
HAL Id: hal-02000042
https://hal.science/hal-02000042v1

Submitted on 1 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparison of surface and volume integral methods for
transonic propeller acoustic predictions

Gilles Rahier

To cite this version:
Gilles Rahier. Comparison of surface and volume integral methods for transonic propeller acoustic
predictions. Computers and Fluids, 2018, 179, pp.178-193. �10.1016/j.compfluid.2018.10.015�. �hal-
02000042�

https://hal.science/hal-02000042v1
https://hal.archives-ouvertes.fr


 1 

Comparison of surface and volume integral methods for 
transonic propeller acoustic predictions 

G. Rahier1 
ONERA - The French Aerospace Lab, Châtillon, F-92322, France 

Corresponding author: gilles.rahier@onera.fr 
Tel: +33 1 46 73 48 12 
Fax: +33 1 46 73 41 66 

 
 

Abstract 

A precise comparison of the surface and volume approaches of the Ffowcs Williams-Hawkings acoustic integral 

formulation is conducted for a propeller in transonic operating conditions. For both approaches, the calculations are 

carried out directly starting from CFD input data provided in the propeller rotating frame, i.e. with supersonically 

moving emission points. No approximation in the volume calculations, which could distort the comparison between 

both methods, is made. The principle and the calculation algorithm on which this particular integration technique is 

based are reviewed. Then calculations are carried out for four increasingly refined CFD meshes. They first confirm 

that both acoustic integral methods provide identical results when the numerical dissipation is negligible in the 

aerodynamic calculation. These calculations also show that the volume method is slightly less sensitive to the 

numerical dissipation than the surface method. However, the gain seems low compared to the computational cost of 

the volume integration. In addition, two techniques for determining the regions of the dominant acoustic sources are 

explored. With the first one, a rather conventional technique based on the local quadrupole term, the results show 

that specific terms, chosen according to the phenomenon concerned, may be better indicators of the real noise 

sources than the original shear and entropy terms. The second one, less known and consisting in calculating the 

elementary acoustic time signature radiated by each cell of the grid, seems more effective but may turn out to be 

costly in terms of data storage with the volume method. 
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List of symbols 

0a   Speed of sound in the unperturbed medium 

ije  Viscous stress tensor 

0M  Mach number of the unperturbed fluid in the reference frame Y 

n
r

 Normal unit vector on the control surface, pointing outward 

p  Local pressure 

0p  Pressure in the unperturbed fluid 

0ppp −=′  Pressure perturbation 

t  Reception time 

ijT  Lighthill stress tensor 

0U  Velocity of the unperturbed fluid in the reference frame Y 

u
r

 Local fluid velocity in the reference frame y 

U
r

 Local fluid velocity in the reference frame Y 

iin nUnUU ==
rr

.  Fluid velocity component normal to the control surface 

v
r

 Local control surface velocity in the reference frame y 

V
r

 Local control surface velocity in the reference frame Y 

iin nvnvv ==
rr

.  Surface velocity component normal to the control surface 

X
r

 Observer location in the reference frame Y 

y Reference frame in which the unperturbed fluid is at rest 

Y Reference frame in which the unperturbed fluid is moving at the uniform velocity 10 yU
r

 

Y
r

 Source location in the reference frame Y 

)( fδ  Dirac distribution 

ijδ  Kronecker symbol 

ρ  Density 
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0ρ  Density of the unperturbed fluid 

0ρρρ −=′  Density perturbation 

τ  Emission time 

 

1. Introduction 

The Ffowcs Williams-Hawkings (FW-H) formulation [1] is an effective tool for acoustic analysis of 

aerodynamic fields. This formulation generalises Lighthill’s equation [2] by including solid or fictitious (porous) 

surfaces in the flow [3]. In its complete form, it provides the acoustic far-field radiation of flow disturbances by 

simply performing surface and volume integrals on quantities that can be provided in near field by a CFD 

computation. It is worth mentioning that the assumptions of a uniform flow and of a free field outside the integration 

area are generally made in the Green function used for the radiation calculation. 

In some cases (e.g. a body in an almost uniform low speed flow, with low turbulence), the volume sources (in the 

sense of Lighthill) can be neglected and the acoustic calculation is limited, in practice, to the integration of source 

terms on the solid surface of the body. When the volume sources cannot be neglected (turbulent jets or transonic 

blades with shocks, for example), acoustic calculations using only surface integrals (on porous surfaces surrounding 

the noise sources) can nevertheless be performed and are preferred to volume calculations for obvious reasons of 

amount of input data and computational cost. However, the porous surface method, theoretically equivalent to the 

volume method, has two drawbacks. 

- The first drawback relates to the fact that the integration surface (the control surface) must encompass all 

phenomena involved in the acoustic radiation such as nonlinear propagations effects (stiffening or damping 

of a shock, for example) or the effects of the non-uniformity of the flow in the vicinity of the noise sources 

(refraction effects). Therefore, the control surface must be sufficiently far from the primary noise sources in 

order to be in a region of linear propagation and in a virtually uniform flow. This is a major constraint for 

the CFD calculations which must then carry the flow disturbances up to the control surface, with a minimal 

numerical dissipation and dispersion. 

- The second drawback is more specific to the surface approach: the surface integration does not provide 

direct information on the spatial distribution of the noise sources, since the aerodynamic fields on the 
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control surface result from all phenomena that are present in the inside volume. However, the location of 

noise sources is possible by using microphone arrays [4], but this process increases the cost of the acoustic 

calculation by multiplying the number of observation points in the far field, and introduces biases (due to 

the source and propagation models) specific to the method of localization. Other methods of source 

localization, within the broader framework of solving the inverse problem, are subject to numerous studies 

(a synthesis of these studies can be found in [5]), but their maturity still seems insufficient for application to 

non-academic configurations. 

Concerning the first point, one may wonder whether the volume method is less sensitive to numerical dissipation 

in the aerodynamic calculation than the surface method, and could thus reduce the constraints on CFD computations 

regarding the transportation of perturbations. In other words, in the presence of significant numerical dissipation, 

does the integration of source terms in a volume provide better results than the integration of source terms on the 

boundary of this volume? This study aims at answering this issue in the case of high speed impulsive (HSI) noise 

generated by a propeller in transonic operating conditions. The analysis is mainly based on the comparison of the 

results provided by both surface and volume approaches, for various levels of dissipation in the CFD calculation. To 

our knowledge, such a parametric study has never been done, because the usual volume integration techniques 

include simplifications that would distort this analysis (observer in the far field and on the rotor plane, approximate 

volume sources [6][7][8], volume sources neglected beyond the sonic cylinder [6]) or would be too expensive 

without these simplifications. The fully non-compact integration technique developed at ONERA, which can 

directly deal with supersonically moving meshes [9][10] without any simplification of the volume integral, makes it 

possible to compare the surface and volume methods rigorously. Calculations are performed for an isolated propeller 

with a zero angle of attack, which also makes acoustic calculations easier. Indeed, the aerodynamic fields are then 

steady in the rotating frame of the blades and the amount of CFD input data remains moderate (a few tens of 

megabytes to several gigabytes depending on the extent and the density of the grid). 

In addition to this parametric study, volume calculations are used to answer the second point by exploring two 

acoustic source localization techniques. 

The article is organized as follows. The expressions of the surface and volume integrals and the numerical 

method used to calculate them with supersonic rotating grids are first reviewed in Section 2. The case studied and 

the numerical setup are described in Section 3. The results are then presented and discussed in Section 4. 
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2. Acoustic formulation and integration technique 

2.1 FW-H formulation 

The framework of the present acoustic calculations is as follows: y is a reference frame in which the unperturbed 

fluid is at rest, Y is a reference frame in translation at the velocity 10 yU
r

−  with respect to y, S is a closed moving 

surface permeable to the fluid, and V a bounded volume outside the surface S. Any solid body interacting with the 

fluid is assumed to be inside S and the acoustic sources as defined by Lighthill (double divergence of the Lighthill 

tensor Tij, see below) are supposed negligible beyond the volume V. 

Starting from the extension to porous surfaces [3][11] of the Ffowcs Williams and Hawkings formulation [1], 

using the space coordinates Yi in the reference frame Y and the velocities u
r

 of the fluid and v
r

 of the surface S in the 

reference frame y, the pressure received by observer at location X
r

 and time t can be written as: 

 ( )=′ tXp ,
r
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0 , ( )nnijijii vuunenpA −+−′= ρ , ( )nnn vuvB −+= ρρ0 , 
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 and ( ) dgG πδ 4=  the free-space Green’s function in R3 for the convective wave equation 

with 0atg στ +−= , ( )( ) 2
110 βσ YXMd −−= , ( )2

iii YXCd −= , ( ) 2
1

21 βδβ +−= iiC , 2
0

2 1 M−=β , and 

000 aUM =  (see details in [12]). 

In the present study, as is commonly done, the viscous term eij is ignored. 

2.1.1 Formula used for surface integrals 

Both surface integrals of formula (1) can be transformed to avoid the calculation of the spatial derivatives 

iX∂∂ , and thus avoid acoustic calculation for numerous observation points around X
r

 (six points for usual 

centered derivatives by finite differences). They can write [13]: 
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Remark: An analytical time integration of (2) is generally performed by changing the integration variable τ in g, 

which leads to the following formula: 
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where the quantities inside the brackets are evaluated at the emission time 0at στ −= . For a surface S in 

subsonic motion relative to the observation pointX
r

, τ∂∂g  is never zero and the usual locally compact integration 

technique (S discretized in source elements δSi treated as point sources) then allows a rather easy calculation of the 

radiated pressure. Formula (2bis) is still mathematically valid for a surface S in transonic relative motion, but it will 

not be used in the present study. The numerical integrations will be carried out by restarting from formula (2), for 

reasons discussed in Section 2.2. 

2.1.2 Formula used for volume integrals 

In the same way as for the surface integrals, the volume integral of formula (1) can also be transformed to avoid 

spatial derivation of the radiated pressure or of the aerodynamic fields and can write [12]: 
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The previous remark concerning analytical time integration for surface integrals also applies to volume integrals. 

For the latter, this analytical time integration leads to the following expression (not used in the present study, see 

Section 2.2). 
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2.2 Integration technique 

As mentioned in the introduction, in the case of stationary fields in a rotating frame, the volume of input data to 

be stored for acoustic post-processing by a volume method is not exactly a difficulty. If acoustic calculations are 

carried out directly using the CFD rotating mesh (as is done in the present study), only aerodynamic fields for a 

reference emission time τ0 need to be stored. In fact, the difficulty for transonic configurations lies in the integration 

technique. Indeed, the noise sources related to the shocks extend radially beyond the sonic cylinder (cylinder on 

which the relative Mach number is equal to 1) and the integrals in formulas (2bis) and (3bis) can then be singular 

beyond the sonic cylinder ( 0=∂∂ τg  for some observer locations). An example of the radial extent of noise 

sources is shown in Fig. 1 for a delocalized test case of the non-lifting UH1H model rotor in hover [14] 

(aerodynamic input data generated for study [15] by J. Baeder running the TURNS code [16] in the Euler mode and 

acoustic calculations performed in [17]). In particular, it shows the strong contribution of volume sources outside the 

sonic cylinder to the radiated pressure, and therfore the need to take them into account in acoustic calculations. 
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Fig. 1. UH1H model rotor in hover, tip Mach number = 0.95. Pressure distribution in the rotor 

plane (top) and contributions to the acoustic time signature at 3.09 R in the rotor plane (bottom): 

(a) sources inside the sonic cylinder, (b) sources outside the sonic cylinder. 
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A solution, when using the usual integration techniques that cannot deal with the singularity 0=∂∂ τg , is to 

perform a projection of the rotating CFD fields onto a fixed grid (e.g. [18]). However, this projection must be made 

on a relatively fine uniform grid to properly capture shocks during their rotation, at each step of a relatively fine time 

discretization, for a good description of the shocks' kinematic. This projection may turn out to be a very costly 

operation as well as a source of imprecisions in the input data of the acoustic calculations. 

For surface methods, other integration procedures have been developped to solve the numerical problem raised 

by this singularity (collapsing sphere formulation [19][20], emission surface algorithms [20][21][22]). However, 

given their computational cost, they seem challenging to apply to volume methods. An integration technique that is, 

from our point of view, much more efficient, has previously been developped at ONERA, for surface methods 

[9][13][17]. This fully non-compact integration technique is applied here to both surface and volume calculations. 

The principle of this original approach (described in detail in [9][10]) is reviewed below. 

The singularity appearing with supersonic moving meshes is purely numerical. It is due to the modeling of each 

cell of the mesh by a point source (locally compact approach of the usual integration techniques). This model does 

not reflect the continuity of the integration domain, especially the fact that at a given emission time, the different 

points of a cell are not all at the same distance from the observer. In fact, because of these different distances, the 

emission of a cell at time τ is not received at a single instant t, but during a time interval [t1, t2] whose boundaries 

depend on the size, shape and orientation of the cell. 

The locally compact approach leads to focusing the radiation of the whole cell onto the same reception time. 

This phenomenon of acoustic focusing is accentuated when the velocity of the source point towards the observation 

point tends to the speed of sound. The radiation then "piles up" even more on the same reception time, which 

explains the divergence in the results for the transonic moving meshes. It should be noted that the refinement of the 

mesh or of the time step tends to further degrade the results by increasing the number of source points moving at a 

velocity close to the speed of sound towards the observation point. 

A relatively simple way of taking into account the continuity of the integration domain consists in, rather than 

modeling the emission of the cell at the time τ by a point source, modeling the reception of the radiated signal at the 

observation point by a pressure rate Π (in Pa/s) over the time interval [t1, t2]. This is done in the so-called "fully non-

compact" integration technique which does not use the analytical time integration leading to expressions (2bis) and 

(3bis) but restarts from formulas (2) and (3). 
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In practice, the reception intervals [t1, t2] are determined for each cell ∆i of the integration domain and for each 

emission time τj, starting from the position of the observation point and the position of the nodes of the cell at time 

τj. The associated radiated pressure rate Πij is calculated as a function of the considered source term F (which can be 

evaluated at the center of the cell), of the surface or volume |∆i| of the cell, and of the reception time duration t2-t1. 

For instance, if a constant pressure rate is considered, the pressure rate Πij is then equal to F|∆i|/(t2-t1) over the time 

interval [t1, t2] and to zero outside. The pressure received at the observation point at a given instant t is then 

determined by summing this pressure rate over the emission times (see Fig. 2). This time integration can be quite 

simple (depending on the pressure rate model), since it consists in calculating the area of the hatched surface in Fig. 

2 by linear interpolations starting from the reception time intervals and the pressure rates determined for the 

emission times τj and τj+1. The space integration is then carried out by summing the pressure contributions of each 

cell of the mesh. It is worth pointing out that this integration technique gives the same result as the usual locally 

compact method when the mesh is fixed. This fully non-compact approach has been thoroughly validated [9] and is 

used by ONERA and by its industrial partners, for rotors and propellers acoustic studies (for example [23]-[26]). 

To facilitate the calculation procedure, a pressure rate that is constant over the reception interval, and therefore 

discontinuous at the boundaries of this interval, was first used (Fig. 2, top). This very simple model has given full 

satisfaction for formulations without time derivatives outside the integral [10]. A continuous increasing/decreasing 

model (Fig. 2, bottom) has then been designed for formulations with time derivatives outside the integral, which 

require more regular results for these time derivations. In this study, all acoustic calculations are carried out using 

this second model. 
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Fig. 2. Schematic of the time integration process for a non-compact source element, for two 

pressure rate shape functions: rectangular (top) and triangular (bottom). 

 

3. Case studied and numerical setup 

3.1 Configuration and CFD input data 

Acoustic calculations are performed for an isolated propeller mounted on a nacelle (Fig. 3), with a zero angle of 

attack, so that the aerodynamic fields are steady in the rotating frame of the propeller. This configuration is that of 

the AIPX7 counter-rotating open rotor (geometry designed by Airbus for Clean Sky European project), in which the 

rear rotor has been removed. This is the same configuration as the one considered in [27] for numerical error 

analysis in the aeroacoustic simulation of transonic propellers. This previous study relied particularly on the 
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aerodynamic fields provided by CFD simulations, carried out with meshes of different densities (thus leading to 

different levels of accuracy), on one hand, and on acoustic calculations performed using a surface method, on the 

other hand. The same aerodynamic fields are used here for the analysis of the volume method. The configuration, 

meshing technique, grid refinement and CFD computations are briefly described here. More details can be found in 

[27]. 

 

Fig. 3. Study configuration (picture extracted from [27]). 

 

The radius R of this eleven-bladed rotor is 2.15m. The operating conditions are: free-stream Mach number of 

0.73, rotational tip Mach number of 0.6, static pressure and speed of sound at infinity respectively equal to 23,837 

Pa and 296.95 m/s. The helical Mach number is equal to 0.945. This configuration, representative of cruise 

conditions, clearly leads to a transonic flow with a strong contribution of volume sources related to the formation 

and propagation of the shocks generated by the blades. 

The aerodynamic calculations take into account the spatial periodicity of the flow field and the computational 

domain is reduced to the angular sector of one blade. The CFD mesh consists of structured blocks in the near-body 

region and cylindrical structured blocks in the off-body region (Fig. 4), which has made the successive mesh 

refinements easier. It extends from -5.23R to 5.23R in the axial direction, and up to 3.8R in the radial direction. 
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Fig. 4. CFD mesh (pictures extracted from [27]). 

 

Starting from the coarsest one, the mesh is derived into 3 other versions. Each of them is built starting from the 

previous one by increasing the number of nodes of the background core blocks in all three space directions by a 

factor equal to 1.5 (except for the most refined mesh: 1.2). The near-field body grids are the same for all 

calculations. Table 1 states the total number of cells for each of the four meshes. 

 

Table 1 

Total number of cells for each CFD grid 

CFD grid Coarse Medium Fine Super fine 

Number of cells (in million) 3.63 8.01 22.35 36.48 

 

The steady RANS equations are solved in the rotating frame of the blade, using a finite-volume solver [28] with 

a classic cell-centered Jameson scheme, second-order accurate in space. Interpolations between overset grids are 

second-order accurate in space. The turbulence model is Kok k-ω [29] with shear stress transport (SST) correction 

[30]. The solid surfaces of the body are modelled with a nonslip, adiabatic wall boundary condition. The outer 

boundaries of the computational domain are modelled with a far field boundary condition based on the characteristic 
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relations. The input data of the acoustic calculations are the density, velocity and pressure provided at the nodes of 

the acoustic meshes described below. 

 

3.2 Surfaces and volumes of integration 

Some blocks of CFD meshes partially overlap. This is the case in the immediate vicinity of the blade and beyond 

a certain radial or axial distance from the blade. In these regions, these overlaps do not allow direct use of the CFD 

grid for acoustic calculations. They require the aerodynamic fields to be projected onto a new mesh defining the 

surface or the volume of integration. To avoid the construction of new meshes and the inaccuracies introduced by 

this projection, the volume of fluid under study is limited to the blocks near the blade that do not overlap. The 

number of blocks selected depends on the grid (see Table 2), however they all define the same volume of fluid. This 

volume is shown in Fig. 5 for the coarse grid and for the super fine grid. 

 

 

Fig. 5. Volume studied and blocks involved in the coarse CFD grid (left) and in the super fine CFD grid (right). 

 

Table 2 

Number of blocks involved and azimuthal discretization for acoustic calculation, for each CFD grid 

CFD grid Coarse Medium Fine Super fine 

Number of blocks involved 6 17 48 96 

Azimuthal discretization 45 65 98 114 
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In this defined volume, ten control surfaces progressively enclosing more fluid around the blade are considered, 

in order to observe the contribution of volume sources and the effects of the CFD grid density on acoustic 

predictions (Fig. 6). These surfaces explore the same volume of fluid as that explored by the twenty control surfaces 

used by A. Giauque et al. in [27]. However, contrary to study [27] in which the axial and radial sizes of the control 

surfaces increase at the same time, here the radial extent of the control surfaces increases first (Fig. 6, S1 to S6), then 

the axial extent does (Fig. 6, S6 to S10). This can help to distinguish the contribution of volume sources related to 

the formation and propagation of the shock (essentially in the radial direction) more easily from volume sources 

related to the blade wake. All these control surfaces have a cylindrical part (more or less extended) in their lower 

section, so that two consecutive surfaces constitute the closed boundary of the volume between them. This allows 

comparisons between surface and volume approaches, as will be shown in Section 4. 

 

 

Fig. 6. Display of the different control surfaces (colored by the pressure perturbation) surrounding 
the blade (in grey). 

 

The axial and radial extents of the different control surfaces (excluding their lower cylindrical parts) are given in 

Table 3. It can be noted that the volume under study extends beyond the sonic cylinder (helical Mach number equal 

to 1.103 on the outer radial boundary), which is not a difficulty for the integration method. Thereafter, the volume 

named Vi is the volume between S1 and Si (2 ≤ i ≤ 10) and the volume VA is the volume between the surfaces S6 

and S10. Table 4 gives the number of cells of the largest integration domains as a function of the grid, for the surface 

and volume methods. 
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The usual process for taking volume sources into account in acoustic calculations is to add the result of the 

integration (3) in a volume of fluid around the body to that of the integration (2) on the body solid surface. In the 

present case, where the volume of fluid studied does not extend up to the blade, the body solid surface is replaced by 

the porous surface closest to the blade (S1). Therefore the analysis of the volume approach consists here in 

comparing pS1+pVi to pSi, where pVi is the radiated pressure calculated by integration in a given volume Vi and pSi 

that obtained by integration on the surface Si. 

 

Table 3 

Axial (∆x) and radial (r/R) extents of the control surfaces (excluding the lower cylindrical parts) 

Surface S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

∆x (m) 0.8 0.8 0.8 0.8 0.8 0.8 1.2 1.6 2.0 2.6 

r/R 1.023 1.079 1.153 1.228 1.302 1.377 1.377 1.377 1.377 1.377 

 

Table 4 

Maximum number of cells for the surface and for the volume acoustic calculations, depending on the grid 

Grid Coarse Medium Fine Super fine 

Surface (S10) 15,975 35,396 78,498 111,264 

Volume (V10) 337,140 1,142,998 3,813,314 6,502,902 

 

3.3 Calculation procedure 

Acoustic calculations must take all the blades into account in order to reproduce the interferences of their sound 

radiations. This can be done by an angular duplication of the CFD grid and the associated aerodynamic fields, but in 

the present case, it multiplies by 11 the volume of input data and the computation time. In fact, the angular 

periodicity of the flow-fields makes it possible to obtain the same result by adding to the signal radiated by a single 

blade 10 identical signals respectively time-shifted by (i-1)T/11 (i: blade number, T: rotation period of the 

propeller). Acoustic calculations are thus carried out by rotating the surface and the volume acoustic meshes 

described above, on a revolution. This rotation is described by 517 time steps (517 is a multiple of 11, which makes 

the time shifting procedure mentioned previoulsy easier). 

Surface and volume calculations are performed for 91 far-field observation points, distributed on a semi-circle of 
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8m radius on either side of the propeller rotation plane (Fig. 7). Their angular position θ is defined with respect to 

the propeller rotation axis and ranges from 0 deg. (upstream) to 180 deg. (downstream). 

Remark: For industrial confidentiality reasons, sound pressure levels (in Pa or in dB) are hidden. The pressure 

scales, however, are identical for all the figures so that the different results can be compared. 

The calculation times, on one processor running at 3 GHz, are 0.44 10-6 s/cell/time step/obs. for surface 

calculations and 0.72 10-6 s/cell/time step/obs. for volume calculations. Therefore, for 517 time steps and 91 

observation points, surface calculations take between 6 min (coarse grid) and 40 min (super fine grid), and volume 

calculations take between 3 hours (coarse grid) and 61 hours (super fine grid). Therefore, volume calculations take 

30 to 90 times longer than surface calculations, mainly because of the much higher number of integration cells. It 

should be noted that the parallelization of these calculations is very efficient (no information to be transmitted 

between cells, speed-up close to 1 or even greater than 1 since the memory access is faster with smaller arrays). 

Volume calculations with the super fine mesh, carried out on 64 processors, would thus probably take less than an 

hour. 

 

 

Fig. 7. Observation points used for the analysis of the propeller’s acoustic radiation. 
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4. Results 

4.1 Surface calculations 

An acoustic analysis of the aerodynamic fields is first performed using the surface method. Results will serve as 

reference for volume calculations. It should be noted that the analysis carried out in [27] is not resumed using other 

control surfaces. Surface calculations are only used here to evaluate the interest of the volume method by comparing 

the results. 

The signals obtained in the propeller plane (θ = 90 deg.), depending on the control surface, are plotted in Fig. 8 

for the coarse grid and in Fig. 9 for the fine grid. For both grids, the amplitude and the asymmetry of the signal 

increase as the control surface increasingly encloses the volume sources related to the formation and propagation of 

the pressure perturbation (surfaces S1 to S6). The signals seem to stabilize for the control surfaces S5 and S6, which 

suggests that the surface S6 encloses the bulk of the volume sources related to the shock. One can also observe a 

steeper recompression slope with the fine grid than with the coarse grid, which indicates a richer content in high 

frequency with the former. The amplitude and especially the shape of the signal do not change substantially when 

the control surface then extends in the axial direction (surfaces S6 to S10). The stability of the signal obtained with 

the fine grid (Fig. 9, right) tends to show the absence of significant volume sources in the blade wake (in the present 

case of RANS aerodynamic calculations). This means that the progressive decay of the amplitude of the negative 

pressure peak with the coarse grid (Fig. 8, right) is thus due to numerical dissipation in the aerodynamic calculation 

and not to a physical damping of the pressure perturbation. 

  

Fig. 8. Acoustic time signature in the rotor plane depending on the control surface (coarse grid). 
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Fig. 9. Acoustic time signature in the rotor plane depending on the control surface (fine grid). 

 

 

For the same observation point (θ = 90 deg.), Fig. 10 highlights the effect of the density of the CFD grid on the 

predicted signal, for three particular control surfaces: S1 (the closest to the blade), S6 (including volume sources 

related to the shock) and S10 (including a larger part of the blade wake). For the control surface closest to the blade 

(S1, Fig. 10a), the four CFD grids provide quite close results, which shows that the coarsest mesh could almost be 

suitable in the immediate vicinity of the blade (at least for acoustic predictions in the propeller rotation plane). For 

the other two control surfaces (S6 and S10), the results clearly depend on the density of the CFD grid but converge 

towards those found with the finest. We will see more precisely in the following section how this evolution results 

into the signal spectrum. 

Acoustic calculations have been performed using two other time steps (T/264 and T/1034) to evaluate the 

sensitivity of the results to this parameter. The signal obtained does not change noticeably according to the time step 

(Fig. 11), which shows the robustness of the fully non-compact integration technique. A smaller time step simply 

tends to better describe the negative pressure peak. The deviations observed previously in Fig. 8 to Fig. 10 and those 

to be found with the volume method (Section 4.2) do not thus depend significantly on the acoustic time step. 
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Fig. 10.  Effect of the CFD grid density on the acoustic time signature in the rotor plane, 
for three control surfaces: (a) S1, (b) S6 and (c) S10. 

 

 

Fig. 11. Effect of the acoustic time step on the acoustic time signature in the rotor plane 
(control surface S6, fine grid). 

(a) 

(b) (c) 
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4.2 Volume calculations and comparison 

The results of the volume method applied to the volumes V6 (volume between the surfaces S1 and S6) and to the 

volume VA (volume between the surfaces S6 and S10, see Section 3.2) are plotted in figure 12 for the observation 

point in the rotor plane (θ = 90 deg.), for the four CFD grids. They confirm the predominance of the volume sources 

related to the shock (Fig. 12, left) compared to those related to the blade wake (Fig. 12, right), as already suggested 

by the results of the surface method (Fig. 8 and Fig. 9). The contribution of the shock to the radiated pressure 

strongly depends on the grid density, but the signal converges towards that found with the finest grid (Fig. 12, left). 

Conversely, the contribution of the wake varies much less according to the grid density (Fig. 12, right). Therefore 

the numerical dissipation in the wake does not seem to produce significant volumes sources. 

 

  

Fig. 12. Effect of the CFD grid density on the acoustic time signature in the rotor plane (θ = 90 deg.), 
for volumes of integration V6 (left) and VA (right). 

 

The signals obtained for the volume V6 and for the volume V10 (i.e. V6 + VA) are then added to those obtained 

for the surface S1, and compared to the signals obtained respectively for the surfaces S6 and S10. This comparison is 

made in Fig. 13 for the observer point in the rotor plane (θ = 90 deg.). The mixed integrations on S1 + V6 and on S1 

+ V10 provide signals according to the grid density that are quite similar to those found respectively for S6 (Fig. 

10b) and S10 (Fig. 10c). With the coarse grid, the amplitude of the signal provided by the mixed integration on S1 + 

V10 is however slightly greater than that obtained for the surface S10 (Fig. 10c). The spectral analysis that follows 
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makes it possible to distinguish more precisely the differences between these various pressure signals. 

 

  

Fig. 13. Effect of the CFD grid density on the acoustic time signature in the rotor plane. 
(on left: integration on S1 + V6, on right : integration on S1 + V10) 

 

An example of the spectral content of the pressure radiated in the rotor plane by the sources inside the surface S6 

is given in Fig. 14. In this figure, the level of the first eight harmonics of the Blade Passing Frequency (BPF) is 

plotted for the four CFD grids and for both integration methods. The various evolutions show the effect of the grid 

density, which is, as expected, all the more pronounced as the frequency is high, together with a convergence of the 

levels with the grid density. It can be observed that the volume method leads to slightly higher levels. 

Remarks: 

- For the surface S6 and the coarse grid, the levels have an erratic evolution beyond the fifth BPF. This defect 

is due to insufficient azimuthal discretization of the aerodynamic fields using this grid. Indeed, in the present 

case of rotating stationary fields, each BPF corresponds to an azimuthal mode of the aerodynamic 

perturbations. Therefore the calculated levels are reliable only for the BPF corresponding to azimuthal modes 

correctly described by the grid for FW-H calculations. In this study, levels corresponding to modes 

represented by less than eight points have not been considered as reliable and are not plotted thereafter. For 

the first eight harmonics studied here, in practice, this criterion applies only to the coarse grid (see Table 2). 

- The various level evolutions can be related to the capability of the CFD computation to propagate a 

perturbation according to the grid density. In the present case of a second-order accurate in space scheme, it 
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is generally considered that twenty cells per wavelength are necessary for a correct calculation of the acoustic 

propagation up to the integration surface. An accurate calculation of the cut-off frequency of the CFD 

calculation is possible only for a Cartesian grid with constant step, which is not the case in this study carried 

out with cylindrical grids. However, a rough estimate of this frequency can be made from the average cell 

size in the region beyond the sonic cylinder, which is a key region for the BPFs amplitudes. This average 

value is calculated in the azimuthal direction, because, as mentioned above, the acoustic radiation is directly 

related to the azimuthal modes. The cut-off frequencies obtained for each grid are indicated in Table 5. The 

corresponding cut-off BPFs are relatively consistent with those deduced from the evolutions found with the 

surface method, which relies on the transport of disturbances up to the surface S6 (Figure 14, left). These cut-

off BPFs are less easy to determine starting from the results of the volume method, the various curves 

separating more gradually (Figure 14, right). 

Table 5 

Estimation of the cut-off frequency of the CFD calculations, depending on the grid 

Grid Coarse Medium Fine Super fine 

Average cell size in the supersonic area (m) 0.0348 0.0239 0.0160 0.0137 

Cut-off frequency (Hz) 427 621 928 1084 

Corresponding cut-off BPF 2.9 4.3 6.4 7.4 

 

 

  

Fig. 14. Examples of the effect of the CFD grid density on the spectra of the pressure radiated in the rotor plane 
(on left: integration on S6, on right: integration on S1 + V6). 
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A more complete view of the evolution of the acoustic radiation depending on the source volume considered, is 

given in Fig. 15. In this figure, the maximum of the OverAll Sound Pressure Levels (OASPL) and the maxima of the 

Sound Pressure Levels (SPL) of the first eight BPFs on the semi-circle of observation around the rotor are plotted 

for both integration methods, as a function of the integration surface Si or the integration volume Vi, for three of the 

four CFD grids. 

The results obtained with the fine grid show, from the spectral point of view, the construction of the signal as more 

volume sources are taken into account in the acoustic calculation (Fig. 15c, Index 1 to 6). These volume sources 

result from a nonlinear acoustic propagation in the near vicinity of the propeller, due to the high amplitude of the 

initial disturbance, and lead to a stiffening of the pressure perturbation (see Fig. 9 left). This stiffening results in a 

fairly fast growth of the high harmonics (Fig. 15c, Index 1 to 4). Then, the level of the highest harmonics tends to 

decrease, indicating a slight damping of the signal (Index 4 to 6). This signal damping can be attributed to numerical 

dissipation in the aerodynamic calculation, since it mainly affects the BPFs 6 to 8, in relatively good agreement with 

the cut-off frequency of the fine grid (see Table 5 and Fig. 14) and increases with the medium grid (Fig. 15b). The 

volume method and the surface method give similar evolutions but with slightly higher levels with the former. One 

can wonder what precisely causes the deviations between the two methods while they are theoretically equivalent. 

These deviations could be due to the fact that the physical viscosity of the fluid is taken into account in aerodynamic 

calculations (RANS calculations) but not in acoustic calculations (viscous source term neglected in both acoustic 

methods, see Section 2.1). To illustrate it, one can take the example of a flow with viscous effects confined in a 

limited volume. The surface method applied to the boundary of this volume will provide the same results with or 

without the viscous source term (viscous source term equal to zero on the integration surface). In contrast, the 

volume method applied to this volume will provide these results only if the viscous source term is taken into 

account. Therefore, the results of the two methods without the viscous source terms will be different. 

However, in the present case, the viscosity of the fluid is not a cause of significant deviations in the acoustic results. 

Indeed, this physical viscosity does not depend on the grid density, whereas the deviations tend towards zero when 

the grid is refined, as will be confirmed thereafter by the directivity plots (Fig. 18). 

On the other hand, the artificial viscosity necessary to the stability of the CFD calculation (coefficients k2 and k4 of 

the cell-centered Jameson scheme) can be the cause of the deviations. This numerical viscosity limits the gradients 

in the whole volume of fluid, and consequently the amplitude of the high harmonics with both methods. It increases 
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as the grid is coarser, and the level of these harmonics decreases accordingly (Fig. 15b and Fig. 15a). Its effect may 

be slightly weaker with the volume method (which adds the contribution of each elementary volume source) than 

with the surface method (which works starting from the state of the aerodynamic fields on the integration surface). 

The numerical viscosity also tends to damp the pressure perturbation throughout its propagation in the radial 

direction and leads to decreasing levels for the indexes 4 to 6, with both methods. For the volume method, this level 

decay means that the numerical dissipation creates volume sources which reduce the levels of the high harmonics by 

phase-shifted contributions. An example of these phase-shifted contributions is shown in Fig. 16 for the BPF6 and 

for the volume of integration V5-V4, for the fine grid. These volume sources eventually have the same effect on the 

radiated pressure as that of damped perturbations on the integration surfaces. 

 

 

  

Fig. 15. Maximum OASPL and maximum SPL of the BPF harmonics, as a function of the source volume considered, 
for (a) the coarse grid, (b) the medium grid and (c) the fine grid. 

(a) 

(b) (c) 
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Fig. 16. (S1+V4) and (V5-V4) contributions to BPF6 (fine grid, observer in the rotor plane). 

 

Remark: With CFD methods or resolution schemes other than those used in this study, the artificial viscosity 

required for the stability of the aerodynamic calculation is introduced by other means than the coefficients k2 and k4 

mentioned above, but its effects on the acoustic calculations can be expected to be similar to those observed here for 

both integral methods. 

Additional comments can be made regarding the coarsest grid (Fig. 15a). The results obtained with this grid 

illustrate the difficulties that can be encountered with the surface method when the dissipation in the CFD 

calculation is too high in the region of the acoustic sources. Depending on the integration surface used, either it does 

not enclose enough sources (here, surfaces S1 to S3 for the BPF1 to the BPF4), or the numerical dissipation affects 

the aerodynamic fields too strongly (here, surfaces S3 to S6 for the BPF5). With this CFD grid, the volume method 

seems to be much less sensitive to the numerical dissipation, especially for the fifth BPF. However, the predicted 

level for this frequency remains 13 dB lower than that obtained with the fine grid (Fig. 15c). 

A synthetic view of the benefit of the volume method is given in Fig. 17, in which the maximum levels obtained 

by both integration methods are plotted as a function of the BPF, respectively for the surface S10 and the volume 

V10, for the four CFD grids. This figure confirms that the volume method tends to improve the results. However, as 

discussed above, it palliates only very partially the lack of precision of the aerodynamic fields provided by 

insufficiently fine grids. This figure also shows the need of very fine CFD grids to correctly predict the high 

frequencies produced by shocks in transonic flows. 
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Fig. 17. Effect of the CFD grid density on the maximum SPL of the BPF harmonics, 
for both surface and volume methods. 

 

In addition and to confirm the previous analysis for other observer points, the directivity of BPF 1, 3 and 5 are 

plotted for the four CFD grids and for both integration methods (Fig. 18). 

With the super fine grid (Fig. 18d), the numerical dissipation is very weak and the directivities provided by both 

integration methods are practically identical. With the other three grids, the differences between the results of the 

surface and volume methods gradually increase as the CFD grid is coarsened (except for the BPF1, of which the 

level does not depend on the grid nor the integration method). The volume method leads to generally slightly higher 

levels and especially to less chaotic directivities than those provided by the surface method. 

In conclusion, the volume method provides slightly better results than the surface method in case of CFD grids 

that are not fine enough for accurate acoustic predictions, however the gain seems low compared to the computation 

cost of the volume integration. 

 



 28 

  

  

Fig. 18. Directivities predicted by surface and volume methods, for (a) the coarse grid, (b) the medium grid, 
(c) the fine grid and (d) the super fine grid. 

 

4.3 Spatial distribution of the noise sources 

In this section, two techniques for the analysis of volume sources are explored. The main objective is to 

determine which regions of the flow contribute the most to acoustic radiation. This information, that the surface 

method cannot provide, can be used to optimize the CFD grid, for example by showing the regions where the mesh 

must be refined. 

The first technique, rather conventional, consists in calculating the local value of so-called 'quadrupole' term 

jiij YYT ∂∂∂ 2 . This double divergence of the Lighthill tensor constitutes the source term of the volume integral 

when the second spatial derivative in the expression (1) is passed inside the volume integral (see [10], for example). 

(d) (c) 

(a) (b) 
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This source term may thus be able to serve the intented purpose. 

Since the viscous term eij is neglected in the calculations (see section 2.1), the quadrupole terms are here reduced 

to the shear term ( ) jiji YYuu ∂∂∂ ρ2  and to the “entropy”2 term ( ) ii YYap ∂∂′−′∂ ρ2
0

2 . The contribution of each of 

these two terms to the signal radiated in the rotor plane (θ= 90 deg.) is plotted in Fig. 19. This figure shows that, for 

this propeller in transonic operating conditions, the contribution of the volume sources is mainly produced by the 

shear term. 

 

Fig. 19. Contributions of the shear term and of the “entropy” term to the pressure radiated in the rotor plane 
(integration volume V10, fine grid). 

 

The isosurfaces of these two terms confirm that the shear term is dominant in the shocks, however the values of 

the isosurfaces must be chosen carefully to highlight it (Fig. 20). Indeed, the source terms are much weaker there 

(|level| <50) than in the wake and the blade tip vortex ((|level| > 1000 in the vortex core), which yet are not 

significant noise sources compared to the shocks. Despite their magnitude, the sources (in the sense of Lighthill) in 

the wake and the blade tip vortex have, after spatial integration, an overall contribution in fact negligible, because 

they are arranged on successive layers of opposite signs, and their radiations cancel each other. 

These iso-surfaces confirm, for this propeller, the well-known fact that the quadrupole term is not a quantity that 

determines the actual noise sources easily. In practice, it is preferable to plot a particular component of the 

                                                           

2 At the first order, ( )ρ ′−′ 2
0ap  = ( )0

0 SS
c

p

v

−  where ( )0SS−  is the entropy variation. 
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quadrupole term that can locate the phenomenon concerned better than the shear or entropy original terms would do. 

For example, in the case of this propeller, the simplified shear term ( ) 2
111

2 Yuu ∂∂ ρ  (Fig. 21, left) and especially 

the pressure term p∆  (Fig. 21, right) seem more effective in distinguishing shock-related noise sources from other 

sources (much higher relative levels in the shocks, compared to Fig. 20). 

 

 

Fig. 20. Isosurfaces of the normalized shear (on left) and “entropy” (on right) quadrupole terms – Fine grid. 

 

 

Fig. 21. Isosurfaces of simplified shear (on left) and pressure (on right) terms – Fine grid. 
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The second technique for the analysis of the volume sources consists in determining the elementary acoustic 

time signature radiated by each cell of the grid, for a given point of observation (in Pa/m² and in Pa/m3 respectively 

for the surface method and for the volume method). This technique has the drawback of providing a result that 

depends on the observation point, but the advantage of providing the precise contribution of each cell to the sound 

radiation, and not only the magnitude of a local source term. It has been applied to the surface of the blades of open 

rotors, with an analysis of the amplitude and the phase of the radiated pressure, for various BPFs [31][32]. For 

reasons of memory cost with the volume method, this analysis is limited here to the root mean square (rms) value. 

The local contributions to the noise radiated in the rotor plane (θ= 90 deg.) are plotted separately for the shear 

term and for the entropy term in Fig. 22. For this transonic propeller, the rms value of the shear term local 

contribution appears to be a good indicator of the noise sources (Fig. 22, left). In particular, the wake and the blade 

tip vortex do not appear as noticeable noise sources. 

In contrast, the rms value of the “entropy” term local contribution is unusable (Fig. 22, right). In the vicinity and 

beyond the sonic cylinder, the levels are relatively uniform over large regions and completely mask the shocks. This 

is due to the difference between the average values over a blade revolution and the values at infinity, for pressure 

and density. This difference is produced by the thrust of the propeller and is seen as a constant source that rotates 

with the cell. In the vicinity and beyond the sonic cylinder, the transonic kinematics of the cells considerably 

amplifies this spurious component which, in fact, only distorts the level at the blade passage frequency (BPF1) and 

the rms value of the local contribution. An analysis of several BPFs, as it has been done for the surface method 

[31][32], would not have encountered this problem. Calculations performed starting from pressure and density fields 

from which the average value over a blade revolution has been subtracted, confirm this explanation and a weak 

contribution of the “entropy” term compared to the shear term (Fig. 23). 
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Fig. 22. Isosurfaces of the shear term (on left) and of the “entropy” term (on right) local contributions to the 
pressure radiated in the rotor plane - Fine grid. 

 

 

 

Fig. 23. Isosurfaces of the “entropy” term local contribution to the pressure radiated in the rotor plane, 
starting from modified pressure and density fields – Fine grid. 
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5. Conclusion 

Acoustic calculations using two different approaches of the FW-H integral formulation were conducted for a 

transonic propeller. The first indirectly takes into account the volume sources created by the propeller, by means of 

an integration on a closed surface encompassing these sources. The second takes them directly into account by 

means of a volume integration without any simplification that could distort the comparison. For both approaches, the 

calculations were greatly facilitated by a specific integration technique. Thanks to this fully non-compact integration 

technique, acoustic calculations were performed directly from data provided in the rotating frame, i.e. with 

supersonically rotating emission points. No projection of the aerodynamic fields on a fixed refined grid, which 

would have considerably increased the cost of the acoustic calculations and would have been a potential source of 

inaccuracies, was needed. 

The surface and volume calculations were carried out for four CFD meshes of different densities, and thus for 

four different levels of numerical dissipation in aerodynamic calculation, in order to evaluate the sensitivity of both 

methods to this numerical dissipation. Both integral methods converge to the same result as the CFD mesh is 

refined, which contributes to validate the aerodynamic calculations and confirms the theoretical equivalence of the 

two acoustic methods. The results show the effect of the artificial viscosity which is introduced in the CFD 

calculation for its stability, on acoustic predictions. This artificial viscosity, which limits the gradients and damps the 

disturbances, leads to an underestimation of the acoustic radiation, all the more pronounced as the frequency is high. 

This damping of the high frequencies is quite similar with both integration methods because the artificial viscosity 

has comparable effects in both of them. On the one hand, the gradients limitation during the construction phase of 

the acoustic signal leads to an underestimation of the source terms in both methods. On the other hand, the damping 

of the pressure perturbation during its propagation results in lower levels on the control surface, for the surface 

method, and in volume sources that reduce the radiated pressure by a phase effect, for the volume method. This 

numerical dissipation has slightly smaller consequences with the volume integration, but the improvement brought 

seems weak compared to its computation cost. 

In addition, two techniques for determining the regions of the dominant acoustic sources were explored. The first 

one, rather conventional, consists in calculating the local value of the double divergence of the Lighthill tensor (the 

‘quadrupole term’). The second, less known, consists in calculating the elementary acoustic time signature radiated 

by each cell of the grid towards a given point of observation. Calculations made with the first technique confirm that 
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the quadrupole term is not a quantity that determines the actual noise sources easily, because the levels there may be 

low compared to regions that contribute little or not at all to the sound radiation. They also showed that specific 

terms chosen according to the phenomenon concerned may be better indicators of the real noise sources than the 

original shear and entropy terms. The second method seems more effective in determining the local contributions to 

the far-field radiated noise. In the present case of a flow accelerated by the propeller thrust, the rms value of the 

elementary acoustic time signature is however unusable if it includes the contribution of the entropy term, because 

of the predominance of a spurious component at the propeller blade passage frequency in this term. A spectral 

analysis of the elementary acoustic time signatures makes it possible to overcome this problem but can be costly in 

terms of data storage with the volume method. 

In conclusion, in view of its computational cost (about two orders of magnitude greater than the surface method) 

and of the weak improvement brought to the acoustic predictions, the volume method does not seem very attractive 

for acoustic predictions of transonic propellers. It can nevertheless be a complementary tool for in-depth analyses of 

the aerodynamic fields or to consolidate the results of the surface method, for instance. It would also be interesting 

to reconsider the issue for acoustic predictions of turbulent flows such as jets. 
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