ∈ N sufficiently large, all 0 ≤ u ≤ m and all 0 ≤ v ≤ u and all ≤ exp -cT δ 2 /T ,

lim n→∞ 1 N log Q n α 4 vηm ≥ c T Cσ 2 exp (vη m c) and τ ( , c) ≥ uη m ≤ -M.
It follows from Lemmas 3.20 to 3.22 that

lim n→∞ 1 N log Q n (B j ) c ≤ -M, j = 1, 2, 3
and from Lemma 3.23 that

lim n→∞ 1 N log Q n (B 4 v ) c and τ ( , c) ≥ uη m ≤ -M,
for all 0 ≤ v ≤ u, for m sufficiently large. This means that

lim n→∞ 1 N log Q n 3 j=1 (B j ) c u v=0 (B 4 v ) c and τ ( , c) ≥ uη m ≤ lim n→∞ 1 N log 3 j=1 Q n (B j ) c + u v=0 Q n (B 4 v ) c and τ ( , c) ≥ uη m ≤ lim n→∞ 1 N log(u + 4) max j,v Q n (B j ) c , Q n (B 4 v ) c and τ ( , c) ≥ uη m = lim n→∞ max j,v 1 N log Q n (B j ) c , 1 N log Q n (B 4 v ) c and τ ( , c) ≥ uη m ≤ -M.
We can therefore conclude (77), and this finishes the proof of Lemma 3.16.

Proof of Lemma 3.17. By (46) we write

D T,L 2 (μ n (X n ), μn (Y n )) ≤ i∈Z b i f (u i ) -f (v i ) L 2 dξ(u, v),
for all stationary couplings ξ between μn (X n ) and μn (Y n ). Because of the stationarity of ξ and the Lipschitz continuity of f we have

D T,L 2 (μ n (X n ), μn (Y n )) ≤ b f (u 0 ) -f (v 0 ) L 2 dξ(u, v) ≤ b u 0 -v 0 L 2 dξ(u, v) ≤ b u 0 -v 0 2 L 2 dξ(u, v) 1/2
, where b is defined by [START_REF] Crisanti | Path integral approach to random neural networks[END_REF].

Consider the set S n of permutations s of the set

I n . If X n = (X -n , • • • , X n ), we note s(X n ) the element (X s(-n) , • • • , X s(n)
). The knowledge of μn (X n ) does not imply that of X n , in effect it implies the knowledge of all s(X n )s without knowing which permutation is the correct one. Choose one such element, say s 0 (X n ). Similarly choose s 1 (Y n ). There exists a family of couplings1 ξ s such that

u 0 -v 0 2 L 2 dξ s (u, v) = 1 N k∈In X s 0 (k) -Y s(s 1 (k)) 2 L 2 ,
from which we obtain, for s = s 0 s -1

1 D T,L 2 (μ n (X n ), μn (Y n )) 2 ≤ b 2 N k∈In X k -Y k 2 L 2 ,
which is the announced result.

The proofs of Lemma 3.20-3.23 are found in Appendix D.

Characterization of the Limiting Process

We prove in this Section that the limit equations are given by ( 14), i.e. Theorem 2.5.iv. This is achieved by first showing that the solution to [START_REF] Hopfield | Neural networks and physical systems with emergent collective computational abilities[END_REF], without the condition that µ * is the law of Z, is unique and has a closed form expression as a function of the Brownian motions W j . This is the content of the following Lemma whose proof can be found in Appendix E. This proof is based on an adaptation of the theory of Volterra equations of the second type [START_REF] Tricomi | Integral Equations[END_REF] to our, stochastic, framework.

Lemma 3.24. Let µ ∈ P S (T Z ). The system of equations ( 14)

V j t = σW j t + σ t 0 θ j s ds θ j t = σ -2 i∈Z t 0 L i-j µ (t, s)dV i s .
has a unique solution given by

V j t = σW j t + i∈Z t 0 s 0 L i µ (s, u) dW i+j u ds+ σ -1 i, ∈Z t 0 s 0 M i µ (s, u) u 0 L -i µ (u, v) dW +j v du ds, ( 88 
)
where M k µ is defined in the proof and satisfies

sup s,u∈[0,t] k M k µ (s, u) < ∞.
Note Q m,n the law of the solution to (31). Lemma 3.16 indicates that Π m,n = Q m,n • μn (V m n ) satisfies an LDP with the same good rate function H as Π n .

Lemma 3.25. The limit law of Q m,n when m, n → ∞ is µ * , the unique zero of the rate function H. Moreover, for all

k ∈ I n , t, s ∈ [0, T ] lim m, n→∞ T N L k μn(V m n ) (t, s) dQ m,n (V m n ) = L k µ * (t, s).
Proof. We know that H has a unique zero, noted µ * . This implies that Π m,n converges weakly to δ µ * and therefore, for all

F ∈ C b (P(T Z )), lim m, n→∞ P(T Z ) F (µ) dΠ m,n (µ) = F (µ * ). From the relation Π m,n = Q m,n • μn (V m n ) -1 we infer that lim m, n→∞ T N F (μ n (V m n )) dQ m,n (V m n ) = F (µ * ).
Let us choose a function f ∈ C b (T Z ) and define F :

P(T Z ) → R by F (µ) = T Z f (V ) dµ(V ), so that we have lim m, n→∞ T N T Z f (V ) dμ n (V m n )(V ) dQ m,n (V m n ) = lim m, n→∞ 1 N i∈In T N f (S i V m n )dQ m,n (V m n ) = T Z f (V ) dµ * (V )
We note that Q m,n is invariant under a uniform shift of the indexes, i.e. satisfies

Q m,n • S i = Q m,n
for all i ∈ I n , so that

1 N i∈In T N f (S i V m n )dQ m,n (V m n ) = T N f (V m n ) dQ m,n (V m n ),
and therefore lim

m, n→∞ T N f (V m n ) dQ m,n (V m n ) = T Z f (V ) dµ * (V ).
Since this is true for all f ∈ C b (T Z ) we have proved that the limiting law of Q m,n is µ * .

Next consider the function

F : P(T Z ) → R F (µ) = L k µ (t, s)
for a given k ∈ I n and t, s

∈ [0, T ]. We have lim m, n→∞ T N L k μn(V m n ) (t, s) dQ m,n (V m n ) = L k µ * (t, s),
which also reads lim

m, n→∞ E L k μn(V m n ) (t, s) -L k µ * (t, s) = 0.
We now prove Theorem 2.5.iii Theorem 3.26. The equations describing the unique 0, µ * , of the rate function H are [START_REF] Hopfield | Neural networks and physical systems with emergent collective computational abilities[END_REF].

Proof. We prove that for all n ≥ 0 lim m,n→∞

E sup s∈[0,t] θ j s -θ m,j s 2 = 0.
Indeed, as shown below, this is sufficient to prove that lim m,n→∞

E sup s∈[0,t] V j s -V m,j s = 0.
We recall that the equations (37) satisfied by V m are, for j ∈ I n ,

V m,j t = σW j t + σ t 0 θ m,j s ds θ m,j t = σ -2 i∈Iq m E γ μn(V m n ) t G m,0 t (m) t (m) 0 G m,i s (m) dV m,i+j s = σ -2 i∈Iq m t (m) 0 L i μn(V m n ) (t (m) , s (m) ) dV m,i+j s .
We also have, for j ∈ Z.

θ j t = σ -2 i∈Z t 0 L i µ * (t, s)dV i+j s .
Write

θ j t -θ m,j t =σ -2 i∈Iq m t 0 (L i µ * (t, s) -L i µ * (t (m) , s (m) )) dV i+j s α j,1 t + σ -2 i∈Iq m t t (m) L i µ * (t (m) , s (m) ) dV i+j s α j,2 t + σ -2 i∈Iq m t (m) 0 L i µ * (t (m) , s (m) ) -L i μn(V m n ) (t (m) , s (m) ) dV i+j s α j,3 t + σ -2 i∈Z/Iq m t 0 L i µ * (t, s) dV i+j s α j,4 t + σ -2 i∈Iq m t (m) 0 L i μn(V m n ) (t (m) , s (m) )(θ i+j s -θ m,i+j s
) ds, so that we have

θ j t -θ m,j t = 4 k=1 α j,k t + σ -2 i∈Iq m t (m) 0 L i μn(V m n ) (t (m) , s (m) )(θ i+j s -θ m,i+j s ) ds.
To simplify notations further we write

L i n (t (m) , s (m) ) for L i μn(V m n ) (t (m) , s (m)
) since there is no ambiguity, and define

Φ j t := θ j t -θ m,j t j ∈ I n t ∈ [0, T ].
The previous equation writes

Φ j t = 4 k=1 α j,k t + σ -2 i∈Iq m t (m) 0 L i n (t (m) , s (m) )Φ i+j s ds (89) 
This is a Volterra equation of the second type [START_REF] Tricomi | Integral Equations[END_REF]. We solve it for Φ as a function of the αs and use the following Lemma whose proof can be found in Appendix F.

Lemma 3.27. For all ε > 0, there exists m 0 (ε) in N such that for all m ≥ m 0

E max k=1,2,3,4 sup s∈[0,t] α j,k s 2 ≤ Cε
for some positive constant C independent of j.

Since equation ( 89) is affine we solve it for each α k,j , k = 1, 2, 3, 4 and add the four solutions. In what follows we thus drop the k index and solve

Φ j t = α j t + σ -2 k∈Iq m t (m) 0 L k n (t (m) , s (m) )Φ k+j s ds.
We take continuous Fourier transforms of both sides to obtain

Φt (ϕ) = αt (ϕ) + σ -2 t (m) 0 L * n (ϕ)(t (m) , s (m) ) Φs (ϕ) ds,
where * indicates complex conjugate and, for example

Φt (ϕ) = j∈In Φ j t e -ijϕ , ϕ ∈ [-π, π[,
and, as explained page 26, the Fourier transform of L j is given by:

Ln (ϕ)(t (m) , s (m) ) = j∈In 1 Iq m (j)L j n (t (m) , s (m) )e -ijϕ , ϕ ∈ [-π, π[.
We use standard results on Volterra equations [START_REF] Tricomi | Integral Equations[END_REF] to write

Φt (ϕ) = αt (ϕ) + λ t (m) 0 H(ϕ)(t (m) , s (m) , λ)α s (ϕ) ds, (90) 
where we have noted λ = σ -2 , the "resolvent kernel" H(ϕ)(t, s, λ) is given by the series of iterated kernels

H(ϕ)(t (m) , s (m) , λ) = ∞ =0 λ L * n, +1 (ϕ)(t (m) , s (m) ), (91) and L 
* n, +1 (ϕ)(t (m) , s (m) ) = t (m) 0 L * n (ϕ)(t (m) , u (m) ) L * n, (ϕ)(u (m) , s (m) ) du.
The convergence of the series (91) is guaranteed by the fact that the two functions Taking the expected value of both sides and using the spatial stationarity of (Φ j t ) j∈In and (α j t ) j∈In we have for any

A n (ϕ, t) 2 = T 0 Ln (ϕ)(t,
j ∈ I n E Φ j t 2 ≤ 2E α j t 2 + 2λ 2 C 2 t 0 E α j s 2 ds.
Since by Lemma 3.27

E max k=1,2,3,4 sup s∈[0,t] α j,k s 2 → 0, we conclude that lim m,n→∞ E sup s∈[0,t]
θ j s -θ m,j s 2 = 0, and therefore

sup s∈[0,t] V j s -V m,j s ≤ t 0 sup ρ∈[0,s] θ j ρ -θ m,j ρ ds ≤ √ t t 0 sup ρ∈[0,s] θ j ρ -θ m,j ρ 2 ds 1/2
, and by Cauchy-Schwarz again

E sup s∈[0,t] V j s -V m,j s ≤ √ t E t 0 sup ρ∈[0,s] θ j ρ -θ m,j ρ 2 ds 1/2 = √ t t 0 E sup ρ∈[0,s] θ j ρ -θ m,j ρ 2 ds 1/2 .
We conclude that lim m,n→∞

E sup s∈[0,t] V j s -V m,j s = 0
for all j ∈ Z and t ∈ [0, T ].

A A martingale Expectation Inequality

We recall the result used in [START_REF] Ben Arous | Large deviations for langevin spin glass dynamics[END_REF]:

Lemma A.1. Consider B -n , • • • , B n N independent Brownian motions and h -n , • • • , h n N previsible processes such that N -1 j∈In h j t 2 ≤ 1.
Then, for all ε < 1/(2 √ T ), we have

E exp ε 2 2N i,j∈In T 0 h i t dB j t 2 ≤ (1 -4ε 2 T ) -N/4 . Proof. Define α := ε 2 2N , X ij t = t 0 h i s dB j s , S t := i∈In (h i t ) 2
, and Y t := i,j∈In (X ij t ) 2 . Using Itô's rule we obtain

Y t = 2 i,j∈In t 0 h i s s 0 h i u dB j u dB j s + N t 0 S u du.
Define the martingale

Z t := i,j∈In t 0 h i s s 0 h i u dB j u dB j s .
Using the fact that B j , B l t = δ jl t, we have

Z, Z t = i,j,k∈In t 0 h i s h k s s 0 h i u dB j u s 0 h k u dB j u ds.
Apply Cauchy-Schwarz to obtain

i∈In h i s s 0 h i u dB j u ≤ i∈In (h i s ) 2 1/2 i∈In s 0 h i u dB j u 2 1/2
, from which it follows that

Z, Z t = | Z, Z t | ≤ t 0 S u Y u du.

Now we have

e αYt = e 2αZt+αN t 0 Ss ds = e 2αZt-4α 2 Z, Z t × e 4α 2 Z, Z t+αN t 0 Su du .

Apply Cauchy-Schwarz again to obtain 

E e αYt 2 ≤ E e 4αZt-8α 2 Z, Z t × E e 8α
E e αYt ≤ (1 -2ε 2 t)e ε 2 tN 1 2(1-2ε 2 t) ≤ e ε 2 t 2(1-2ε 2 t) N ,
and, since 1 -

4ε 2 t < 1 -2ε 2 t, E e αYt ≤ e ε 2 t (1-4ε 2 t) N = e 4ε 2 t (1-4ε 2 t) N/4 , and, since -x 1-x > log(1 -x), 0 < x < 1 E e αYt ≤ e -N

B Discrete Fourier Transforms (DFT) of Gaussian processes

Define F N := e 2πi N . Let a := (a j ) j∈In be an N -periodic complex sequence. Its DFT ã := (ã p ) p∈In is defined by ãp = j∈In a j F -jp N , from which the original sequence can be recovered by the inverse DFT (IDFT)

a j = 1 N p∈In ãp F jp N .
We need two Lemmas about the DFT of N -periodic sequences defined on I n . The first one is about the DFT of a translated sequence.

Lemma B.1. The DFT of the sequence a k := (a j+k ) j∈In , k ∈ Z is given by

DF T (a k ) p = F kp N ãp
Proof. The proof is left to the reader.

The second Lemma is about the DFT of the convolution of two sequences. Let (a j ) j∈In and (b j ) j∈In . We define their (circular or periodic) convolution as Proof. The proof is left to the reader.

We derive some properties of the Fourier transforms of the synaptic weights (J ij n ) i,j∈In and the Gaussian processes G j t . We define ( RJ (p, l)) p,l∈In to be the length N DFT w.r.t to the first index of the sequence (R J (k, l) k,l∈In ), that2 

RJ (p, l) = k∈In R J (k, l)W -kp N .
We first characterize the joint laws of the synaptic weights under γ.

Lemma B.3. Define Jpk n := j∈In J jk n F -jp N ,
to be the DFT of the synaptic weights J jk w.r.t the first index. Their covariance is

E γ Jpk n Jql n = RJ (p, k -l mod I n ) if p + q = 0 0 otherwise Proof. By (3) and the symmetry of R J E γ Jpk n Jql n = j,h∈In E γ J jk n J hl n F -jp N F -hq N = 1 N j,h∈In R J (h -j, l -k)F -jp N F -hq N = 1 N j,h∈In R J (j -h, k -l)F -jp N F -hq N . By Lemma B.1 we have j∈In R J (j -h, k -l)F -jp N = RJ (p, k -l)F -hp N ,
and, since h∈In

F -h(p+q) N = N δ p+q , 1 N j,h∈In R J (h -j, l -k)F -jp N F -hq N = RJ (p, k -l) if p + q = 0 0 otherwise , Remark B.4.
In the terminology of complex Gaussian vectors to be found, e.g. in [START_REF] Gallager | Stochastic processes: theory for applications[END_REF], Lemma B.3 states the following. Consider the

N centered complex N -dimensional Gaussian vectors Jp n = ( Jpk n ) k∈In , p ∈ I n . Note that the complex conjugate Jp * n of Jp n is J-p n , p ∈ I n . If p = 0 Jp
n is such that its pseudo-covariance matrix E γ Jp n t Jp n = 0 and its covariance matrix

E γ Jp n t J-p n is equal to the circulant matrix C p n := (R J (p, k -l)) k,l∈In . If p = 0 J0
n is in effect real and its covariance and pseudo-covariance matrixes are both equal to C 0 . 

p γ ( Jp n ) = 1 π N |det(C p n )| exp - 1 2 t J-p n t Jp n C p n 0 0 C p * n -1 Jp n J-p n ,
and, since C p n is invertible (see Remark B.5), 

p γ ( Jp n ) = 1 π N |det(C p n )| exp - 1 2 t J-p n t Jp n (C p n ) -1 0 0 (C p * n ) -1 Jp n J-p n , (92) 
E γ Jpj n J-pk n ζ j ξ k ≤ ab ζ 2 ξ 2
a and b are defined in [START_REF] Crisanti | Path integral approach to random neural networks[END_REF].

Proof. According to Remark B.5 we have j,k∈In

E γ Jpj n J-pk n ζ j ξ k = t ζC p n ξ ≤ C p n 2 ζ 2 ξ 2 Next we have C p n 2 = λ 1 (C p n )
, where λ 1 (A) is the largest eigenvalue of the Hermitian matrix A. By Remark B.5 the eigenvalues of the circulant matrix C p n are the values of the DFT of the sequence ( RJ (p, k)) k∈In . According to (5) and ( 7) they are all upperbounded in magnitude by ab, and so is C p n 2 .

Let (Z j t ), j ∈ I n be an element of T N . We recall the definition of the centered Gaussian field (G j t ):

G j t = l∈In J jl n f (Z l t ).
Taking the length N DFT of the I n -periodic sequence (G j t ) j∈In , we introduce the following I n -periodic stationary sequence of centered complex Gaussian processes ( Gp ) p∈In

Gp

t = l∈In Jpl n f (Z l t ). ( 93 
)
We have the following independence result.

Lemma B.9. If p + q = 0, under γ μn(Zn) , the centered complex Gaussian processes ( Gp ) t and ( Gq ) s are independent on [0, T ] and

E γ μn(Zn) Gp t Gq s = l,k∈In RJ (p, l -k)f (Z l t )f (Z k s ) if p + q = 0 0 otherwise Proof. We write Gp t = l∈In Jpl n f (Z l t ), Gq s = k∈In Jqk n f (Z k s ),
The independence under γ μn(Zn) follows from the independence under γ of Jp n and Jq n if p + q = 0 proved in Remark B. [START_REF] Crisanti | Path integral approach to random neural networks[END_REF]. Moreover

E γ μn(Zn) Gp t Gq s = l,k∈In E γ Jpl n Jqk n f (Z l t )f (Z k s ).
The result follows from Lemma B.3.

We recall the expression (21 

) for Λ t (G) Λ t (G) := exp -1 2σ 2 t 0 k∈In G k s 2 ds E γ μn(Zn) exp -1 2σ 2 t 0 k∈In (G k s ) 2 ds
where α 0 = 1 2σ 2 N , α p = 1 σ 2 N , p = 0. Define also U n t to be the N × N symmetric positive semi-definite matrix with elements

U n,jk t = t 0 f (Z j s )f (Z k s )ds, j, k ∈ I n .
Lemma B.10. The Λp t ( G), p ∈ I n , p ≥ 0, are independent under γ μn(Zn) and we have 

Λ t (G) = p∈In, p≥0 Λp t ( G) (95 
ds = t J-p n U n t Jp n , implying that exp - 1 2σ 2 t 0 k∈In G k s 2 ds = n p=0 exp -α p t J-p n U n t Jp n ,
and hence

E γ μn(Zn) exp - 1 2σ 2 t 0 k∈In G k s 2 ds = E γ n p=0 exp -α p t J-p n U n t Jp n
Because of the independence under γ, proved in Remark B.7, of Jp n and Jq n if p + q = 0, we have

E γ n p=0 exp -α p t J-p n U n t Jp n = n p=0 E γ exp -α p t J-p n U n t Jp n = n p=0 E γ μn(Zn) exp - 1 N σ 2 t 0 Gp s 2 ds ,
and (95) follows.

The independence under γ μn(Zn) of the Λp t ( G), p = 0, • • • , n, follows from the independence under γ, proved in Remark B.7, of Jp n and Jq n if p + q = 0. This concludes the proof of the Lemma.

We next characterize the law of ( Jp n , p ∈ I n ) under the law γ μn(Zn)

t = Λ t (G) • γ μn(Zn) .
Proposition B.11. For any Z n in T N , any p, q ∈ I n , p + q = 0, Jp n and Jq n are, under γ μn(Zn) t independent centered complex Gaussian vectors. The covariance of Jp n under γ μn(Zn) t is given by

E γ μn(Zn) t J-p n t Jp n = ((C p n ) -1 + α p U n t ) -1
Proof. By Lemma B.10 and Remark B.7 we write

p γ μn(Zn) t ( Jp n , Jq n ) = p γ ( Jp n , Jq n ) Λp t ( G) Λq t ( G) = p γ ( Jp n ) Λp t ( G) × p γ ( Jq n ) Λq t ( G),
and the independence follows.

Next we have Λp

t ( G) = exp -α p t J-p n U n t Jp n E γ exp -α p t J-p n U n t Jp n ,
and since α p and U n t are real and

U n t is symmetric Λp t ( G) = exp -αp 2 t J-p n t Jp n U n t 0 0 U n t Jp n J-p n E γ exp -α p t J-p n U n t Jp n .
Combining this equation with (92), we write

p γ ( Jp n ) Λp t = 1 π N |det(C p n )|E γ exp -α p t J-p n U n t Jp n × exp - 1 2 t J-p n t Jp n (C p n ) -1 + α p U n t 0 0 (C p * n ) -1 + α p U n t Jp n J-p n , which shows that, under γ μn(Zn) t , Jp n is centered complex Gaussian with covariance ((C p n ) -1 + α p U n t ) -1
Corollary B.12. The centered processes Gp t and Gq s , p, q ∈ I n are still Gaussian and independent under γ μn(Zn) t for all s ≤ t except for p + q = 0. Moreover Therefore, for all p, q ∈ I n , p + q = 0

E
E γ μn(Zn) t Gp t Gq s = E γ μn(Zn) t Gp t G-q s = 0.
This implies that the four real and imaginary parts of Gp t and Gq s are uncorrelated and therefore, being Gaussian, independent. If p + q = 0 Remark B.13. Note that since C p n is Hermitian positive definite, it is invertible and its inverse is also Hermitian positive definite. U n t is real symmetric positive hence also Hermitian positive. The sum (C p n ) -1 + α p U n t is therefore Hermitian positive. The dual Weyl inequality [START_REF] Tao | Topics in random matrix theory[END_REF] commands that

E γ μn(Zn) t Gp t G-p s = E γ μn(Zn) Λ t (G) Gp
λ i+j-N ((C p n ) -1 + α p U n t ) ≥ λ i ((C p n ) -1 ) + λ j (α p U n t ) whenever 1 ≤ i, j, i + j -N ≤ N . Since (C p n ) -1
is Hermitian positive definite for N large enough, and α p U n t is Hermitian positive, this inequality implies that λ N ((

C p n ) -1 + α p U n t ) > 0 and hence that (C p n ) -1 + α p U n t is invertible. Next we have λ 1 (((C p n ) -1 + α p U n t ) -1 ) = 1 λ N ((C p n ) -1 + α p U n t ) ≤ 1 λ i ((C p n ) -1 ) + λ j (α p U n t )
,

for 1 ≤ i, j ≤ N and i + j = N . Since λ j (α p U n t ) ≥ 0 for j = 1, • • • , N and λ i ((C p n ) -1 ) ≥ λ N ((C p n ) -1 ) = λ 1 (C p n ) -1 > 0 for all i = 1, • • • , N we conclude that λ 1 (((C p n ) -1 + α p U n t ) -1 ) ≤ 1 λ 1 (C p n ) ≤ C J (96) 
for some positive constant C J independent of N and p.

In several places we use the following Lemma.

Lemma B.14. For all n ∈ Z + and Z ∈ T N , and all vectors ζ = (ζ j ) j∈In and ξ = (ξ j ) j∈In of R N , sup p∈In j,k∈In

E γ μn(Zn) Λp t ( G) Jpj n J-pk n ζ j ξ k ≤ C J ζ 2 ξ 2
where C J is defined in (96 

C Covariance functions C.1 Time continuous setting

One of the basic constructions in this paper is the following. Given a measure µ ∈ P S (T Z ), an integer n (possibly infinite), and a time t ∈ [0, T ], define the following sequence of functions

K k µ : [0, t] 2 → R K k µ (s, u) = l R J (k, l) T Z f (v 0 s )f (v l u ) dµ(v), (97) 
for s, u ∈ [0, t]. The summation w.r.t l in the right hand side is either over the set I n for finite n or over Z. The index k in the left hand side has the same range as l. In case of n infinite, the right hand side is well defined because of the absolute summability of the sequences (R J (k, l)) l∈Z for all k ∈ Z and the fact that 0 ≤ f ≤ 1. In the case of n finite, the sequence (K k µ ) k∈In , noted K n,k µ , is N -periodic. It is easy to check that the sequence (K k µ (s, u)) k of functions is the covariance of a centered stationary Gaussian process noted G j s , with s ∈ [0, t] and j is in I n for finite n or in Z otherwise. There are several possible representations of this process. In the case of finite n we use

G j s = k∈In J jk n f (v k s ), (98) 
and noted γ µ In the law under which it has covariance K n µ , i.e.

E γ µ In G i s G j u = K n,j-i µ (s, u),
see the proof of Lemma C.2 below. A second representation is provided by the consideration of the operator defined by the sequence K k µ . This operator is defined on the Hilbert

space L 2 (Z × [0, t]) := i∈Z L 2 ([0, t]) (or L 2 (I n × [0, t]
)) of infinite (or finite) sequences of measurable square integrable complex functions g k s on [0, t] such that

k t 0 g k s 2 ds < ∞,
where, as usual, the summation w.r.t. k is over I n for n finite or over Z otherwise. In the sequel we treat only the case of infinite n, i.e. I n = Z, the case of n finite being easily deduced from this one. We prove in Lemma C.1 that the operator Kµ acting on

L 2 (Z × [0, t]) by Kµ g k s = l t 0 K k-l µ (s, u)g l u du, g ∈ L 2 (Z × [0, t]), (99) 
is continuous, self-adjoint, and compact. Note that by Fourier transform the space

L 2 (Z × [0, t]) is isomorphic to the space L 2 ([-π, π] × [0, t]). Each element g of L 2 (Z × [0, t]) features a Fourier transform g such that g(ϕ)(s) = k g k s e -ikϕ ,
where the series in the right hand side is absolutely convergent. For each ϕ ∈

[-π, π[, g(ϕ) ∈ L 2 ([0, t]).
By the convolution theorem, the operator Kµ on L 2 (Z × [0, t]) induces an operator Kµ on L 2 ([-π, π] × [0, t]) acting on such functions by Kµ g (ϕ)(s) =

t 0 Kµ (ϕ)(s, u)g(ϕ)(u) du, where Kµ (ϕ)(s, u) = k K k µ (s, u)e -ikϕ .
Lemma C.1. The linear operator Kµ defined by (99) maps L 2 (Z × [0, t]) to itself and is continuous, self-adjoint, and compact. Its norm is upperbounded by abt.

Proof.

1) Well-defined and continuous:

We prove that Kµ maps L 2 (Z × [0, t]) onto itself. In effect, by Cauchy-Schwarz

Kµ g k s ≤ l t 0 K k-l µ (s, u) 2 du 1/2 t 0 g l u 2 du 1/2 . ( 100 
)
By Young's convolution Theorem, 0 ≤ f ≤ 1, ( 5) and ( 97)

k Kµ g k s 2 1/2 ≤ k Kµ g k s ≤ k t 0 K k µ (s, u) 2 du 1/2 × k t 0 g k u 2 du 1/2 ≤ ab √ t g L 2 (Z×[0, t]) so that, Kµ g 2 L 2 (Z×[0, t]) = k t 0 Kµ g k s 2 ds ≤ a 2 b 2 t 2 g 2 L 2 (Z×[0, t]) ,
and therefore Kµ is well-defined as a linear mapping from L 2 (Z × [0, t]) to itself , bounded and therefore continuous with Kµ L 2 (Z×[0, t]) ≤ abt.

2) Self-adjoint: This follows directly from the identity K k µ (u, s) = K -k µ (s, u).

3) Compactness:

We sketch the proof. We use the Kolmogorov-Riesz-Fréchet Theorem [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF]Th. 4.26] for the compactness of bounded set of L p (R n ), the analog of the Ascoli-Arzelà Theorem for continuous functions.

Let g ∈ L 2 ([-π, π] × [0, t]). Let h = (h 1 , h 2 ) ∈ R 2 .
We define the operator τ h :

L 2 ([-π, π] × [0, t]) → L 2 ([-π, π] × [0, t]) by (τ h g)(ϕ, s) = g(ϕ + h 1 , s + h 2 ),
where the values are taken modulo 2π and modulo t, respectively. Given a bounded sequence (g k ) k∈N of L 2 ([-π, π] × [0, t]) we want to prove that the set ( Kµ gk ) k is relatively compact. According to the Kolmogorov-Riesz-Fréchet Theorem, it is sufficient to prove that

lim |h|→0 τ h ( Kµ gk ) -( Kµ gk ) L 2 ([-π,π]×[0,t]) = 0 (101)
uniformly in k. In effect we have

τ h ( Kµ gk ) -( Kµ gk ) 2 L 2 ([-π,π]×[0,t]) = π -π t 0 t 0 ( Kµ (ϕ + h 1 )(s + h 2 , u) -Kµ (ϕ)(s, u))g k (ϕ, u) du 2 dϕ ds. ( 102 
)
We write, by (97),

Kµ (ϕ + h 1 )(s + h 2 , u) -Kµ (ϕ)(s, u) = l∈Z RJ (ϕ + h 1 , l) T f (v 0 s+h 2 )f (v l u ) dµ(v) -RJ (ϕ, l) T f (v 0 s )f (v l u ) dµ(v) = l∈Z ( RJ (ϕ + h 1 , l) -RJ (ϕ, l)) T f (v 0 s+h 2 )f (v l u ) dµ(v) + l∈Z RJ (ϕ, l) T (f (v 0 s+h 2 ) -f (v 0 s ))f (v l u ) dµ(v), (103) 
where we have noted RJ (ϕ, l)

= k R J (k, l)e -ikϕ .
We first upperbound the magnitude of the first term in the right hand side of (103). By the mean value theorem and ( 6)

RJ (ϕ + h 1 , l) -RJ (ϕ, l) ≤ |h 1 | k |k| |R J (k, l)| ≤ |h 1 | b l k |k|a k .
Because of 0 ≤ f ≤ 1 and ( 6) again, we have

l∈Z ( RJ (ϕ + h 1 , l) -RJ (ϕ, l)) T Z f (v 0 s+h 2 )f (v l u ) dµ(v) ≤ C 1 |h 1 |, (104) 
for some positive constant C 1 .

We next upperbound the magnitude of the second term in the right hand side of (103). First, thanks to the Dominated Convergence Theorem, the function s → T f (v 0 s ) dµ(v) is continuous on [0, t] 0 ≤ t ≤ T , and hence uniformly continuous,

∀ε > 0 ∃δ(ε) ≥ 0, |h 2 | ≤ δ ⇒ T Z (f (v 0 s+h 2 ) -f (v 0 s )) dµ(v) ≤ ε. (105) Second, | RJ (ϕ, l)| ≤ ab l .
Combining (102)-( 105) with the fact that (g k ) k is bounded and Cauchy-Schwarz implies (101).

We now prove that Kµ is non negative.

Lemma C.2. The linear operator Kµ defined by (99) is non negative.

Proof. Consider

G i s = j∈In J ij n f (v j s ).
This implies, because of (3) and the stationarity of µ, that

E γ µ In G i s G k u = E γ µ In j,l∈In J ij n J kl n f (v j s )f (v l u ) = 1 N j,l∈In R J (k -i, l -j)E µ In f (v j s )f (v l u ) = 1 N j,l∈In R J (k -i, l -j)E µ In f (v 0 s )f (v l-j u ) = l∈In R J (k -i, l)E µ In f (v 0 s )f (v l u ) = K n,k-i µ (s, u), from which it follows that Kn µ g, g L 2 (In×[0,t]) = k,l∈In t 0 t 0 K n,k-l µ (s, u)g l u du (g k s ) * ds = k,l∈In t 0 t 0 E γ µ In G k s G l u g l u (g k s ) * du ds = E γ µ In   k∈In t 0 G k s g k s ds 2   ≥ 0.
We conclude that Kn µ is positive as an operator on L 2 (I n × [0, t]) and hence, taking the limit n → ∞ that Kµ is a positive operator on L 2 (Z × [0, t]).

We have the following Lemma related to the Fourier representation of the sequence (K k µ (s, u)) k∈Z . Lemma C.3. The sequence (K k µ (s, u)) k∈Z is the Fourier series of a three times continuously differentiable periodic function [-π, π[→ R, ϕ → Kµ (ϕ)(s, u) which is continuous w.r.t.

(s, u). This implies that the K k µ (s, u) are O(1/|k| 3 ). Furthermore this convergence is uniform in s, u, µ.

Proof. It follows from Lemma C.1 that for all s, u ∈ [0, t] that the sequence (K k µ (s, u)) k∈Z is the Fourier series of a continuous periodic function

[-π, π[→ R, ϕ → Kµ (ϕ)(s, u) which is continuous w.r.t. (s, u). By definition Kµ (ϕ)(s, u) = k K k µ (s, u)e -ikϕ ,
where the series in the right hand side is absolutely convergent. By (97) we have

Kµ (ϕ)(s, u) = l RJ (ϕ, l) T Z f (v 0 s )f (v l u ) dµ(v),
and the order three differentiability of Kµ (ϕ)(s, u) follows from Remark 2.3 as well as the uniform convergence of K k µ (s, u).

We have the following useful result.

Lemma C.4. We have

Kµ (ϕ)(s, u) ≤ ab ∀s, u ∈ [0, t], ϕ ∈ [-π, π[. Proof. By (97) Kµ (ϕ)(s, u) ≤ l∈Z RJ (ϕ, l) , where RJ (ϕ, l) = k∈Z R J (k, l)e -ikϕ .
This implies that Kµ (ϕ)(s, u)

2 ≤ l∈Z RJ (ϕ, l) 2 ,
and, since by ( 5), ( 6)

RJ (ϕ, l) ≤ k∈Z |R J (k, l)| ≤ b l k∈Z a k = ab l .
We conclude that Kµ (ϕ)(s, u)

2 ≤ a 2 b 2 .
By Lemmas C.1 and C.2 it follows that the spectrum of Kµ is discrete and composed of non negative eigenvalues noted λ µ m , m ∈ N. Let (h µ m ) be a corresponding orthonormal basis of eigenvectors i.e. such as

Kµ h µ m = λ µ m h µ m , h µ m , h µ m = δ mm ∀m, m ∈ N. Next define g µ m = √ λ µ m h µ m , m ∈ N.
One has the following "SVD" decomposition of the operator Kµ .

K k µ (s, u) = m∈N l g µ m (l, s)g µ m (l + k, u).
Given a covariance (K k µ ) k∈Z we know that there exists a centered Gaussian process (Ω, A, γ, (G k t ) k∈Z ) with covariance (K k µ ) k∈Z . For any such process, if H µ denotes the Gaussian space associated (the closed linear span of (G k t ) k∈Z in L 2 (Ω, A, γ)), then H µ is isomorphic to the autoreproducing Hilbert space H µ associated to (K k µ ) k∈Z by

φ : H µ → H µ Z → E γ [ZG • • ] .
We have the analog of Lemma C.3 for the Fourier transform Lµ (ϕ) of L k µ . Proposition C.8. The sequence (L k µ (s, u)) k∈Z is the Fourier series of a three times continuously differentiable periodic function ϕ → Lµ (ϕ)(s, u) which is continuous w.r.t. (s, u). The Fourier coefficients of Lµ (ϕ)(s, u), i.e. the kernel (L k µ (s, u)) k∈Z of the operator Lµ , is O(1/|k| 3 ), uniformly in s, u in [0, t] and µ. Therefore there exist constants C and D independent of µ such that ∀s, u ∈

[0, t], ∀ϕ ∈ [-π, π), k∈Z |L k µ (s, u)| ≤ C k∈Z L k µ (s, u) 2 ≤ D Lµ (ϕ)(s, u) ≤ √ D .
Proof. It follows from ( 106) and Remark C.6 that

Lµ (ϕ) = Id + σ -2 Kµ (ϕ) -1 Kµ (ϕ) = Kµ (ϕ) Id + σ -2 Kµ (ϕ) -1 . ( 108 
)
The order three continuous differentiability of Lµ (ϕ)(s, u) w.r.t. ϕ follows from that of Kµ (ϕ)(s, u) proved in Lemma C.3. We also obtain the fact that the L k µ (s, u) are O(1/|k| 3 ) uniformly in s, u in [0, t] and µ.

We have the following important Lemma which establishes that the kernels L k µ (s, u) are the covariance of the centered Gaussian field defined by (98) under another probability law than γ µ . Lemma C.9. For all t ∈ [0, T ] and all s, u ∈ [0, t], under the new law Λ t (G) • γ µ , the family of processes (G i s ) is still centered and Gaussian with covariance L µ given by

E γ µ Λ t (G)G 0 s G k u = L t,k µ (s, u), ( 109 
)
where

Λ t (G) = exp -1 2σ 2 j t 0 (G j u ) 2 du E γ µ exp -1 2σ 2 j t 0 (G j u ) 2 du .
In the above, the summation w.r.t. j is over I n for finite n or over Z otherwise.

In agreement with [START_REF] Sompolinsky | Relaxational dynamics of the Edwards-Anderson model and the mean-field theory of spin-glasses[END_REF] and Remark 3.2 we note γµ t the corresponding probability law on (Ω, A)

Proof. Let δ be a real number and G M,k t = M m=0 g µ m (k, t)ξ µ m .
Using the properties of the basis (g µ m ) m≥0 we have

E γ µ exp δG M,k t - 1 2σ 2 j t 0 (G M,j s ) 2 ds = E γ µ exp δ M m=0 g µ m (k, t)ξ µ m - 1 2σ 2 M m=0 λ µ m (ξ µ m ) 2 .
Because of the independence of the ξ µ n , this is equal to

M m=0 E γ µ exp δg µ m (k, t)ξ µ n - 1 2σ 2 λ µ m (ξ µ m ) 2 ,
and, using standard Gaussian calculus, we obtain

E γ µ exp δG M,k t - 1 2σ 2 j t 0 (G M,j s ) 2 ds = M m=0 1 + λ µ m σ 2 -1/2 exp δ 2 2 M m=0 1 1 + λ µ m σ 2 (g µ m (k, t)) 2 .
In particular

E γ µ exp - 1 2σ 2 j t 0 (G M,j s ) 2 ds = M m=0 (1 + λ µ m σ 2 ) -1/2
(110)

E γ µ exp δG M,k t -1 2σ 2 j t 0 (G M,j s ) 2 ds E γ µ exp -1 2σ 2 j t 0 (G M,j s ) 2 ds = exp δ 2 2 M m=0 1 1 + λ µ m σ 2 (g µ m (k, t)) 2 .
The same formula shows that the sequence exp δG M,k t -1 2σ 2 j t 0 (G M,j s ) 2 ds is bounded in L 1+ρ (Ω, A, γ) for any positive real ρ so that this sequence is uniformly integrable. It converges in probability to exp δG k t -1 2σ 2 j t 0 (G j s ) 2 ds . We conclude that

E γ µ exp - 1 2σ 2 j t 0 (G j s ) 2 ds = m∈N 1 + λ µ m σ 2 -1/2 (111) E γ µ exp δG k t -1 2σ 2 j t 0 (G j s ) 2 ds E γ µ exp -1 2σ 2 j t 0 (G j s ) 2 ds = exp δ 2 2 m∈N 1 1 + λ µ m σ 2 (g µ m (k, t)) 2 . ( 112 
)
We have computed the moment generating function of G i s under the new law Λ t (G) • γ µ . It is still Gaussian centered with covariance obtained by deriving (112) twice at δ = 0 to obtain:

E γ µ (G k t ) 2 exp -1 2σ 2 j t 0 (G j s ) 2 ds E γ µ exp -1 2σ 2 j t 0 (G j s ) 2 ds = m∈N 1 1 + λ µ m σ 2 (g µ m (k, t)) 2 ,
which yields (109) by polarization.

Proposition C.10. The application µ → L µ is Lipschitz continuous: There exists a positive constant C t such that

|L k µ (s, u) -L k ν (s, u)| ≤ O 1/|k| 3 C t D t (µ, ν) ∀s, u ∈ [0, t]
for all k ∈ Z.

Proof. According to (107) we have

Lµ -Lν = σ 2 Id + σ -2 Kν -1 -Id + σ -2 Kµ -1 = Id + σ -2 Kν -1 Kµ -Kν Id + σ -2 Kµ -1 .
Define Hµ = Id + σ -2 Kµ -1 and Hν = Id + σ -2 Kν -1 . Using Remark C.5 we have

L k µ (s, u) -L k ν (s, u) = l,j t 0 t 0 H k-l ν (s, s 1 )(K l-j µ (s 1 , s 2 ) -K l-j ν (s 1 , s 2 ))H j µ (s 2 , u) ds 1 ds 2 .
Let ξ be a coupling between µ and ν, (97) commands that

L k µ (s, u) -L k ν (s, u) ≤ l,j,m t 0 t 0 H k-l ν (s, s 1 ) |R J (l -j, m)| E ξ f (w 0 s 1 )f (w m s 2 ) -f (w 0 s 1 )f (w m s 2 ) H j µ (s 2 , u) ds 1 ds 2 .
Observing that f (w

0 s 1 )f (w m s 2 ) -f (w 0 s 1 )f (w m s 2 ) = f (w 0 s 1 )(f (w m s 2 ) -f (w m s 2 )) + f (w m s 2 )(f (w 0 s 1 ) - f (w 0 s 1 )), we obtain, using 0 ≤ f ≤ 1 m∈Z |R J (l -j, m)| t 0 |f (w 0 s 1 )f (w m s 2 ) -f (w 0 s 1 )f (w m s 2 )| dξ(w, w ) ≤ m∈Z |R J (l -j, m)| |f (w 0 s 1 ) -f (w 0 s 1 )| dξ(w, w ) + m∈Z |R J (l -j, m)| |f (w m s 2 ) -f (w m s 2 )| dξ(w, w ).
Equations ( 5) and ( 11)

imply m∈Z |R J (l -j, m)| |f (w 0 s 1 ) -f (w 0 s 1 )| dξ(w, w ) ≤ b b 0 a l-j d t (w, w ) dξ(w, w ) m∈Z |R J (l -j, m)| |f (w m s 2 ) -f (w m s 2 )| dξ(w, w ) ≤ a l-j d t (w, w ) dξ(w, w ).
the corresponding operator, noted Kqm µ , is also block diagonal, the blocks having also size v × v.

Note that we have Kp

µ = Kµ 2πp N , p ∈ I n , (114) 
and Kqm,p

µ = Kqm µ 2πp N , p ∈ I n . ( 115 
)
All this holds mutatis mutandis if we replace K µ by L µ . Also note that the following relations hold

Lp μn(Zn) (vη m , wη m ) = 1 N E γ μn(Zn) Λ|p| vηm ( G) G-p vηm Gp wηm , p ∈ I n , w ≤ v ∈ {0, • • • , m}, ( 116 
)
where

Z n = V n or V m n .
We provide a short proof Proof. According to (109) we have, taking the length N DFT of both sides,

Lp μn(Zn) (vη m , wη m ) = E γ μn(Zn) Λ vηm (G)G 0 vηm Gp wηm .
Using the inverse DFT relation, Proof of Lemma 3.20. We recall from (73) that

G 0 vηm = 1 N q∈In Gq vηm ,
α 1 s = 1 N 2 p∈In θp s -m θp s (m)

2

.

The proof is based on decomposing the right hand side of this equation into four terms. Using (61) we write,

θp s -m θp s (m) = σ -2 N -1 E γ μn(Vn) Λp s ( G) Gp s s 0 G-p r d Ṽ p r -Λp s (m) ( G) Gp s (m) s (m) 0 G-p r (m) d Ṽ p r = σ -2 N -1 E γ μn(Vn) Λp s ( G) -Λp s (m) ( G) Gp s (m) s (m) 0 G-p r (m) d Ṽ p r α 1,1,p s + σ -2 N -1 E γ μn(Vn) Λp s ( G) Gp s -Gp s (m) s (m) 0 G-p r (m) d Ṽ p r α 1,2,p s + σ -2 N -1 E γ μn(Vn) Λp s ( G) Gp s s (m) 0 G-p r -G-p r (m) d Ṽ p r α 1,3,p s + σ -2 N -1 E γ μn(Vn) Λp s ( G) Gp s s s (m) G-p r d Ṽ p r α 1,4,p s , (117) 
so that

α 1 s ≤ 4 σ 4 1 N 4 4 j=1 p∈In |α 1,j,p s | 2 .
We prove that for any M > 0, for any m sufficiently large, we have

lim n→∞ 1 N log Q n sup s∈[0,T ] 1 N 4 p∈In |α 1,j,p s | 2 ≥ σ 2 48T C ≤ -M j = 1, • • • , 4.
The proofs are somewhat similar. They all rely upon the use of Proposition B.11, Corollary B.12, Lemma B.14, Isserlis' and Cramer's Theorems. Let 0 ≤ v ≤ m be such that s (m) = vη m . For the rest of the proof we define

B := σ 2 48T C . ( 118 
)
Proof for α 1,1,p s From (117) we have

α 1,1,p s = E γ μn(Vn) Λp s ( G) -Λp s (m) ( G) Gp s (m) s (m) 0 G-p r (m) d Ṽ p r .
Step 1: An upper bound for Λp s ( G) -Λp s (m) ( G) We recall the definition of Λp s ( G):

Λp s ( G) = e -up N σ 2 s 0 | Gp u| 2 du E γ μn(Vn) e -up N σ 2 s 0 | Gp u| 2 du := X p (s) E γ μn(Vn) [X p (s)]
,

with u p = 1 if p = 0 and u 0 = 1/2, see (94). We then use the Lipschitz continuity of x → e -x for x ≥ 0: e -x -e -y ≤ |x -y|,

to obtain Λp s ( G) -Λp s (m) ( G) = X p (s) -X p (s (m) ) E γ μn(Vn) [X p (s)] - X p (s (m) ) E γ μn(Vn) [X p (s (m) )] 1 - E γ μn(Vn) X p (s (m) ) E γ μn(Vn) [X p (s)] , Λp s ( G) -Λp s (m) ( G) ≤ up N σ 2 s s (m) Gp u 2 du E γ μn(Vn) [X p (s)] + Λp s (m) ( G) up N σ 2 E γ μn(Vn) s s (m) Gp u 2 du E γ μn(Vn) e -up N σ 2 s 0 | Gp u| 2 du . (119) 
We therefore have to find a strictly positive lower bound for According to Lemma B.9

E γ μn(Vn) e -up N σ 2 s 0 | Gp
E γ μn(Vn) Gp u 2 = k,l∈In RJ (p, l -k)f (Z k u )f (Z l u ) ≤ N ∈In RJ (p, ) . Next we recall that RJ (p, ) = k∈In R J (k, )F -pk N ,
and, from, RJ (p, )

≤ k∈In |R J (k, )| ≤ b k∈In a k ,
it follows from ( 5) and ( 7)

∈In RJ (p, ) ≤ ab. Finally u p N σ 2 s 0 E Gp u 2 du ≤ u p abT σ 2 ≤ abT σ 2
and ( 120) is proved with D = e -abT σ 2 .. Going back to (119) and since u p ≤ 1, we have

Λp s ( G) -Λp s (m) ( G) ≤ 1 N Dσ 2 s s (m) Gp u 2 du + Λp s (m) ( G)E γ μn(Vn) s s (m) Gp u 2 du . ( 121 
)
Step 2: upper bound for α 1,1,p s : From the definition of α 1,1,p s in ( 117) and ( 121), we have

|α 1,1,p s | 2 ≤ 2 N 2 D 2 σ 4 E γ μn(Vn) s s (m) Gp u 2 du Gp s (m) s (m) 0 G-p r (m) d Ṽ p r 2 + E γ μn(Vn) s s (m) Gp u 2 du 2 E γ μn(Vn) Λp s (m) ( G) Gp s (m) s (m) 0 G-p r (m) d Ṽ p r 2 .
By Cauchy-Schwarz again,

|α 1,1,p s | 2 ≤ 2 N 2 D 2 σ 4 E γ μn(Vn) s s (m) Gp u 2 du 2 E γ μn(Vn)   Gp s (m) 2 s (m) 0 G-p r (m) d Ṽ p r 2   + E γ μn(Vn) Λp s (m) ( G) Gp s (m) 2 E γ μn(Vn)  Λ p s (m) ( G) s (m) 0 G-p r (m) d Ṽ p r 2   .
Applying once more Cauchy-Schwarz to the integral in the first factor in the right hand side we obtain

|α 1,1,p s | 2 ≤ 2 N 2 D 2 σ 4 (s -s (m) ) s s (m) E γ μn(Vn) Gp u 4 du × E γ μn(Vn)   Gp s (m) 2 s (m) 0 G-p r (m) d Ṽ p r 2   + E γ μn(Vn) Λp s (m) ( G) Gp s (m) 2 E γ μn(Vn)  Λ p s (m) ( G) s (m) 0 G-p r (m) d Ṽ p r 2   . ( 122 
)
Step 3: Apply Isserlis' Theorem We recall Isserlis' formula for four centered Gaussian variables

X k , k = 1, • • • , 4 E [X 1 X 2 X 3 X 4 ] = E [X 1 X 2 ] E [X 3 X 4 ] + E [X 1 X 3 ] E [X 2 X 4 ] + E [X 1 X 4 ] E [X 2 X 3 ] . ( 123 
)
For the first factor of the first term in the right hand side of (122) we let

X 1 = X 2 = Gp u and X 3 = X 4 = X * 1 = X * 2 = G-p u .
By Lemma B.9 we have

E γ μn(Vn) [X 1 X 2 ] = E γ μn(Vn) [X 3 X 4 ] = 0,
if p = 0, and by Corollary B.8, and 0

≤ f ≤ 1 max E γ μn(Vn) [X 1 X 2 ] , E γ μn(Vn) [X 3 X 4 ] ≤ N ab
if p = 0, as well as max j=1,2,k=3,4

E γ μn(Vn) [X j X k ] ≤ N ab for all p ∈ I n , so that s s (m) E γ μn(Vn) Gp u 4 du ≤ 3(ab) 2 N 2 (s -s (m) ), ∀p ∈ I n .
For the second factor of the first term we use again (123) with

X 1 = Gp s (m) , X 2 = X * 1 = G-p s (m) , X 3 = s (m) 0 G-p r (m) d Ṽ p r and X 4 = X * 3 = s (m) 0 Gp r (m) d Ṽ -p r .
By Lemma B.9 again we have

E γ μn(Vn) [X 1 X 4 ] = E γ μn(Vn) [X 2 X 3 ] = 0,
if p = 0 and, by Corollary B.8, and 0 ≤ f ≤ 1

E γ μn(Vn) [X 1 X 2 ] ≤ N ab, E γ μn(Vn) [X 3 X 4 ] ≤ ab k∈In s (m) 0 f (V k r (m) )d Ṽ p r 2 , as well as max E γ μn(Vn) [X 1 X 4 ] , E γ μn(Vn) [X 2 X 3 ] ≤ N ab if p = 0. Furthermore, for the same reasons, max E γ μn(Vn) [X 1 X 3 ] , E γ μn(Vn) [X 3 X 4 ] ≤ ab √ N   k∈In s (m) 0 f (V k r (m) )d Ṽ p r 2   1/2
, so that

E γ μn(Vn)   Gp s (m) 2 s (m) 0 G-p r (m) d Ṽ p r 2   ≤ 3(ab) 2 N k∈In s (m) 0 f (V k r (m) )d Ṽ p r 2 .
By Lemma B.14 and 0 ≤ f ≤ 1

E γ μn(Vn) Λp s (m) ( G) Gp s (m) 2 ≤ N C J , and 
E γ μn(Vn)  Λ p s (m) ( G) s (m) 0 G-p r (m) d Ṽ p r 2   ≤ C J k∈In s (m) 0 f (V k r (m) )d Ṽ p r 2
, so that the second factor of the second term in the right hand side of ( 122) is upper bounded by

(C J ) 2 N k∈In s (m) 0 f (V k r (m) )d Ṽ p r 2 .
Step 4: Wrapping things up Bringing all this together we find that

1 N 4 p∈In |α 1,1,p s | 2 ≤ A 1 N 3 (s -s (m) ) 2 k∈In p∈In s (m) 0 f (V k r (m) )d Ṽ p r 2 ,
for some positive constant A, and by Parseval's Theorem

1 N 4 p∈In |α 1,1,p s | 2 ≤ A 1 N 2 (s -s (m) ) 2 k∈In l∈In s (m) 0 f (V k r (m) )dV l r 2 .
Next we use Corollary 3.6 to write dV l r = σdW l r + σθ l r dr, l ∈ I n , from which follows that

1 N 4 p∈In |α 1,1,p s | 2 ≤ 2A N 2 (s -s (m) ) 2 k∈In l∈In s (m) 0 f (V k r (m) )dW l r 2 + k∈In l∈In s (m) 0 f (V k r (m) )θ l r dr 2 .
By Cauchy-Schwarz and 0 ≤ f ≤ 1, one has

s (m) 0 f (V k r (m) )θ l r dr 2 ≤ T s (m) 0 (θ l r ) 2 dr. So that, 1 N 4 p∈In |α 1,1,p s | 2 ≤ 2A N 2 (s-s (m) ) 2   k∈In l∈In s (m) 0 f (V k r (m) )dW l r 2 + N T l∈In s (m) 0 (θ l r ) 2 dr   .
We can conclude with Lemmas A.1 and 3.13. We provide the details. Since s -s (m) ≤ T /m,

Q n sup s∈[0,T ] 1 N 4 p∈In |α 1,1,p s | 2 ≥ B ≤ Q n   sup s∈[0,T ] 1 N 2 m 2 k∈In l∈In s (m) 0 f (V k r (m) )dW l r 2 ≥ B 4T 2 A   + Q n sup s∈[0,T ] 1 N m 2 l∈In s (m) 0 (θ l r ) 2 dr ≥ B 4T 3 A ,
where B is defined in (118). The logarithm of the left hand side is less than or equal to twice the maximum of the logarithms of the two terms in the right hand side.

For the first term, writing

E := B 4T 2 A , we have log Q n   sup s∈[0,T ] 1 N 2 m 2 k∈In l∈In s (m) 0 f (V k r (m) )dW l r 2 ≥ E   = log Q n   sup s∈[0,T ] 1 m 1 2N k∈In l∈In s (m) 0 f (V k r (m) )dW l r 2 ≥ N m E 2   .
Now let ζ s be the submartingale

ζ s = exp   1 m 1 2N k∈In l∈In s (m) 0 f (V k r (m) )dW l r 2   .
By Doob's submartingale inequality we have

Q n   sup s∈[0,T ] 1 m 1 2N k∈In l∈In s (m) 0 f (V k r (m) )dW l r 2 ≥ N m E 2   = Q n sup s∈[0,T ] ζ s ≥ exp N m E 2 ≤ exp -N m E 2 E Qn [ζ T ] .
The application of Lemma A.1 with

ε 2 = 1 m yields log Q n   sup s∈[0,T ] 1 N 2 m 2 k∈In l∈In s (m) 0 f (V k r (m) )dW l r 2 ≥ E   ≤ -N m E 2 - N 4 log(1 -4 T m ),
indicating that we can find m large enough such that

lim n→∞ 1 N log Q n   sup s∈[0,T ] 1 N 2 m 2 k∈In l∈In s (m) 0 f (V k r (m) )dW l r 2 ≥ E   ≤ -M. (124) 
For the second term, writing E := B 4T 3 A , we have

Q n sup s∈[0,T ] 1 N m 2 l∈In s (m) 0 (θ l r ) 2 dr ≥ E ≤ Q n 1 N sup r∈[0,T ] l∈In (θ l r ) 2 ≥ E T m 2 ,
and Lemma 3.13 shows that, given M > 0, we can find m large enough such that

lim n→∞ 1 N Q n sup s∈[0,T ] 1 N m 2 l∈In s (m) 0 (θ l r ) 2 dr ≥ E ≤ -M. (125) 
The combination of ( 124) and (125) shows that for all M > 0, for m large enough

lim n→∞ 1 N log Q n sup s∈[0,T ] 1 N 4 p∈In |α 1,1,p s | 2 ≥ B ≤ -M,
where B being defined in (118).

The proof for α 1,2,p s is very similar to that for α 1,3,p s which we give now. Proof for α 1,3,p s

Step 1: An upper bound for

s (m) 0 G-p r -G-p r (m) d Ṽ p r 2 
From (117) we have

α 1,3,p s = E γ μn(Vn) Λp s ( G) Gp s s (m) 0 G-p r -G-p r (m) d Ṽ p r .
This commands, by Cauchy-Schwarz, that

α 1,3,p s 2 ≤ E γ μn(Vn) Λp s ( G)| Gp s | 2 × E γ μn(Vn)  Λ p s ( G) s (m) 0 G-p r -G-p r (m) d Ṽ p r 2   .
By Lemma B.14 and 0 ≤ f ≤ 1

E γ μn(Vn) Λp s ( G)| Gp s | 2 ≤ C J j∈In f (V j s ) 2 ≤ N C J .
By Lemma B.14 again,

E γ μn(Vn)  Λ p s ( G) s (m) 0 G-p r -G-p r (m) d Ṽ p r 2   ≤ C J j∈In s (m) 0 (f (V j r ) -f (V j r (m) ))d Ṽ p r 2 .
By Parseval's Theorem

C J p∈In j∈In s (m) 0 (f (V j r ) -f (V j r (m) )d Ṽ p r 2 = N C J j,k∈In s (m) 0 (f (V j r ) -f (V j r (m) )dV k r 2 .
and therefore

p∈In α 1,3,p s 2 ≤ (C J ) 2 N 2 j,k∈In s (m) 0 (f (V j r ) -f (V j r (m) ))dV k r 2
.

By ( 29)-( 30) and Cauchy-Schwarz

(C J ) 2 N 2 j,k∈In s (m) 0 (f (V j r ) -f (V j r (m) ))dV k r 2 ≤ AN 2   j,k∈In s (m) 0 (f (V j r ) -f (V j r (m) ))dW k r 2 + j,k∈In s (m) 0 (f (V j r ) -f (V j r (m) ))θ k r dr 2   ,
for some constant A > 0, so that we have established that

1 N 4 p∈In α 1,3,p s 2 ≤ A 1 N 2 j,k∈In s (m) 0 (f ( 
V j r ) -f (V j r (m) ))dW k r 2 + j,k∈In s (m) 0 (f (V j r ) -f (V j r (m) ))θ k r dr 2 .
By Cauchy-Schwarz on the second integral

1 N 4 p∈In α 1,3,p s 2 ≤ A 1 N 2 j,k∈In s (m) 0 (f (V j r ) -f (V j r (m) ))dW k r 2 + j∈In s (m) 0 (f (V j r ) -f (V j r (m) )) 2 dr k∈In s (m) 0 (θ k r ) 2 dr .
So that

Q n sup s∈[0,T ] 1 N 4 p∈In |α 1,3,p s | 2 ≥ B ≤ Q n   sup s∈[0,T ] 1 N 2 j,k∈In s (m) 0 (f (V j r ) -f (V j r (m) ))dW k r 2 ≥ E   + Q n 1 N j∈In T 0 (f (V j r ) -f (V j r (m) )) 2 dr 1 N k∈In T 0 (θ k r ) 2 dr ≥ E , (126) 
where E = B/(2A).

Step 2: Upper bounding the second term in the right hand side of (126)

Let h(m) : N * → R + be such that lim m→∞ h(m) = 0. h is specified later. The second term in the right hand side is dealt with as follows

Q n       1 N j∈In T 0 (f (V j r ) -f (V j r (m) )) 2 dr S 1 × 1 N k∈In T 0 (θ k r ) 2 dr S 2 ≥ E       = Q n 1 S 1 >h(m) S 1 S 2 + 1 S 1 ≤h(m) S 1 S 2 ≥ E ≤ Q n 1 S 1 >h(m) S 1 S 2 ≥ E/2 + Q n 1 S 1 ≤h(m) S 1 S 2 ≥ E/2 ≤ Q n (S 1 > h(m)) + Q n S 2 ≥ E 2h(m)
.

The term Q n S 2 ≥ E 2h(m) can be dealt with Lemma 3.13 since lim m→∞ h(m) = 0. Consider next the term

S 1 := 1 N j∈In T 0 (f (V j r ) -f (V j r (m)
)) 2 dr. By the Lipschitz continuity of f , (29), Cauchy-Schwarz, and r -r (m) ≤ T /m we have

S 1 ≤ 1 N j∈In T 0 V j r -V j r (m) 2 dr = σ 2 N j∈In T 0 W j r -W j r (m) + r r (m) θ j s ds 2 dr ≤ 2σ 2 N j∈In T 0 W j r -W j r (m) 2 dr + 2σ 2 N j∈In T 0 r r (m) θ j s ds 2 dr ≤ 2σ 2 N j∈In T 0 W j r -W j r (m) 2 dr + 2σ 2 N j∈In T 0 (r -r (m) ) r r (m) (θ j s ) 2 ds dr ≤ 2σ 2 N j∈In T 0 W j r -W j r (m) 2 dr + 2σ 2 T 3 m 2 1 N sup s∈[0,T ] j∈In θ j s 2 .
We conclude that

Q n (S 1 > h(m)) ≤ Q n 1 N j∈In T 0 W j r -W j r (m) 2 dr ≥ h(m)/(4σ 2 ) +Q n 1 N j∈In sup s∈[0,T ] θ j s 2 ≥ 1 4σ 2 T 3 m 2 h(m) .
The second term in the right hand side of the previous inequality is dealt with Lemma 3.13, provided that lim m→∞ m 2 h(m) = ∞.

Regarding the first term, decomposing the integral, we have

1 N j∈In T 0 W j r -W j r (m) 2 dr = 1 N j∈In m-1 v=0 (v+1)ηm vηm W j r -W j vηm 2 dr = 1 N j∈In m-1 v=0 ηm 0 W j,v r 2 dr,
where (W j,v s ) j,v are independent Brownian motions.

ηm 0 W j,v r 2 dr = 1 0 W j,v rηm 2 η m dr = 1 0 1 √ η m W j,v rηm 2 (η m ) 2 dr.
We set W j,v r = 1 √ ηm W j,v rηm . Thanks to the scaling property of the Brownian motion, ( W j,v r ) j,v are independent Brownian motions, so that

ηm 0 W j,v r 2 dr = η 2 m 1 0 W j,v r 2 dr.
We deduce

Q n 1 N j∈In T 0 W j r -W j r (m) 2 dr ≥ h(m)/(4σ 2 ) = Q n 1 N m j∈In m-1 v=0 1 0 W j,v r 2 dr ≥ mh(m) 1 4T 2 σ 2 .
This forces us to choose h in such a way that lim m→∞ mh(m) = ∞, e.g. h(m) = 1/ √ m. Note that this implies that lim m→∞ m 2 h(m) = ∞. In order to apply Cramer's Theorem, we require that the random variable

1 0 W j,v r 2
dr has exponential moments. This existence is due to the fact that, through Jensen's Inequality,

E exp 1 4 1 0 (W s ) 2 ds ≤ E 1 0 exp 1 4 (W s ) 2 ds = 1 0 E exp 1 4 (W s ) 2 ≤ E exp 1 4 (W 1 ) 2 < ∞.
Step 3: Upper bounding the first term in the right hand side of (126) In order to deal with the first term in the right hand side of (126) we have to control the term

1 N sup s∈[0,T ] j∈In (f (V j s ) -f (V j s (m) )) 2 .
In order to do this, we define the set

K κ,n = V : 1 N sup s∈[0,T ] j∈In f (V j s ) -f (V j s (m) ) 2 ≥ κT m ⊂ T N .
The following Lemma, whose proof is left to the reader, indicates that, for κ large enough, the probability of this event is exponentially small for large n.

Lemma D.1. For all M > 0, for κ > 0 large enough,

lim n→∞ 1 N log Q n K κ,n ≤ -M. (127) 
Using this Lemma we write

lim n→∞ 1 N log Q n   sup s∈[0,T ] 1 N 2 j,k∈In s (m) 0 (f (V j r ) -f (V j r (m) ))dW k r 2 ≥ E   ≤ max lim n→∞ 1 N log Q n (K κ,n ) , lim n→∞ 1 N log Q n   K c κ,n ∩    sup s∈[0,T ] 1 N 2 j,k∈In s (m) 0 (f (V j r ) -f (V j r (m) ))dW k r 2 ≥ E      ≤ max -M, lim n→∞ 1 N log Q n   K c κ,n ∩    sup s∈[0,T ] 1 N 2 j,k∈In s (m) 0 (f ( 
V j r ) -f (V j r (m) ))dW k r 2 ≥ E      , (128) 
where κ is large enough so that (127) holds. Note that

sup s∈[0,T ] 1 N 2 j,k∈In s (m) 0 (f (V j r ) -f (V j r (m) ))dW k r 2 ≥ E ⇐⇒ sup s∈[0,T ] h(m) 2N j,k∈In s (m) 0 2m κT (f (V j r ) -f (V j r (m) ))dW k r 2 ≥ h(m)mN E κT ,
where h : N → R + is monotonically decreasing toward 0. Now let ζ s be the submartingale

ζ s = exp   h(m) 2N j,k∈In s (m) 0 2m κT (f (V j r ) -f (V j r (m) ))dW k r 2   . (129) 
Through Doob's submartingale inequality,

Q n K c κ,n ∩    sup s∈[0,T ] 1 N 2 j,k∈In s (m) 0 (f (V j r ) -f (V j r (m) ))dW k r 2 ≥ E    ≤ E Q n ζ T ∩ K c κ,n exp - h(m)mN E κT . (130) 
Choosing, e.g. h(m) = 1/ √ m we can apply Lemma A.1 with ε 2 = h(m) and obtain

E Q n ζ T ∩ K c κ,n ≤ 1 -4 T m -N/4
. Hence, upon taking m → ∞, we find that

lim n→∞ 1 N log Q n   K c κ,n ∩    sup s∈[0,T ] 1 N 2 j,k∈In s (m) 0 (f (V j r ) -f (V j r (m) ))dW k r 2 ≥ E      ≤ -M.
We have established that for m large enough

lim n→∞ 1 N log Q n sup s∈[0,T ] 1 N 4 p∈In α 1,3,p s 2 ≥ B ≤ -M,
where B is defined in (118). Proof for α 1,4,p s

We next consider α 1,4,p s in (117). As in the previous derivations, by Corollary 3.6, Cauchy-Schwarz inequality and Parseval's theorem, we write

1 N 4 p∈In α 1,4,p s 2 ≤ A 1 N 2 j,k∈In s s (m) f (V j r )dW k r 2 + j,k∈In s s (m) 
f (V j r )θ k r dr 2 , (131) 
for some constant A > 0, independent of n, m. In the remaining of this Appendix we neglect for simplicity the drift part, i.e. the second term in the right hand side of the previous equation, since this can be dealt with similarly to the above by the use of Lemma 3.13 or 3.14. From (131), neglecting the drift term, and letting E := B/A, we write

1 N log Q n sup s∈[0,T ] A 1 N 2 j,k∈In s s (m) f (V j r )dW k r 2 ≥ B = 1 N log Q n sup s∈[0,T ] 1 N 2 j,k∈In s s (m) f (V j r )dW k r 2 ≥ E = 1 N log Q n sup 0≤u≤m-1 sup s∈[uηm,(u+1)ηm] 1 N 2 j,k∈In s s (m) f (V j r )dW k r 2 ≥ E ≤ 1 N log m sup 0≤u≤m-1 Q n sup s∈[uηm,(u+1)ηm] 1 N 2 j,k∈In s s (m) f (V j r )dW k r 2 ≥ E = 1 N log m sup 0≤u≤m-1 Q n sup s∈[uηm,(u+1)ηm] ζ s ≥ exp N h(m)E 2 ,
where

ζ s = exp h(m) 2N j,k∈In s s (m) f (V j r )dW k r 2 .
The function h : N → R + is increasing and is defined just below. Since ζ s is a submartingale for s ∈ [uη m , (u + 1)η m ], by Doob's submartingale inequality,

Q n sup s∈[uηm,(u+1)ηm)] ζ s ≥ exp N h(m)E 2 ≤ exp - N h(m)E 2 E Q n ζ (u+1)ηm .
We apply Lemma A.1 with ε = h(m), T = η m and conclude that, if h(m) ≤ m 4T for m large enough, e.g. h(m) = √ m,

E Q n ζ (u+1)ηm ≤ (1 -4h(m)η m ) -N/4 ,
and therefore

1 N log Q n sup s∈[0,T ] A 1 N 2 j,k∈In s s (m) f (V j r )dW k r 2 ≥ B ≤ log m N - h(m)E 2 - 1 4 log(1 -4h(m)η m ).
We have established that for all M > 0, for m large enough lim

N →∞ 1 N log Q n ( sup s∈[0,T ] 1 N 4 p∈In α 1,4,p s 2 ≥ B)) ≤ -M,
and hence proved the Lemma.

Proof of Lemma 3.21. The salient point in the proof is the use of the difference of the correlation functions K μn(Vn) and K qm μn(Vn) , defined in Appendix C.2, over the sets I n × I qm and I n × I n . We remind the reader that q m is defined at the start of Section 3.2. The proof shows that it is possible to choose m and q m as functions of n as stated in the Lemma. Assume that s

(m) = vη m , v = 0, • • • , m -1.
Step 1: Finding an upper bound of α 2 vηm in terms of Kμn(Vn) -Kqm μn(Vn)

In detail (73) implies that (s, u). Step 2: Choose m and q m as functions of n We observe that K qm,k μn(Vn) is equal to K k μn(Vn) over the set I qm and to 0 over the complement of I qm in I n , their common value being

By the identity

A -1 -B -1 = A -1 (B -A)B -1 σ 2 Id + σ -2 Kqm,p μn(Vn) -1 (s, u) -σ 2 Id + σ -2 Kp μn(Vn) -1 (s, u) = Id + σ -
K k μn(Vn) (x, y) = h∈In R J (k, h) 1 N l∈In f (V l x )f (V l+h y
), so that we have

α 2 vηm ≤ 5T 2 σ 4 k∈In\Iq m T 0 T 0 h∈In R J (k, h) 1 N l∈In f (V l x )f (V l+h y ) 2 dx dy × k∈In v w=1 δV k w 2 .
Because 0 ≤ f ≤ 1 we have

α 2 vηm ≤ 5T 4 σ 4 k∈In\Iq m h∈In |R J (k, h)| 2 × k∈In v w=1 δV k w 2 . Define ψ(n, q m ) := k∈In\Iq m h∈In |R J (k, h)| 2 .
By choosing q m as a function of m, and m as a function of n, ψ(n, q m ) can be made arbitrarily small for large n and m . We have

α 2 vηm ≤ 5T 4 σ 4 ψ(n, q m ) k∈In v w=1 δV k w 2 .
As before, we neglect the contribution of the drift term in (29) and write that, for m, n large enough

α 2 vηm ≤ 5T 4 σ 4 ψ(n, q m ) k∈In v w=1 δW k w 2 .
Let us define

δW k w := T m ξ w,k , k ∈ I n , w = 1, • • • , m, (134) 
where the ξ w,k s are i.i.d. N (0, 1). Using (134), we have

sup v=0,•,m-1 α 2 vηm ≤ 5T 5 σ 4 N ψ(n, q m ) 1 N m k∈In m w=1 (ξ w,k ) 2 .
Define ϕ(n, m) := 5T 5 N ψ(n, q m )/σ 4 and assume that we have chosen ψ(n, q m ) such that lim n,m→∞ ϕ(n, m) = 0.

Remark D.2. Because of (6) we have

ψ(n, q m ) ≤ Ab 2 n k=qm+1 1 k 4 ≤ Ab 2 (n -q m ) 1 (q m + 1) 4 ,
for some A > 0 independent of n and m, and therefore ϕ(n, m) ≤ B(2n + 1)(n -q m ) 1 (q m + 1) 4 with B = Ab 2 T 5 . Now choose q m = ng(m) with g(m) ≤ 1. It follows that

(2n + 1)(n -q m ) 1 (q m + 1) 4 = 1 n 2 (2 + 1 n )(1 -g(m)) 1 
g(m) + 1 n 4 .
At this step, any choice of g ≤ 1 yields to lim n,m→∞ ϕ(n, m) = 0.

Step 3: Apply Cramer's Theorem and conclude Next we set A := 3T Cσ 2 and have

Q n ( sup v=0,•,m-1 α 2 vηm ≥ 3T Cσ 2 ) = Q n 1 N m k∈In m w=1 (ξ w,k ) 2 ≥ A ϕ(n, m) . ( 135 
)
Since lim n,m→∞ ϕ(n, m) = 0 we can choose n 0 and m 0 such that A ϕ(n,m) > 1 for n ≥ n 0 and m ≥ m 0 , 1 being the mean of (ξ w,k ) 2 . Let ρ := A ϕ(n 0 ,m 0 ) . We have

Q n 1 N m k∈In m w=1 (ξ w,k ) 2 ≥ A ϕ(n, m) ≤ Q n 1 N m k∈In m w=1 (ξ w,k ) 2 ≥ ρ ,
as soon as n ≥ n 0 and m ≥ m 0 . We conclude thanks to Cramer's Theorem. We state in the following Lemma a version adapted to our setting.

Lemma D.3. Let ξ w,k , w = 0, • • • , m -1, k ∈ I n , be a sequence of i.i.d. N (0, 1) random variables under Q n , and ρ > 1. There exists α > 0 depending on ρ such that

lim n→∞ 1 N log Q n 1 N m k∈In m-1 w=0 (ξ w,k ) 2 ≥ ρ ≤ -mα.
Proof. See [START_REF] Dembo | Large deviations techniques[END_REF]Th. 2.2.3].

According to this Lemma there exists α(ρ) > 0 such that

1 N log Q n 1 N m k∈In m w=1 (ξ w,k ) 2 ≥ A ϕ(n, m) ≤ -mα(ρ).
Combining this with (135) we obtain

1 N log Q n sup s∈[0,T ] α 2 s (m) ≥ 3T Cσ 2 ≤ -mα(ρ),
as soon as n ≥ n 0 and m ≥ m 0 . This completes the proof.

Proof of Lemma 3.22. The proof is based on a comparison of the length N DFTs of a sequence of length N and of the same sequence of length Q m padded with N -Q m zeroes followed by the use of Cramer's Theorem, i.e. Lemma D.3.

Step 1: Fourier analysis We have, with s (m) = vη m ,

α 3 vηm = 5 N 2 p∈In σ -2 ( Lp μn(V m n ) δ Ṽ m,p )(vη m ) -θm,p s 2 .
By equations ( 108) and ( 114)

( Lp μn(V m n ) δ Ṽ m,p )(vη m ) = σ 2 v w=0 δ Ṽ m,p w -σ 2 v w=0 (1 + σ -2 Kp μn(V m n ) ) -1 (vη m , wη m )δ Ṽ m,p w = σ 2 v w=0 δ Ṽ m,p w -σ 2 v w=0 (1 + σ -2 Kvηm μn(V m n ) ( 2πp N )) -1 (vη m , wη m )δ Ṽ m,p w .
By (37) and ( 109 

L qm,k μn(V m n ) (vη m , wη m ) = 1 Q m q∈Iq m Lqm,q μn(V m n ) (vη m , wη m )F qk Qm ,
where

F Qm = e 2iπ Qm , implies θm,p s = σ -2 Q -1 m k,q∈Iq m F kp N F kq Qm v w=0 Lqm,q μn(V m n ) (vη m , wη m )δ Ṽ m,p w .
According to (107), Lqm,q

μn(V m n ) = σ 2 Id -(Id + σ -2 Kqm,q μn(V m n ) ) -1 = σ 2 Id -Id + σ -2 Kqm μn(V m n ) 2πq Q m -1
, so that we have, using q∈Iq m F kq Qm = Q m δ k , where δ k = 1 if k = 0 and 0 otherwise. And therefore

k,q∈Iq m F kp N F kq Qm = Q m , θm,p s = v w=0 δ Ṽ m,p w - v w=0 k∈Iq m 1 2π q∈Iq m e -ik( 2πq Qm -2πp N ) Id + σ -2 Kqm μn(V m n ) 2πq Q m -1 (vη m , wη m ) 2π Q m δ Ṽ m,p w .
We conclude that σ -2 ( Lqm,p

μn(V m n ) δ Ṽ m,p )(vη m ) -θm,p s = v w=0 k∈Iq m 1 2π q∈Iq m e -ik( 2πq Qm -2πp N ) Id + σ -2 Kqm μn(V m n ) 2πq Q m -1 (vη m , wη m ) 2π Q m - Id + σ -2 Kqm μn(V m n ) 2πp N -1 (vη m , wη m ) δ Ṽ m,p w .
With a slight abuse of notation and ignoring the time dependency for the moment we write

Id + σ -2 Kqm μn(V m n ) 2πq Q m -1 (vη m , wη m ) = 1 1 + σ -2 Kqm μn(V m n ) 2πq Qm , and 
Id + σ -2 Kqm μn(V m n ) 2πp N -1 (vη m , wη m ) = 1 1 + σ -2 Kqm μn(V m n ) 2πp N . Because 1 1 + σ -2 Kqm μn(V m n ) 2πp N = π -π δ(ϕ -2πp N ) 1 + σ -2 Kqm μn(V m n ) (ϕ) dϕ, and 1 2π k∈Z e -ik(ϕ-2πp N ) = δ(ϕ - 2πp N ),
we have

k∈Iq m 1 2π q∈Iq m e -ik( 2πq Qm -2πp N ) 1 + σ -2 Kqm μn(V m n ) 2πq Qm 2π Q m - 1 1 + σ -2 Kqm μn(V m n ) 2πp N = k∈Iq m 1 2π q∈Iq m e -ik( 2πq Qm -2πp N ) 1 + σ -2 Kqm μn(V m n ) 2πq Qm 2π Q m - π -π δ(ϕ -2πp N ) 1 + σ -2 Kqm μn(V m n ) (ϕ) dϕ = k∈Iq m e 2πik p N   1 2π q∈Iq m e -2πik q Qm 1 + σ -2 Kqm μn(V m n ) 2πq Qm 2π Q m - 1 2π π -π e -ikϕ 1 + σ -2 Kqm μn(V m n ) (ϕ) dϕ   - k∈Z-Iq m e 2πik p N 1 2π π -π e -ikϕ 1 + σ -2 Kqm μn(V m n ) (ϕ) dϕ. Define ∀ϕ ∈ [-π, π], h(ϕ) := e -ikϕ 1 + σ -2 Kqm μn(V m n ) (ϕ) and ∆ϕ = 2π Q m ,
and write 1 2π

q∈Iq m e -2πik q Qm 1 + σ -2 Kqm μn(V m n ) 2πq Qm 2π Q m = 1 2π 2qm q=0 h(-π + ∆ϕ 2 + q∆ϕ).
This shows that the first term in the left hand side of the previous equations is the Riemann sum, corresponding to the midpoint rule, approximating π -π h(ϕ) dϕ. This implies that 1 2π

q∈Iq m e -2πik q Qm 1 + σ -2 Kqm μn(V m n ) 2πq Qm 2π Q m - 1 2π π -π e -ikϕ 1 + σ -2 Kqm μn(V m n ) (ϕ) dϕ ≤ D Q 2 m ,
where D is a positive constant that depends on the maximum value of the magnitude of the second order derivative of h over the interval [-π, π], hence bounded. Therefore we have proved that

k∈Iq m e 2πik p N   1 2π q∈Iq m e -2πik q Qm 1 + σ -2 Kqm μn(V m n ) 2πq Qm 2π Q m - 1 2π π -π e -ikϕ 1 + σ -2 Kqm μn(V m n ) (ϕ) dϕ   ≤ D Q m , ∀p ∈ I n .
We now consider the term

1 2π π -π e -ikϕ 1+σ -2 Kqm μn(V m n ) (ϕ)
dϕ. It is the kth coefficient in the Fourier series of the periodic function ϕ →

1 1+σ -2 Kqm μn(V m n ) (ϕ)
. Since 1 + σ -2 Kqm μn(V m n ) (ϕ) is positive, three times differentiable with a bounded third order derivative, see Lemma C.3, a standard result in Fourier analysis indicates that this coefficient is

O(1/|k| 3 ). Since ∞ h=|k| 1 h 3 is of order O(1/k 2 ), we conclude that for Q m large enough k∈Z-Iq m e 2πik p N 1 2π π -π e -ikϕ 1 + σ -2 Kqm μn(V m n ) (ϕ) dϕ ≤ D Q 2 m ,
for some constant D > 0.

Reintroducing the time dependency, and by Cauchy-Schwarz on the w index, we have therefore proved that for Q m large enough

v w=0 k∈Iq m 1 2π q∈Iq m e -ik( 2πq Qm -2πp N ) Id + σ -2 Kqm μn(V m n ) 2πq Q m -1 (vη m , wη m ) 2π Q m - Id + σ -2 Kqm μn(V m n ) 2πp N -1 (vη m , wη m ) δ Ṽ m,p w ≤ v w=0 k∈Iq m 1 2π q∈Iq m e -ik( 2πq Qm -2πp N ) Id + σ -2 Kqm μn(V m n ) 2πq Q m -1 (vη m , wη m ) 2π Q m - Id + σ -2 Kqm μn(V m n ) 2πp N -1
(vη m , wη m )

2 1/2 × v w=0 |δ Ṽ m,p w | 2 1/2 ≤ D Q m v w=0 |δ Ṽ m,p w | 2 1/2
, for some constant D > 0, and therefore that

α 3 vηm = 5 N 2 p∈In σ -2 ( Lqm,p μn(V m n ) δ Ṽ m,p )(vη m ) -θm,p s 2 ≤ 5D 2 N 2 Q 2 m p∈In v w=0 |δ Ṽ m,p w | 2 ,
so that, by Parseval's theorem

α 3 vηm ≤ 5D 2 N Q 2 m k∈In v w=0 |δV m,k w | 2 .
Step 2: Apply Cramer's Theorem and conclude As in previous proofs, Lemma 3.14 allows us to neglect the contribution of the drift terms θ m,p in the above so that we are interested in upper bounding the probability that the quantity

5D 2 σ 2 N Q 2 m k∈In v w=0 |δW k w | 2 = 5D 2 σ 2 T N mQ 2 m k∈In v w=0 ξ w,k 2 is larger than 3T Cσ 2 .
Following the same strategy as in the end of the proof of Lemma 3.21, we choose m 0 such that ρ :=

Q 2 m 0 15CT 2 D 2 σ 4 > 1.
Applying again Lemma D.3 shows that there exists α(ρ) > 0 such that

1 N log Q n ( sup s∈[0,T ] α 3 s (m) ≥ 3T Cσ 2 ) ≤ -mα(ρ),
as soon as m ≥ m 0 . This completes the proof.

Proof of Lemma 3.23.

The proof uses the idea of writing an upper bound of α 4 vηm as a sum of three terms and upper bounding each of the three terms. We only provide the proof for one of the three terms, the one requiring the more work.

Step 1: An upper bound for α 4 vηm We go back to the initial definition of Lqm,p μn(Vn) and Lqm,p μn(V m n ) , see (116), to write the expression for α 4 vηm in (73) as

α 4 vηm = 5 N 2 σ 4 p∈In Lqm,p μn(Vn) -Lqm,p μn(V m n ) δ Ṽ p (vη m ) 2 = 5 N 4 σ 4 p∈In E γ μn(Vn) Λp vηm ( Gc,m ) Gc,m,-p vηm vηm 0 Gc,m,p r (m) d Ṽ p r -Λp vηm ( Gm ) Gm,-p vηm vηm 0 Gm,p r (m) d Ṽ p r 2 , (136) 
where Gc,m,p is the length N DFT obtained by padding with N -Q m zeros the length Q m stationary periodic sequence

G c,m,j t = k∈In J jk n,m f (V k t ), j ∈ I qm , (137) 
and Gm,p is the length N DFT obtained by padding with N -Q m zeros the length Q m stationary periodic sequence

G m,j t = k∈In J jk n,m f (V m,k t ), j ∈ I qm . (138) 
The coefficients (J jk n,m ) j∈Iq m , k∈In are defined in (32) and (33). In order to proceed, we upper bound the right hand side of (136) by a sum of three terms 

≤ v ≤ u lim n→∞ 1 N log Q n 15 N 4 σ 4 p∈In α 4,j,p vηm ≥ c 3T Cσ 2 exp (vη m c) and τ ( , c) ≥ uη m ≤ -M j = 1, 2, 3.
The proofs are somewhat similar. We provide a proof for the most complicated term corresponding to j = 1 and leave it to the reader to provide proofs for the cases j = 2, 3. 

E γ μn(Vn) Λp vηm ( Gm ) vηm 0 Gc,m,p r (m) d Ṽ p r 2 ≤ C J k∈In vηm 0 f (V k r (m) ) d Ṽ p r 2 , so that A 1 ≤ 2ab(C J ) 2 T N 2 k∈In vηm 0 f (V k r (m) ) d Ṽ p r 2 . ( 141 
)
Step 4: Upper bounding A 2 by Isserlis' Theorem Upperbounding the second term, A 2 , requires the use of Isserlis' Theorem. In order to do this, we recall Isserlis' formula for six centered Gaussian random variables (X k ) k=1,••• ,6 . For simplicity we write E γ for E γ μn(Vn) .

E

γ [X 1 X 2 X 3 X 4 X 5 X 6 ] = 1 48 σ∈S 6 E γ X σ(1) X σ(2) E γ X σ(3) X σ(4) E γ X σ(5) X σ(6) , (142) 
where S 6 denotes the set of permutations of {1, 2,

• • • , 6}. Now if X k+1 = X * k , k = 1, 3, 5, this reads E γ |X 1 | 2 |X 3 | 2 |X 5 | 2 = E γ |X 1 | 2 E γ |X 3 | 2 E γ |X 5 | 2 + E γ |X 1 | 2 |E γ [X 3 X 5 ]| 2 + E γ |X 1 | 2 |E γ [X 3 X * 5 ]| 2 + E γ |X 5 | 2 |E γ [X 1 X 3 ]| 2 + E γ [X 1 X 3 ] E γ [X * 1 X 5 ] E γ [X * 3 X * 5 ] + E γ [X 1 X 3 ] E γ [X * 1 X * 5 ] E γ [X * 3 X 5 ] + E γ |X 5 | 2 |E γ [X 1 X * 3 ]| 2 + E γ [X 1 X * 3 ] E γ [X * 1 X 5 ] E γ [X 3 X * 5 ] + E γ [X 1 X * 3 ] E γ [X * 1 X * 5 ] E γ [X 3 X 5 ]+E γ [X 1 X 5 ] E γ [X * 1 X 3 ] E γ [X * 3 X * 5 ]+E γ [X 1 X 5 ] E γ [X * 1 X * 3 ] E γ [X 3 X * 5 ] + E γ |X 3 | 2 |E γ [X 1 X 5 ]| 2 + E γ [X 1 X * 5 ] E γ [X * 1 X 3 ] E γ [X * 3 X 5 ] + E γ [X 1 X * 5 ] E γ [X * 1 X * 3 ] E γ [X 3 X 5 ] + E γ |X 3 | 2 |E γ [X 1 X * 5 ]| 2 . ( 143 
)
We let

X 1 = Gc,m,p s or X 1 = Gm,p s , X 3 = Gc,m,p vηm , X 5 = vηm 0 Gc,m,p r (m) d Ṽ p r .
Note that we have

X 2 = X * 1 = Gc,m,-p s or X * 1 = Gm,-p s , X 4 = X * 3 = Gc,m,-p vηm , X 6 = X * 5 = vηm 0 Gc,m,-p r (m) d Ṽ p r .
Thanks to these identifications and using Corollary B.8 we have

E γ |X 1 | 2 ≤ abN, E γ |X 3 | 2 ≤ abN, E γ |X 5 | 2 ≤ ab k∈In vηm 0 f (V k r (m) ) d Ṽ p r 2 , max i=1,2,3,4,j=5,6 |E γ [X i X j ]| ≤ ab √ N k∈In vηm 0 f (V k r (m) ) d Ṽ p r 2 1/2 , max i=1,2,j=3,4 |E γ [X i X j ]| ≤ abN.
All fifteen terms in the right hand side of (143) are upper-bounded by

(ab) 3 N 2 k∈In vηm 0 f (V k r (m) ) d Ṽ p r 2 , so that A 2 ≤ 15(ab) 3 T N 2 k∈In vηm 0 f (V k r (m) ) d Ṽ p r 2 .
Step 5 Express the upper bound on α 4,1,p vηm using the stopping time τ ( , c) Using (141), and returning to the notation E γ μn(Vn) 

f (V k s ) -f (V m,k s ) 2 ds ≤ ab vηm 0 k∈In V k s -V m,k s 2 ds, so that we have 15 N 4 σ 4 p∈I n α 4,1,p vηm ≤ D N 4 vηm 0 k∈In V k s -V m,k s 2 ds × k∈In p∈In vηm 0 f (V k r (m) ) d Ṽ p r 2 84
for some positive constant D. By Parseval's theorem on the p index 15

N 4 σ 4 p∈In α 4,1,p vηm ≤ D N 2 vηm 0 1 N k∈In V k s -V m,k s 2 ds × k∈In l∈In vηm 0 f (V k r (m) ) dV l r 2 .
We next use the relation

dV l r = σdW l r + σθ l r dr to write 15 N 4 σ 4 p∈In α 4,1,p vηm ≤ D N 2 vηm 0 1 N k∈In V k s -V m,k s 2 ds × k∈In l∈In vηm 0 f (V k r (m) ) dW l r 2 + D N 2 vηm 0 1 N k∈In V k s -V m,k s 2 ds × k∈In l∈In vηm 0 f (V k r (m) ) θ l r dr 2 ,
where we have included the constant σ 2 into D. Since, if τ ( , c) ≥ uη m , by (76) we have

1 N k∈In V k s -V m,k s 2 ≤ exp(sc)
for all s ≤ uη m , we conclude that 

lim n→∞ 1 N log Q n 15 N 4 σ 4 p∈In α 4,1,p vηm ≥ c 3T Cσ 2 exp (
f (V k r (m) ) dW l r 2 ≥ c exp (vη m c) 6T Cσ 2 (144) lim n→∞ 1 N log Q n D N 2 vηm 0 e sc ds × k∈In l∈In vηm 0 f (V k r (m) ) θ l r dr 2 ≥ c exp (vη m c) 6T Cσ 2 . (145) 
Step 6: conclude by the use of Lemmas A.1 and 3.13 Since exp(vη m c) -1 ≤ exp (vη m c), we can upper bound (144) by

lim n→∞ 1 N log Q n 1/c 2N k∈In l∈In vηm 0 f (V k r (m) ) dW l r 2 ≥ N c 12T CDσ 2 .

By the exponential Tchebycheff inequality

Q n 1/c 2N k∈In l∈In vηm 0 f (V k r (m) ) dW l r 2 ≥ N c 12T CDσ 2 ≤ exp - N c 12T CDσ 2 E Q n exp 1/c 2N k∈In l∈In vηm 0 f (V k r (m) ) dW l r 2 .
In order to apply Lemma A.1 to the above expectation we require

1 √ c < √ m 2 √ vT for v = 0, • • • , u and this is certainly satisfied if 1 √ c < 1 2 √ T .
Lemma A.1 then commands that

E Q n exp 1/c 2N k∈In l∈In vηm 0 f (V k r (m) ) dW l r 2 ≤ 1 -4 vT mc -N/4
, and hence

E Q n exp 1/c 2N k∈In l∈In vηm 0 f (V k r (m) ) dW l r 2 ≤ 1 -4 T c -N/4
.

Therefore we have

1 N log Q n 1/c 2N k∈In l∈In T 0 f (V k r (m) ) dW l r 2 ≥ N c 12T CDσ 2 ≤ -c 1 12T CDσ 2 - 1 4 log 1 -4 T c .
We conclude that for c large enough, for all positive M s and for all v = 0, • • • , u (144) is less than -M .

Along similar lines, we can upperbound (145) by

lim n→∞ 1 N log Q n 1 N 2 k∈In l∈In vηm 0 f (V k r (m) )θ l r dr 2 ≥ c 2 6T CDσ 2 ,
and, by Cauchy-Schwarz, by

lim n→∞ 1 N log Q n 1 N k∈In vηm 0 f (V k r (m) ) 2 dr × 1 N l∈In vηm 0 θ l r 2 dr ≥ c 2 6T CDσ 2 . Since 0 ≤ f ≤ 1 and 0 ≤ vη m ≤ T , this is also upperbounded by lim n→∞ 1 N log Q n 1 N l∈In T 0 θ l r 2 dr ≥ c 2 6T 2 CDσ 2 ≤ lim n→∞ 1 N log Q n 1 N sup r∈[0,T ] l∈In θ l r 2 ≥ c 2 6T 3 CDσ 2 ,
and Lemma 3.13 allows us to conclude. and hence

dψ j,2 t dt = σ -1 i∈Z t 0 L i µ (t, s) dψ i+j,1 s ds ds.
Iterating this process one finds that V j,n t -V j,n-1 t := ψ j,n t , where ψ j,n t is such that

dψ j,n t dt = σ -1 i∈Z t 0 L i µ (t, s) dψ i+j,n-1 s ds ds, n ≥ 2. Define Φ j,n t = dψ j,n t dt , n ≥ 1.
This sequence of processes satisfies

Φ j,n t = σ -1 i∈Z t 0 L i µ (t, s) Φ i+j,n-1 s ds, n ≥ 2 (148) and p k=1 ψ j,k t = V j,p t -V j,0 t = V j,p t -σW j t = p k=1 t 0 Φ j,k s ds. (149) 
Step 2: Analysis of the sequence (Φ j,k t ) j∈Z,k∈N * We now analyze the sequence (Φ j,k t ) k≥1 . First we note that

Φ j,2 t = σ -1 i∈Z t 0 L i µ (t, s) Φ i+j,1 s ds, with Φ j,1 s = i∈Z s 0 L i µ (s, u) dW i+j u . (150) 
Consider next Φ j,3 t . We write, using (148), Step 4: Proof of the convergence of (156) We prove the convergence of the right hand side of (156). Note that (153) is a convolution with respect to the spatial index: 

Φ j,3 t = σ -1 i∈Z t 0 L i µ (t, s) Φ i+j
L i µ,
We claim that

F k (t, s) = 1 k! (F 1 (t, s)) k . ( 165 
)
This is true for k = 1. By induction, assume it holds for k -1, then by (164) we have

F k (t, s) = t s A 2 (u)F k-1 (u, s) du = 1 (k -1)! t s A 2 (u) (F 1 (u, s)) k-1 du = 1 (k -1)! t s (F 1 (u, s)) k-1 ∂F 1 (u, s) ∂u du = 1 k! (F 1 (u, s)) k u=t u=s = 1 k! (F 1 (t, s)) k .
Next, by (163) we have 

which implies

σ -(k+1) L i µ,k+2 (t, s) ≤ σ -1 (σ -1 C) k √ k! A(t)B(s) (167) 
for all i ∈ Z. and, since the series z k / √ k! is absolutely convergent for all complex z, (167) shows that the right hand side of (156) is absolutely and uniformly convergent so that M i µ (t, s) is well-defined for all i ∈ Z, continuous and uniformly bounded w.r.t. to i, and (166) shows that the series M i µ (t, s) is absolutely convergent, so that we have obtained (88).

Step 5: Existence and uniqueness of the solution We then prove that (88) is a solution to [START_REF] Hopfield | Neural networks and physical systems with emergent collective computational abilities[END_REF] and that it is unique. Indeed, (88) implies and therefore that σW j t + σ -1 (A + B + C) is equal to the right hand side of (155). We have proved that (88) is a solution to [START_REF] Hopfield | Neural networks and physical systems with emergent collective computational abilities[END_REF].

Uniqueness is obtained by noting that if two solutions V 1,t and V 2,t exist, there difference V t = V 1,t -V 2,t must satisfy the deterministic homogeneous Volterra equation of the second type

V j t = σ -1 i∈Z t 0 s 0 L i µ (s, u) dV i+j u ds,
for which it is easily proved that the only solution is the null solution.

F Proof of Lemma 3.27 

T Z f (v 0 t )f (v k s ) -f (v 0 t (m) )f (v k s (m) ) dµ * (v) = k∈Z RJ (ϕ, k) T Z f (v 0 t ) -f (v 0 t (m) ) f (v k s ) + f (v k s ) -f (v k s (m) ) f (v 0 t (m) ) dµ * (v) .
Because 0 ≤ f ≤ 1 Kµ * (ϕ)(t, s) -Kµ * (ϕ)(t (m) , s (m) ) ≤ k∈Z RJ (ϕ, k)

T Z |f (v 0 t )-f (v 0 t (m) )|+|f (v k s )-f (v k s (m) )| dµ * (v).
By stationarity, we have 

T Z |f (v 0 t ) -f (v 0 t (m) )| + |f (v k s ) -f (v k s (m) )| dµ * (v) = T Z |f (v 0 t ) -f (v 0 t (m) )| + |f (v 0 s ) -f (v 0 s (m) )| dµ * (v) ≤ 2 T Z sup 0≤t 1 ,

, and l∈Z b l < ∞ ( 6 )

 6 We note a and b the sums of the two series (a k ) k∈Z and (b k ) k∈Z , a := k∈Z a k b := k∈Z b k

γν 1 uηm

 1 in (40) acts only on the Gaussian random variables G m and not on the Y s.

First term :

 term Allows to compare θp s and its time discretized version m θp s (m) which is equal, thanks to Lemma 3.18, to σ -2 Lp μn(Vn) δ Ṽ p (vη m ).

(

  a b) j = k∈In a k b j-k = k∈In a j-k b k , where indexes are taken modulo I n . We have the Lemma. Lemma B.2. DF T -1 (ã b) j = N a j b j , and hence (ã b) p = N DF T (ab) p

Remark B. 5 .

 5 Note that the covariance matrices C p n = E γ Jp n t J-p n , p ∈ I n , are circulant Hermitian, i.e. C p n = t C p * n , because R J is even. They are positive definite because, being circulant, their eigenvalues are the values of the length N DFT of the sequence ( RJ (p, k)) k∈In which are positive because R J is an autocorrelation function hence has a positive spectrum. Hypothesis (9) guarantees that for N large enough these eigenvalues are strictly positive, hence C p n is invertible. Remark B.6. Complex Gaussian calculus indicates that the probability density function under γ of Jp n , p = 0 is

Remark B. 7 .

 7 Note that Lemma B.3 implies that the complex centered Gaussian vectors Jp n and Jq n are independent under γ if p+q = 0. Indeed, complex Gaussian calculus indicate that the four jointly Gaussian N -dimensional centered real vectors Re( Jp n ), Im( Jp n ), Re( Jq n ), Im( Jq n ) are independent if p + q = 0. Given a Hermitian matrix A of size N , we note λ 1 (A) ≥ • • • ≥ λ N (A) its eigenvalues. As a consequence of Lemma B.3 we obtain a useful upper bound. Corollary B.8. For all n ∈ Z + , all p ∈ I n and all vectors ζ = (ζ j ) j∈In and ξ = (ξ j ) j∈In of R N , sup p∈In j,k∈In

2 ,

 2 since the G k s are real, Gp s = G-p * s

  p ∈ I n and all 0 ≤ s ≤ t ≤ T .

  ) (vη m , wη m ) = 1 N q∈In E γ μn(Zn) Λ vηm (G) Gq vηm Gp wηm . By Proposition B.11 and Corollary B.12 we have Lp μn(Zn) (vη m , wη m ) = 1 N E γ μn(Zn) Λ|p| vηm ( G) G-p vηm Gp wηm , which ends the proof. D Proof of Lemmas 3.20-3.23

2 s 0 | Gp u| 2 du ≤ 1 up N σ 2 s 0 E 2 s

 221202 exists a positive constant D, independent of p and N such that 0 < D ≤ E γ μn(Vn) e -up N σ < ∞. (120) Indeed, since x → e -x is convex, Jensen's inequality commands that e -γ μn(Vn) | Gp u| 2 du ≤ E γ μn(Vn) e -up N σ

α 2 vηm = 5 N 2 σ 4 p∈In 2 . 1 (

 5421 Lp μn(Vn) -Lqm,p μn(Vn) δ Ṽ p (vη m ) ) (vη m , wη m ) -Lqm,p μn(Vn) (vη m , wη m ) δ Ṽ p w Next, by Cauchy-Schwarz on the w index ) (vη m , wη m ) -Lqm,p μn(Vn) (vη m , wη m ) ) (vη m , wη m ) -Lqm,p μn(Vn) (vη m , wη m ) (132) By (108), for all s, u ∈ [0, t] and for all t ∈ [0, T ], we have Lp μn(Vn) (s, u) -Lqm,p μn(Vn) (s, u) = σ 2 Id + σ -2 Kqm,p μn(Vn) s, u) -σ 2 Id + σ -2 Kp μn(Vn) -1

.L

  vη m , wη m )δV m,k+j w Taking the length N DFT of both sides and using Lemma B.1 we obtain for p ∈ I n qm,k μn(V m n ) (vη m , wη m )δ Ṽ m,p w , where F N = e 2πi N . The relation

α 4 vηm ≤ 15 N 4 σ 4 p∈InE,

 154 γ μn(Vn) Λp vηm ( Gc,m ) -Λp vηm ( Gm ) Gc,m,-p and show that for any M > 0, all m ∈ N, there exists a constant c > 0 such that for all ≤ exp(-cT )δ 2 /T , all 0 ≤ u ≤ m and all 0

Step 2 :, 2 dsE 2 vηm 0 | 2 ds.. 2 vηm 0 | 2 ds ≤ 1 0 Gc,m,p s 2 - 0 Gc,m,p r (m) d Ṽ p r 2 ≤ 4 N 2 D 2 + 4 N 2 D× 2 . 4 N 2 D 2 + Gm,p s 2 ds 2 × 2 ds (A 1 + 0 Gc,m,p s 2 + Gm,p s 2 ds 2 × 0 Gc,m,p r (m) d Ṽ p r 2 A 2 :E 2 + Gm,p s 2 Gc,m,p vηm 2 vηm 0 2 ds. Step 3 : 2 ds 2 ≤

 2220220210202422422422222102220222202322 Upper bounding Λp vηm ( Gc,m ) -Λp vηm ( Gm ) We first recall the definitions of Λp vηm ( Gc,m ) and Λp vηm ( with u p = 1 if p = 0 and u 0 = 1/2, see (94). First note Λp vηm ( Gc,m ) -Λp vηm ( γ μn(Vn) e -up N σ Gc,m,p s | Now, as in the proof of Lemma 3.20, we use the Lipschitz continuity of x → e -x for x ≥ 0: e -x -e -y ≤ |x -y|, Because u p = 1 or 1/2 and 0 < D ≤ E γ μn(Vn) e -up N σ Gm,p s | < ∞ for some constant D independent of p, m and N (see the proof of Lemma 3.20). So, we have Λp vηm ( Gc,m ) -Λp vηm ( Gm ) numbers x and y with complex conjugates x * and y * , it is clear that| |x| 2 -|y 2 | | = |(x -y)x * + y(x * -y * )| ≤ |x -y| (|x * | + |y|) = |x -y| (|x| + |y|),and therefore, by Cauchy-Schwarz, vηm and (140) we obtain E γ μn(Vn) Λp vηm ( Gc,m ) -Λp vηm ( Gm ) Gc,m,-p vηm vηm 2 σ 4 E γ μn(Vn) 2 σ 4 E γ μn(Vn) E γ μn(Vn) Λp vηm ( Gm ) Gc,m,p vηm vηm 0 Gc,m,p r (m) d Ṽ p r Three applications of Cauchy-Schwarz dictate α 4,1,p vηm ≤ 2 σ 4 E γ μn(Vn) × E γ μn(Vn) Λp vηm ( Gm ) Gc,m,p vηm E γ μn(Vn) Λp vηm ( Gm ) A 2 ), with E := 4 D 2 σ 4 and A 1 := E γ μn(Vn) vηm × E γ μn(Vn) Λp vηm ( Gm ) Gc,m,p vηm E γ μn(Vn) Λp vηm ( Gm ) vηm = E γ μn(Vn) γ μn(Vn) Gc,m,p s Gc,m,p r (m) d Ṽ p r Upper bounding A 1 Using equations (137), (138) and Corollary B.8 we have E γ μn(Vn) ≤ 2abT N. By Lemma B.14 we have E γ μn(Vn) Λp vηm ( Gm ) Gc,m,p vηm C J N, and

α 4 , 2 for

 42 1,p vηm ≤ DE γ μn(Vn) k r (m) ) d Ṽ p r some positive constant D independent of n and m. By Corollary B.8 and the Lipschitz continuity of f E γ μn(Vn)

  vη m c) and τ ( , c) ≥ uη m is upperbounded by twice the larger of the two terms lim

0 LStep 3 :

 03 (t, u)L -i µ (u, s) du Φ +j,1 s ds, by exchanging the order of integration. It follows for k ≥ 2 thatΦ j,k t = σ -(k-1) ∈Z t µ,k-1 (t, s) Φ +j,1Formal definition of the solution It follows from (149) and (152) thatV k-1) L i µ,k (s, u) Φ i+j,1 u du ds.If the seriesp k=1 σ -(k-1) L i µ,k (s, u)is convergent for all i ∈ Z, we can formally define a µ (u, v) dW +j v du ds.

0 ≤ F 1 ( 2 dv du ≤ C 2 for

 122 some constant C > 0 by Proposition C.8. By (162) and (165) we conclude thati σ -(k+1) L i µ,k+2 (t, s) ≤ σ -1 (σ -1 C) k √ k! A(t)B(s),

1 vσ

 1 µ (v, w) dW +i+j w dv du, (168) and (14) can be rewritten of dV i+j u given by (168) in the right hand side of (169) we obtainV j t = σW j t + σ -1 (A + B + C) to the definition (150) of Φ j,1 ,Exchanging the order of integration and applying k → k + i yieldsC = σ -1 , u)M k (u, v) du Φ k+i+j,u)M k-i (u, v) du Φ k+j,dv ds.Using the definition (156) of M k and rearranging termsC = σ -1 -(l-1) L k µ,l+1 (s, v) Φ k+j,1 v dv ds,92and since, because of (156),∞ l=1 σ -(l-1) L k µ,l+1 (s, v) = σ M k (s, v) -L k (s, v)

Lemma 3 .Lemma F. 2 .

 32 27 follows from the following four Lemmas.Lemma F.1. For all ε > 0, there exists m 0 (ε) in N such that for all m ≥ m 0 constant C independent of j. For all ε > 0, there exists m 0 (ε) in N such that for all m ≥ m 0 Cε for some positive constant C independent of j.

 1 / 2 . 2 , 2 = σ 4 1 ( 1 ( 2 . 2 ≤

 122241122 t, s) -L i µ * (t(m) , s (m) ))2 ds, because of the independence of the Brownian motions.So that we have sups∈[0,t] t, s) -L i µ * (t (m) , s (m) )) 2 ds  This is upperbounded by t 0 i∈Z (L i µ * (t, s) -L i µ * (t (m) , s (m) )) 2 ds 1/Lµ * (ϕ)(t, s) -Lµ * (ϕ)(t (m) , s (m) ) ϕ)(t, s) -Lµ * (ϕ)(t (m) , s (m) ) Id + σ -2 Kµ * (ϕ) t, s) -Id + σ -2 Kµ * (ϕ) t (m) , s (m) )By the Lipschitz continuity of the application A → (Id + A) -1 , for A a positive operator, we obtain thatLµ * (ϕ)(t, s) -Lµ * (ϕ)(t (m) , s (m) ) C Kµ * (ϕ)(t, s) -Kµ * (ϕ)(t (m) , s (m) ) 2 for some positive constant C. Next we write Kµ * (ϕ)(t, s) = k∈Z RJ (ϕ, k) T Z f (v 0 t )f (v k s ) dµ * (v),95from which it follows that Kµ * (ϕ)(t, s) -Kµ * (ϕ)(t (m) , s (m) ) ≤ k∈Z RJ (ϕ, k)

• 1 2 .O 1 /|i| 3 ≤

 1213 Lµ * (ϕ)(t, w) 2 dϕ ≤ C for some positive constant C uniformly in t, w, follows from Proposition C.8 and ends the proof.Remark F.10. The proof of Lemma F.9 is very similar and left to the reader.t (m) , s (m) ) -L qm,i μn(V m n ) (t (m) , s (m) ) t (m) , s (m) ) -L qm,i μn(V m n ) (t (m) , s (m) ) t (m) , s (m) ) -L qm,i μn(V m n ) (t (m) , s (m) ) follows from the next two Lemmas.Lemma F.11. For all ε > 0, constant C independent of j, for all m, n large enough.Similarly we haveLemma F.12. For all ε > 0,E sup s∈[0,t] α j,3,2 s ≤ Cεfor some positive constant C independent of j, for all m, n large enough. Sketch of a proof of Lemma F.11. We note that S j,t (m) , s (m) ) -L qm,i μn(V m n ) (t (m) , s (m) ) dW i+j s is a martingale. Hence, by the Bürkholder-Davis-Gundy inequality,E sup s∈[0,t] |S j,m s | ≤ C 1 E S j,m t (m) , u (m) ) -L qm,i μn(V m n ) (t (m) , u (m) ) t (m) , u (m) ) -L qm,i μn(V m n ) (t (m) , u (m) ) By Proposition C.10 L i µ * (t (m) , u (m) ) -L qm,i μn(V m n ) (t (m) , u (m) ) ≤ D t (µ * , μn (V m n )) O(1/|i| 3 ), where D t is the Wasserstein distance between the two measures µ * and μn (V m n ), we conclude thatE sup s∈[0,t] |S j,n,m s | ≤ C 1 T 1/2 E [D t (µ * , μn (V m n ))] i∈Iq m CE [D t (µ * , μn (V m n ))]for a constant C > 0. This concludes the proof of the Lemma since Lemma 3.25 implies that lim m,n→∞ E [D t (µ * , μn (V m n ))] = 0.

  there does not exist ζ ∈ P S (T Z ) such that Ψ(ζ) = µ. Since the unique zero of I(3) is P ⊗Z , we can immediately infer that the unique zero of H is Ψ P ⊗Z , which is µ * . In Section 3.6 we prove that this satisfies the McKean-Vlasov stochastic differential equation stated in the Theorem. ⊗Z , in A c .3.4 Exponential Tightness of (Π n ) n∈Z + on P S (T Z ), D T

	Remark 3.12. Theorem 4.2.23 of [8] requires Ψ to be defined and measurable in P(T Z ), not
	only in A. Since A is non empty thanks to Lemma 3.11, measurable as a countable union of closed sets, we can extend Ψ to a measurable function in P(T Z ) by simply setting it to an
	arbitrary measure, say P

  by T 2 a 2 b 2 independently of n, thanks to Proposition C.8. The theory of Volterra equations then guarantees that H(ϕ)(t (m) , s (m) , λ) ≤ C for some positive constant C independent of n, m.

	Equation (90) then implies that				
	Φt (ϕ)	2	≤ 2 |α t (ϕ)| 2 + 2λ 2 C 2	t	|α s (ϕ)| 2 ds.
					0		
	By Parseval's Theorem						
	Φ j t	2 ≤ 2	α j t	2 + 2λ 2 C 2	t	α j s	2 ds.
	j∈In		j∈In		0 j∈In

s) 2 ds and B n (ϕ, s) 2 = T 0 Ln (ϕ)(t, s) 2 dt are upperbounded

  Now use the fact that S u ≤ N uniformly in u to concludeE e αYt 2 ≤ e 2αN 2 t E e 8α 2 N t 0 Yu du = e ε 2 N t E e 4ε 2 α t 0 Yu du ,then use Jensen's inequality to obtain E e αYt 2 ≤ e ε 2 N t 1 t

	2 t 0 Su Yu du+2αN t 0 Su du .
	By supermartingale properties, the first expected value in the right hand side of the previous
	inequality is bounded by 1, hence
	E e αYt 2 ≤ E e 8α 2 t 0 Su Yu du+2αN t 0 Su du .

t 0 E e 4ε 2 tαYu du.

If 4ε

2 t < 1 we can use again Jensen's inequality E e αYt 2 ≤ e ε 2 N t 1 t t 0 E e αYu 4ε 2 t du = e ε 2 N t t t 0 E e αYu 2 2ε 2 t du. Define g(t) := E e αYt 2 , the above inequality reads g(t) ≤ e ε 2 N t t t 0 (g(s)) 2ε 2 t ds. Since 4ε 2 t < 1 implies 2ε 2 t < 1 we can apply Bihari's Lemma [17, Chap. 1, Th. 8.2] to obtain

  We use Proposition B.11. We define D p n := ((C p n ) -1 + α p U n t ) -1 , p ∈ I n , p ≥ 0. We can write

	Proof. j,k∈In	E γ μn(Zn) Λp t ( G) Jpj n	J-pk n	ζ j ξ k = t ζD p n ξ,
	hence			
	E γ μn(Zn) Λp t ( G) Jpj n	J-pk n	ζ j ξ k = t ζD p n ξ .
	j,k∈In			
	Considering the Euclidean norm in R N and the corresponding matrix norm, both noted 2 ,
	we have			
		t ζD p n ξ ≤ D p n 2 ζ 2 ξ 2 .
	By definition of the Euclidean norm, D p n 2 = λ 1 (D p n ) ≤ C J , by Remark B.13.
	). Λp t ( G) is defined by (94), Gp t = l∈In	Jpl n f (Z l t ), and	2 is the
	usual Euclidean norm.			

2

  Kqm,p (vη m , wη m ) -Lqm,p μn(Vn) (vη m , wη m ) ≤

					μn(Vn)	-1	• Kp μn(Vn) -Kqm,p μn(Vn) • Id + σ -2 Kp μn(Vn)	-1	(s, u),
	where • indicates the composition of the operators. By Remark C.5 in Appendix C we have
	Lp μn(Vn) (s, u) -Lqm,p μn(Vn) (s, u) =		
	t	t	Id + σ -2 Kqm,p μn(Vn)	-1	(s, x) Kp μn(Vn) -Kqm,p μn(Vn) (x, y) Id + σ -2 Kp μn(Vn)	-1	(y, u) dx dy,
	0	0					
	for all s, u ∈ [0, t] and for all t ∈ [0, T ].
		We recall further that 3			
						Id + σ -2 Kqm,p μn(Vn)	-1	(s, x) ≤ 1,
				and	Id + σ -2 Kp μn(Vn)	-1	(s, x) ≤ 1,	(133)
	we conclude that				
	Lp μn(Vn) vηm	vηm	Kp μn(Vn) -Kqm,p μn(Vn) (x, y) dx dy,
							0	0
	and, by Cauchy-Schwarz, and v ≤ m,	
	Lp μn(Vn) (vη m , wη m ) -Lqm,p μn(Vn) (vη m , wη m )

  p+1 (t, s) =

										t
											A 2 (u) du	(163)
									s	
						F 2 (t, s) =	t	t	L • µ (t, u) L • µ,p (u, s) A 2 (u)F 1 (u, s) du	i du.
								s	s	
	Applying Young's convolution theorem [2, Theorem 4.15], thanks to Proposition C.8, and . . .
	Cauchy-Schwarz we conclude that				t
		L l µ,p+1 (t, s) ≤	t	L l µ (t, u) × F k (t, s) =	s		L l µ,p (u, s) du ≤ A 2 (u)F k-1 (u, s) du.
	l∈Z			s l∈Z				l∈Z
				t				2				1/2		t	2		1/2
					L l µ (t, u)	du 	×		L l µ,p (u, s)	du 	. (158)
				s	l∈Z						s	l∈Z
	Applying this for p = 1 we obtain, according to (154)
					t				2		1/2 	t	2	 1/2
		L l µ,2 (t, s) ≤			L l µ (t, u)			du 		L l µ (u, s)	du 
	l∈Z			s	l∈Z					s	l∈Z
			T			2		1/2 		T	2		1/2
	≤			L l µ (t, u)	du 			L l µ (u, s)	du 
		0	l∈Z							0	l∈Z
					2	T					2	t
			L l µ,3 (t, s)	≤				L l µ (t, u)	du ×	L l µ,2 (u, s)
		l∈Z			0	l∈Z			s	l∈Z
											t
											A 2 (u) du.	(160)
										s
	Applying (158) for p = 3 we obtain, using (160)
					2	T					2	t	2
			L l µ,4 (t, s)	≤				L l µ (t, u)	du ×	L l µ,3 (u, s)	du
		l∈Z			0	l∈Z			s	l∈Z
											t	u
					≤ A 2 (t)B 2 (s)		A 2 (u)	A 2 (v) dv du.	(161)
										s	s
	In general we can write						

=: A(t)B(s). (159)

Both A(t) and B(s) are finite by Proposition C.8. Applying (158) for p = 2 we obtain, using (159)

2 du ≤ A 2 (t)B 2 (s) l∈Z L l µ,k+2 (t, s) 2 ≤ A 2 (t)B 2 (s)F k (t, s), k = 1, 2, 3, • • •

(162)

where

F 1 (t, s) =

  t 2 ≤T,|t 2 -t 1 |≤ηm |v 0 t 2 -v 0 t 1 |dµD for some positive constant D independent of ϕ, and therefore, as announced, Proof of Lemma F.8. The proof is very similar to that of Lemma F.5. As in this Lemma it is based upon recognizing that

									t
							S j t :=	i∈Iq m	t (m)	L i µ * (t, s) dW i+j s
	is a continuous martingale with quadratic variation
									t
							S j • t =	i∈Iq m	t (m)	(L i µ * (t, s)) 2 ds,
	because of the independence of the Brownian motions.
	We have						
							E sup	α j,2,1 s	= σE sup	S j s	,
							s∈[0,t]	s∈[0,t]
	and, by Burkholder-Davis-Gundy's inequality
							t		1/2
	E sup s∈[0,t]	α j,2,1 s	≤ C 1 σ		i∈Iq m	t (m)	(L i µ * (t, u)) 2 du 	≤
		C 1 σ	t t (m)	i∈Z	(L i µ * (t, u)) 2 du	1/2	=	C 1 σ √ 2π	t t (m)
								E sup	α j,1,1 s	≤ Cε,
									s∈[0,t]
	for some positive constant C.	

* (v) ≤ for m large enough. Thus, we have Kµ * (ϕ)(t, s) -Kµ * (ϕ)(t (m) , s (m) ) ≤ Cε for some positive constant C, since k∈Z RJ (ϕ, k) ≤ π -π

Lµ * (ϕ)(t, u)

ds dP ⊗N (B) ≤ 1.

For example ξ s (u, v) = 1 N i∈In δ S i s0(Xn) (u)δ S i s(s1(Yn)) (v).

log(1-4ε 2 t)) E e αY T ≤ (1 -4ε 2 T ) -N/4 .

There is no conflict with the definition (8) since they are always used in different contexts.

dx dy,

This comes from the fact that, say for an n×n matrix A, but this is also true for general linear operators,A max = max i,j |A ij | ≤ A 2 = σ max (A) the largest singular value of A
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The proof of Lemma F.12 is very similar and left to the reader. So is the proof of Lemma F.4.

The space H µ ⊂ L 2 (Z, [0, T ]) admits (g µ m ) m≥0 as an orthonormal basis. If ξ µ m = φ -1 (g µ m ), then (ξ µ m ) m≥0 is a sequence of i.i.d. N (0, 1) random variables in H µ and we have the following representation for the Gaussian process G i s :

where the convergence is in L 2 (Ω, A, γ). We note γ µ the law on (Ω, A) under which the sequence (G i s ), i ∈ Z, s ∈ [0, t] has covariance K k µ .

Remark C.5. Note that given two measures µ 1 and µ 2 in P S (T Z ) and the corresponding operators Kµ 1 and Kµ 2 , the operator K := Kµ 1 • Kµ 2 has the following kernel

or, in the (continuous) Fourier domain

and in the discrete case

Consider the new self-adjoint positive compact operator Lµ on L 2 (Z × [0, t]) defined by

and let L µ be its kernel:

Remark C.6. Note that (Id + σ -2 Kµ ) -1 and Kµ commute, i.e.,

as can be readily seen by noticing that both sides of the previous equality are equal to

, so that we also have

Remark C.7. Just as for the operator Kµ we also use the finite size version Ln µ of Lµ whose kernel is written

This commands that 

C.2 Discrete time setting

In several parts of the paper we use time-discretized versions of these operators. Two cases occur. The first is that of a general measure in P S (T Z ), typically the limit measure µ * . The second is that of an empirical measure μn (V n ) or μn (V m n ). Given a partition of [0, T ] into the (m + 1) points vη m = v T m , with η m := T /m, for v = 0 to m we deal with the operators Kµ and Lµ . It will be clear from the context whether these operators are defined by a finite, e.g. ( Ki µ ) i∈In , or infinite, e.g. ( Ki µ ) i∈Z ,sequence. In the finite case these operators are N v × N v matrixes which are block Toeplitz for Kµ and Lµ .

We also consider several Fourier transforms of these operators. The continuous one noted Kµ (ϕ), ϕ ∈ [-π, π[ in both the infinite and finite cases, and the discrete one. In the continuous case we have Kµ (ϕ) = j∈In K j µ e -ijϕ , i 2 = -1.

For the discrete case, and this applies only to µ = μn (V n ) and µ = μn (V m n ), the operators Kµ and Lµ are defined by the N v × v matrixes K j µ , j ∈ I n . We consider their length N Discrete Fourier Transform (DFT), i.e. the sequence of

the corresponding operator, noted Kvηm µ , is block diagonal, the blocks having size v × v. We also consider the sequence of Q m v × v matrixes, noted K qm,j µ , j ∈ I qm , pad it with N -Q m nul matrixes, and consider its length N Discrete Fourier Transform (DFT), i.e. the sequence of

We give the proof of Lemma 3.24.

Proof of Lemma 3.24. Equation ( 14) resembles a Volterra equation of the second kind. As previously, we ignore for the sake of simplicity the upper time index in L µ and K µ .

Step 1: Construction of the sequence of processes (Φ i,n t ) i∈Z,n∈N * We proceed as in the case of the deterministic Volterra equations by constructing the following sequence of processes

where the infinite sum is the L 2 limit of the finite sums. The existence of this limit is guaranteed by Proposition C.8. We then compute the following difference

Using (146) we write formally

Again, the convergence of the infinite sum is obtained by the study of the sequence of variances of Gaussian processes. Applying the Young's convolution theorem [2, Theorem 4.15], thanks to Proposition C.8, we deduce sup 0≤v≤u≤s≤T l∈Z i∈Z

We deduce easily the existence of the limit in (147). We write now

for some positive constant C independent of j.

Lemma F.4. For all ε > 0, there exists m 0 (ε) in N such that for all m ≥ m 0

for some positive constant C independent of j.

Lemma 3.24 allows us to rewrite the α j,k t s, k = 1, 2, 3, 4 as follows.

Lemma F.1 then follows from the following two Lemmas.

Lemma F.5. For all ε > 0, there exists m 0 (ε) in N such that for all m ≥ m 0

for some positive constant C independent of j.

Lemma F.6. For all ε > 0, there exists m 0 (ε) in N such that for all m ≥ m 0

for some positive constant C independent of j.

Proof of Lemma F.5. The proof is based upon recognizing that

Proof of Lemma F.6. We have

is a continuous martingale, the Bürkholder-Davis-Gundy inequality, Parseval's Theorem, and Proposition C.8 dictate

for some positive constant D. Next we have

for some positive constant E, so that

Because of Lemma F.7 below there exists a positive convergent series A = (a i ) i∈Z such that for all ε > 0 there exists m 0 (ε) such that for all m ≥ m 0 m) , u (m) ) ≤ εa i for all s, u ∈ [0, t]. This proves the Lemma.

Lemma F.7. Let Ō be an operator on L 2 (Z, [0, T ]) defined by the continuous kernels O i (t, s), i ∈ Z. There exists a positive convergent series A = (a i ) i∈Z such that for all ε > 0 there exists m 0 (ε) such that for all i ∈ Z and for all m ≥ m 0

Proof. We proceed by contradiction. Assume that for all positive convergent series A = (a i ) i∈Z there exists i 0 ∈ Z, s 0 , u 0 ∈ [0, t] and ε > 0 such that for all m ∈ N *

Choosing m large enough and by the continuity of O i 0 (s.u) w.r.t. (s, u) we obtain a contradiction.

We proceed with the term α j,2 t : for some positive constant C independent of j.

Lemma F.9. For all ε > 0, there exists m 0 (ε) in N such that for all m ≥ m 0 E sup s∈[0,t] α j,2,2 s ≤ Cε for some positive constant C independent of j.