
HAL Id: hal-01999979
https://hal.science/hal-01999979v1

Submitted on 5 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GAMBAD: A Method for Developing Systems of
Systems

Gregory Moro Puppi Wanderley, Marie-Hélène Abel, Emerson Cabrera
Paraiso, Jean-Paul Barthès

To cite this version:
Gregory Moro Puppi Wanderley, Marie-Hélène Abel, Emerson Cabrera Paraiso, Jean-Paul Barthès.
GAMBAD: A Method for Developing Systems of Systems. 30th IEEE International Conference on
Tools with Artificial Intelligence (ICTAI 2018), Nov 2018, Volos, Greece. pp.813-817, �10.1109/IC-
TAI.2018.00127�. �hal-01999979�

https://hal.science/hal-01999979v1
https://hal.archives-ouvertes.fr


GAMBAD: A Method for Developing Systems of
Systems

Gregory Moro Puppi Wanderley∗, Marie-Hélène Abel∗, Emerson Cabrera Paraiso†, Jean-Paul A. Barthès∗
∗Sorbonne Universités, Université de Technologie de Compiègne,

CNRS, UMR 7253 Heudiasyc, Compiègne, France
Email: {gregory.wanderley, marie-helene.abel, barthes}@utc.fr

†Pontifícia Universidade Católica do Paraná
PPGIa - Graduate Program in Informatics, Curitiba, Brazil

Email: paraiso@ppgia.pucpr.br

Abstract—Despite the great number of Systems of Systems
(SoS) being developed, building them still remains hard and
difficult. Currently, there is a lack of methods capable of
supporting architects for building an actual SoS. In this paper
we introduce an original method called GAMBAD for developing
an SoS from a practical point of view. Our method guides the
development of SoS on top of a multi-agent layer supported by
ontologies. We tested GAMBAD by building an SoS in the domain
of Health Care. Early results show that by using our method,
architects can develop an SoS faster and more accurately.

Index Terms—Systems of Systems, Method, Multi-Agent Sys-
tem

I. INTRODUCTION

Today, complex collaborative applications require to let
several systems that have been developed independently work
together, leading to the concept of Systems of Systems (SoS).
According to Maier [1], five main features characterize an SoS:
(i) operational independence of constituent systems; (ii) man-
agerial independence of constituent systems; (iii) geographic
distribution; (iv) evolutionary development; and (v) emergent
behavior.

Nowadays, building an SoS has become quite popular and
demanding, leading to a number of collaborative applications
developed in several distinct domains aiming inter alia to
support military activities (Olivier et al. [2]), or to improve
understanding of medication prescriptions (Wanderley et al.
[3]). However, developing an SoS still remains a hard and
difficult task facing a number of challenges, most of them
resulting from the SoS features (Nielsen et al. [4]). Although
different frameworks and architectures have been proposed
to support the development of SoS, no method for guiding
architects has been provided, that would offer a clear and
logical path for building an SoS from a practical point of view.

In this research, we aim at facilitating the development of
SoS. Recently, we developed the MBA framework (Wanderley
et al. [5]) that is based on a Memory-Broker-Agent architecture
(Wanderley et al. [6]) to simplify the process of building
Systems of Systems in practice. Our MBA framework builds
SoS on the top of a multi-agent layer supported by ontologies.
The result of our experience in using our framework for
building an SoS in the domain of collaborative software

development allowed us to define key points, gathered to form
general guidelines for building MBA SoS. We then used such
guidelines for developing an original method called GAMBAD
(Guide for Actual MBA Development) to support architects for
developing SoS faster and more accurately from a practical
point of view.

In this paper, we introduce the GAMBAD method. First, we
survey related work. Then, we present the MBA framework
describing its main concepts and elements. After that, we in-
troduce the GAMBAD method. Next, we provide a discussion
comparing two SoS we built, one without using our method
and the other one using it. Moreover, because our method
is used to develop an SoS through the MBA framework that
in turn uses multi-agent systems, we also compare GAMBAD
with the well-known Gaia methodology (Zambonelli et al. [7])
for developing multi-agent systems. Finally, we end up with
conclusions and future work.

II. RELATED WORK

There has been much research aiming at supporting the
development of Systems of Systems (SoS). A number of ap-
proaches have proposed architectural support and frameworks
for building SoS.

Several authors in the literature take a more conceptual
view when providing architectural support for SoS. Some
propose languages to formally describe the architecture of an
SoS (Oquendo [8]), or techniques to optimize and provide
decision-making about SoS architectures (Agarwal et al. [9]);
others propose architectural patterns (Ingram et al. [10]). Some
authors like (Ge et al. [11]) use well-known frameworks
like DoDAF, originally developed for the military domain, to
support their approaches. However, such frameworks represent
the architecture statically and focus excessively on what should
be described rather than on concrete problems (Hu et al. [12]).
All approaches are mostly done on a conceptual level, i.e., de-
scribing and documenting the architectures, rather than giving
a practical point of view for supporting the SoS development.

Other authors however, like Varga et al. [13] provide a
framework and architectural support from a more practical
point of view. Varga et al. [13] implemented a framework for



Fig. 1. A minimal example of the MBA architecture.

developing and deploying an SoS. The approach was based on
a Service-oriented architecture (SOA).

However, none of the works offers a method for supporting
SoS architects with an accurate and clear sequence of steps
for developing Systems of Systems in practice. To the best of
our knowledge, the approach we introduce in this paper is the
first one offering such a method focusing on building an SoS
in practice.

III. A METHOD FOR DEVELOPING SYSTEMS OF SYSTEMS

In this section we present the proposed method for de-
veloping Systems of Systems. First, we present the main
concepts and elements of the MBA framework then introduce
our method.

A. The MBA Framework

We developed the MBA, Memory-Broker-Agent, framework
(Wanderley et al. [5]) to simplify the process of building
Systems of Systems (SoS). We consider that an SoS can be
organized as a set of independent components using a standard
protocol for exchanging information through the use of real or
virtual brokers. The component systems can be upgraded as
agents, users can have a Personal Assistant (PA) and memory
can be used for knowledge management. The approach is P2P,
making the resulting SoS both robust and extensible.

The MBA architecture is a domain-independent core archi-
tecture, meaning that it is extended according to the domain,
goals and systems of the SoS being developed. The approach
consists in building systems of systems on top of a multi-
agent layer (MAS) that will provide the needed mechanisms
for handling the interoperability issues both syntactic and
semantic. The main idea is to render the component systems
interoperable by using proxy agents, one for each component
system. Then, we link the agents to brokers (Park et al. [14])
that will take care of organizing and transmitting (Gardikiotis
et al. [15]) exchanges using a standard protocol. The MAS
platform also offers the possibility of adding Personal Assis-
tant agents to interface users, and agents in charge of recording
information necessary for managing knowledge. Fig. 1 shows
a minimal example of an MBA SoS comprising a system, a
broker and a memory component.

The system element represents any type of independent sys-
tem. After being interfaced through a proxy agent, the system
will be augmented by a communication protocol, ontologies,
and optional interfaces. The communication protocol of the

Fig. 2. The GAMBAD method which provides general guidelines for
developing MBA SoS.

MBA framework, called Work Order (details in Wanderley
et al. [6]), provides syntactic and semantic interoperability
between constituent systems of an MBA SoS. Ontologies play
a crucial role, modeling the SoS domain and the users of
constituent systems, handling the semantics of the communi-
cation protocol, and decoding interactions in natural language.
The optional interfaces (detailed in Wanderley et al. [16]) are
proactive interfaces in natural language handled by Personal
Assistant agents, interfacing users to the SoS.

The broker element is intended to receive requests from
component systems. It tries to find potential providers, and
then once the tasks are allocated, transfers the results back
to the callers. The broker provides loose coupling between
systems making the MBA architecture more robust. Brokers
use a Contract-Net protocol (Smith [17]).

The memory element is there to capitalize and manage
knowledge concerning the SoS and its domain. In our ap-
proach, it is possible to have as many memories as needed
or required by a given domain, including redundant elements.
Memories are usually external systems. The MBA architecture
provides a generic interface for memories through a proxy
agent with an Abstract Statement for handling four basic
memory operations, named insert, update, remove, and select.
The advantage of doing this, is that our approach facilitates
the work of SoS architects, requiring them only to customize
such a proxy agent according to the SoS being developed.

B. The GAMBAD Method

In this section we provide general guidelines for developing
an MBA SoS. We present the key points of our guidelines
through the activities of a method we call GAMBAD (Guide
for Actual MBA Development). Fig. 2 shows the GAMBAD
method consisting of the following activities:

1) Define SoS Goal
2) Define SoS Functionalities
3) Select SoS Systems
4) Select SoS Memories
5) Define SoS Users
6) Extend the OntoMBA Ontology
7) Interface Systems - Proxy Agents
8) Integrate Proactive Interfaces



The first key point we identified for developing an MBA SoS
is “Define SoS Goal.” This point is straightforward, meaning
that the SoS architect needs to define the goal that the SoS
intends to achieve.

After defining the SoS goal, the second point is “Define
SoS Functionalities.” In this key point, the architect defines
the SoS functionalities, i.e., the inter-system functionalities
constituents of the SoS can request and provide to each other,
needed to achieve the SoS goal.

Next, the “Select SoS Systems” intends to effectively select
the systems offering the SoS functionalities in practice.

The next activity is “Select SoS Memories.” If memories
are not among the selected systems, the architect is now invited
to do that for providing means for knowledge capitalization
and management during SoS operation.

The “Define SoS Users” defines the SoS users and their
roles when interacting and using the SoS. Usually, such users
operate constituent systems of the SoS. However, they could
also be users of the SoS domain operating external systems,
for instance, interfaces allowing them to request and receive
SoS information.

After that, in the “Extend OntoMBA Ontology” the archi-
tect takes the OntoMBA core ontology (Fig. 3), and extends
it according to the SoS being developed. Defining such an
ontology has several roles such as modeling the SoS domain
and the users of constituent systems, handling the semantics
of the communication protocol, and decoding interactions in
natural language. The goal of the OntoMBA is to be used
as a point of departure by SoS architects when developing
the ontologies of an MBA SoS. The extended ontology is the
global ontology of the SoS.

Fig. 3. The OntoMBA core ontology.

The next key point is “Interface Systems - Proxy Agents.”
In this point, the architect interfaces the systems selected
in “Select SoS Systems” and “Select SoS Memories,” with
proxy agents. The goal is to allow constituent systems to
exchange information and cooperate to achieve the SoS goal.
For interfacing the systems, we recommend the architect to
follow the steps shown in Fig. 4, namely:

• “Prepare System” to prepare the system (if needed). For
instance, it could be setting up tables in a relational

Fig. 4. The steps of the “Interface Systems - Proxy Agents” activity of the
GAMBAD method.

database.
• “Connect System - Proxy Agent” to connect systems

that are not memories with proxy agents. For instance,
depending on the API provided by a given system,
network standards can be used to connect it with its proxy
agent.

• “Connect Memory - Generic Interface” to connect mem-
ories with proxy agents focused on a generic memory
interface (see Section III-A).

• “Derive Proxy Agent Ontology” to derive an ontology
from the global SoS ontology for each proxy agent. The
goal of the proxy agent ontologies is to handle the seman-
tics of the work order, i.e., the MBA protocol (detailed
in Wanderley et al. [6]), and also to decode interactions
in natural language when optional user interfaces (see
Section III-A) are used. The proxy agent ontologies focus
on the idiosyncrasies of the systems they interface.

• “Store Global Ontology” to store the global ontology in
the proxy agents of memories. The goal is to keep the
global ontology within the SoS memories.

• “Define Skills” to define skills in the proxy agents for
handling the SoS functionalities requested and provided
by the systems connected to them. Such skills usually
contain work orders for requesting the SoS functionali-
ties.

If the SoS users defined in the “Define SoS Users” do
not require interfaces for interacting with the SoS, then the
architect can skip the next activity and the GAMBAD is
finished. Otherwise, the “Integrate Proactive Interfaces”
integrates proactive interfaces into the systems of SoS users for
supporting them, for instance, to request or receive information
from the SoS.

The proactive interfaces allow interaction in natural lan-
guage between SoS users and Personal Assistant (PA) agents.
Moreover, users can receive proactive and customized support
from their PAs. In such an approach, PAs follow a digital
butler approach (Negroponte [18]), and may have staff agents
in charge of more specialized services like keeping User
Models used for customized support. Currently, the MBA
framework provides two approaches for integrating proactive
interfaces, namely: (i) MBA Browser which is a system already
provided by the framework; and (ii) Augmented which means
that a given constituent system of an SoS is augmented, for
instance, with a window for allowing the interaction between
users and Personal Assistants. When integrating the interfaces,



Fig. 5. The steps of the “Integrate Proactive Interfaces” of the GAMBAD
method.

we recommend to follow the steps shown in Fig. 5, which are:
• “Augment System” to augment the user’s system for

creating a Personal Assistant (PA) interface, if chosen.
• “Use MBA Browser” to use MBA Browsers as the PA

interface, if chosen.
• “Connect Local Server” to connect a local server handled

by an agent (for MBA Browsers, if chosen) to the same
LAN (Local Area Network) of the proxy agent interfacing
the user’s constituent system. In the MBA approach, the
server is provided as part of the Browser system.

• “Connect PA and Staff” to connect a Personal Assistant
and staff agents to the proactive interface. The goal in this
step is to connect a PA and its staff agents to the same
LAN of the proxy agent interfacing the user’s constituent
system.

• “Define Skills” to define skills in the PA for handling the
message exchanged with its user, for instance, possible
requests and results for SoS functionalities related to the
system to which the PA is integrated.

• “Develop Dialogues” to develop the PA dialogues for
natural language interaction with the user of the system.
Usually, in an SoS the dialogues between the PA and the
user are related to the SoS functionalities the system can
request or provide (Wanderley et al. [16]).

• “Follow ProPA” to follow the ProPA (Proactive Personal
Assistant) method (Wanderley et al. [16]) which is a
method for adding proactive behavior to the interfaces,
if desired.

After performing the GAMBAD method, the output is an
SoS built in practice and supported by the MBA architecture.

IV. DISCUSSION

In this section we discuss the advantages and the disadvan-
tages of our GAMBAD method. First, we compare two SoS we
built, one without and the other using our method. After that,
we examine GAMBAD in contrast to the Gaia methodology.

A. Global Discussion

The guidelines provided by the GAMBAD method were the
result of lessons learned from the development of an SoS in
the domain of collaborative software development (Wanderley
et al. [5]). This means that such an SoS was built through the
MBA framework, but without using a clear sequence of steps
that are specified by GAMBAD.

To test and show the results of using the guidelines of
GAMBAD, we have used them for building a brand new MBA

SoS in the domain of Health Care (Wanderley et al. [3]).
Through such a new experience we have drawn a number of
conclusions.

Comparing to the software development SoS that was built
without the method, in the Health Care SoS we could have
been much more accurate when performing the tasks required
for the development. For instance, because we did not have a
clear sequence of steps to follow in the first SoS, we defined
the SoS global ontology at the wrong time, and thus we were
obliged to modify and update it many times during the SoS
development. On the other hand, for the second SoS (Health
Care) we did not experience such a problem, actually we
were careful to define the ontology at the correct time, which
allowed us to avoid redoing unnecessary tasks and wasting
time.

Moreover, when using GAMBAD we were much more
focused on the correct tasks at all times. For example, during
the development of the first SoS we tried to integrate proactive
interfaces at the same time we were still interfacing systems
with proxy agents. This was not a good idea because we
found proactive interfaces may rely on the skills of proxy
agents for sending and receiving work orders, or derive their
ontologies, i.e., User Models, from the proxy agents one. For
the Health Care SoS we did not suffer from such a problem,
as the guidelines prescribed to interface proxy agents before
integrating proactive interfaces.

Furthermore, the expansions of the guideline key points
“Interface Systems - Proxy agents” (Fig. 4) and “Integrate
Proactive Interfaces” (Fig. 5) were very helpful when de-
veloping the second SoS. Because the two key points are
complex, the fact of providing expansions showing their steps
in sequence has kept us on the right track focusing on the right
tasks to do.

However, the method we propose is specific for develop-
ing SoS using our MBA framework, which imposes some
restrictions, although the MBA framework is generic, meaning
that it can be used for building SoS independent of the target
domain. By building the Health Care SoS we also tested and
validated the generic feature of our framework. For adapting
the architecture of our framework from the collaborative
software development to the Health Care domain we only
needed to: (i) adapt ontologies; (ii) interface systems with
proxy agents; and (iii) integrate proactive interfaces, as an
option.

B. Comparison with the Gaia Methodology

Because the GAMBAD method is used to develop SoS
obeying the MBA framework that in turn has a key component
that are multi-agent systems (MAS), we briefly compare
GAMBAD with the well-known Gaia methodology (Zam-
bonelli et al. [7]) for designing MAS, referring to the revised
version of the Gaia methodology described by Zambonelli et
al.

In the Gaia methodology, the authors take the perspective of
using MAS as a software engineering paradigm, i.e., an agent-
oriented approach to software development for the analysis and



design of multi-agent systems. Gaia provides guidelines for
building an MAS through a process of organizational design.
The method begins after detailed requirements of the MAS
system. Gaia has two main phases: (i) analysis phase to collect
and organize the specifications of the agent environment,
roles and interactions; and (ii) a design phase that derives
agents, services, and acquaintance models describing the high-
level responsibilities of the organization. In both phases, the
architect describes and specifies a set of core abstractions
provided by the methodology.

Compared to GAMBAD, the Gaia methodology is situated
on a more abstract level, providing descriptions and models
of the components of the given MAS being designed. For
instance, the interaction between agents is described through
a very abstract model consisting of fields like inputs, outputs
or initiator. Moreover, Gaia does not provide models or
any specific support for inserting human users. Furthermore,
according to the authors, the output of Gaia is a set of agent
classes to be implemented and instantiated. Conversely, the
GAMBAD method focuses on a more concrete and practical
level. For instance, when building an SoS using GAMBAD,
an architect connects proxy agents with prospective systems
in practice. Also, when using our method the architect selects
the prospective SoS systems concretely. Moreover, the output
of the GAMBAD method is an actual SoS following the MBA
architecture. One of the results is that the interactions between
the components systems of an SoS are performed through a
well-defined protocol (work order), which provides syntactic
and semantic message exchanges. Moreover, the GAMBAD
method handles the integration of proactive interfaces for
supporting SoS users.

However, one could still ask what are the differences
between building an MAS system with Gaia, and an SoS
with GAMBAD as our approach develops the SoS on top of
an MAS layer. We can say that one of the most substantial
differences is that in a pure MAS (like the ones built with
Gaia), the agents are not capable of working in complete
isolation, i.e., they are part of an overall system and depend on
the cooperation with the other MAS agents, meaning that such
an approach does not fit the Maier’s operational independence
(Section I) feature of an SoS, which is handled by GAMBAD
by interfacing true independent systems with MBA proxy
agents.

V. CONCLUSION AND FUTURE WORK

In this paper we introduced an original method called GAM-
BAD for developing Systems of Systems. With GAMBAD we
aimed at supporting SoS architects with a clear and accurate
logical sequence of steps for building SoS from a practical
point of view. The GAMBAD method provides a path for
building SoS on top of a multi-agent layer, by using our MBA
(Memory-Broker-Agent) framework. Our results showed that
developing an SoS with the GAMBAD is much more accurate,
preventing architects from redoing tasks, thus saving time.

Currently, we are studying possible refinements in our
method to better support SoS architects, for instance, by

reducing the steps of the expansions (interfacing systems with
proxy agents, and integrating proactive interfaces).

ACKNOWLEDGMENT

Gregory Moro Puppi Wanderley would like to thank CNPq-
Brazil (grant 233137/2014-9) for its support in this research.

REFERENCES

[1] M. W. Maier, “Architecting principles for systems-of-systems,” INCOSE
International Symposium, vol. 6, no. 1, pp. 565–573, 1996. [Online].
Available: http://dx.doi.org/10.1002/j.2334-5837.1996.tb02054.x

[2] J. P. Olivier, S. Balestrini-Robinson, and S. Briceno, “Approach to
capability-based system-of-systems framework in support of naval ship
design,” in Systems Conference (SysCon), 2014 8th Annual IEEE. IEEE,
2014, pp. 388–395.

[3] G. M. P. Wanderley, É. Vandenbergh, M.-H. Abel, J.-P. A. Barthès,
M. Hainselin, H. Mouras, A. Lenglet, M. Tir, and L. Heurley, “CON-
SIGNELA: A multidisciplinary patient-centered project to improve
drug prescription comprehension and execution in elderly people and
parkinsonian patients,” Telematics and Informatics, 2017.

[4] C. B. Nielsen, P. G. Larsen, J. Fitzgerald, J. Woodcock, and J. Pe-
leska, “Systems of systems engineering: basic concepts, model-based
techniques, and research directions,” ACM Computing Surveys (CSUR),
vol. 48, no. 2, p. 18, 2015.

[5] G. M. P. Wanderley, M.-H. Abel, E. C. Paraiso, and J.-P. A. Barthès,
“MBA: A framework for building systems of systems,” in 2018 13th
Annual Conference on System of Systems Engineering (SoSE). IEEE,
2018, pp. 358–364.

[6] G. M. P. Wanderley, M.-H. Abel, E. C. Paraiso, and J.-P. A. Barthès,
“MBA: A system of systems architecture model for supporting collab-
orative work,” Computers in Industry, vol. 100, pp. 31–42, 2018.

[7] F. Zambonelli, N. R. Jennings, and M. Wooldridge, “Developing multi-
agent systems: The gaia methodology,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 12, no. 3, pp. 317–370,
2003.

[8] F. Oquendo, “Formally describing the software architecture of systems-
of-systems with sosadl,” in System of Systems Engineering Conference
(SoSE), 2016 11th. IEEE, 2016, pp. 1–6.

[9] S. Agarwal, L. E. Pape, C. H. Dagli, N. K. Ergin, D. Enke, A. Gosavi,
R. Qin, D. Konur, R. Wang, and R. D. Gottapu, “Flexible and intelli-
gent learning architectures for sos (fila-sos): Architectural evolution in
systems-of-systems,” Procedia Computer Science, vol. 44, pp. 76–85,
2015.

[10] C. Ingram, R. Payne, and J. Fitzgerald, “Architectural modelling patterns
for systems of systems,” in INCOSE International Symposium, vol. 25,
no. 1. Wiley Online Library, 2015, pp. 1177–1192.

[11] B. Ge, K. W. Hipel, K. Yang, and Y. Chen, “A novel executable modeling
approach for system-of-systems architecture,” IEEE Systems Journal,
vol. 8, no. 1, pp. 4–13, 2014.

[12] J. Hu, L. Huang, X. Chang, and B. Cao, “A model driven service
engineering approach to system of systems,” in Systems Conference
(SysCon), 2014 8th Annual IEEE. IEEE, 2014, pp. 136–145.

[13] P. Varga, F. Blomstedt, L. L. Ferreira, J. Eliasson, M. Johansson,
J. Delsing, and I. M. de Soria, “Making system of systems interoperable–
the core components of the arrowhead framework,” Journal of Network
and Computer Applications, vol. 81, pp. 85–95, 2017.

[14] H. Park, J. Tenenbaum, and R. Dove, “Agile infrastructure for manufac-
turing systems: A vision for transforming the us manufacturing base,”
in Proceedings of the Defense Manufacturing Conference, 1993.

[15] S. K. Gardikiotis, V. S. Lazarou, and N. Malevris, “Employing agents
towards database applications testing,” in Tools with Artificial Intelli-
gence, 2007. ICTAI 2007. 19th IEEE International Conference on, vol. 1.
IEEE, 2007, pp. 173–180.

[16] G. M. P. Wanderley, M.-H. Abel, and E. C. Paraiso, “Designing proactive
interfaces for cooperation using systems of systems,” in Computer
Supported Cooperative Work in Design (CSCWD), 2018 IEEE 22st
International Conference on. IEEE, 2018.

[17] R. G. Smith, “The contract net protocol: High-level communication
and control in a distributed problem solver,” IEEE Transactions on
computers, no. 12, pp. 1104–1113, 1980.

[18] N. Negroponte, Being digital. Vintage, 1996.


