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We revisit the problem of plane monochromatic waves impinging upon a Schwarzschild black hole from
complex angular momentum techniques. We focus more particularly on the differential scattering cross
sections associated with scalar and electromagnetic waves. We derive an exact representation of the
corresponding scattering amplitudes by replacing the discrete sum over integer values of the angular
momentum which defines their partial wave expansions by a background integral in the complex angular
momentum plane plus a sum over the Regge poles of the S-matrix involving the associated residues. We
show that, surprisingly, the background integral is numerically negligible for intermediate and high reduced
frequencies (i.e., in the short-wavelength regime) and, as a consequence, that the cross sections can be
reconstructed, for arbitrary scattering angles, in terms of Regge poles with very good agreement. We show
in particular that, for large values of the scattering angle, a small number of Regge poles permits us to
describe the black hole glory and that, by increasing the number of Regge poles, we can reconstruct very
efficiently the differential scattering cross sections for small and intermediate scattering angles and
therefore describe the orbiting oscillations. In fact, in this wavelength regime, the sum over Regge poles
allows us to extract by resummation the physical information encoded in the partial wave expansion
defining a scattering amplitude and, moreover, to overcome the difficulties linked to its lack of convergence
due to the long-range nature of the fields propagating on the black hole. As a consequence, from asymptotic
expressions for the lowest Regge poles and the associated residues based on the correspondence Regge
poles, “surface waves” propagating close to the photon sphere, we can provide an analytical approximation
describing with very good agreement both the black hole glory and a large part of the orbiting oscillations.
We finally discuss the role of the background integral for low reduced frequencies (i.e., in the long-
wavelength regime).

DOI: 10.1103/PhysRevD.99.104079

I. INTRODUCTION

Studies concerning the scattering of waves by black
holes (BHs) are mainly based on partial wave expansions
(see, e.g., Ref. [1]). This is due to the high degree of
symmetry of the BH spacetimes usually considered and
physically or astrophysically interesting. For example, the
Schwarzschild BH is a static spherically symmetric sol-
ution of the vacuum Einstein’s equations while the Kerr BH
is a stationary axisymmetric solution of these equations
with, as a consequence, the separability of wave equations
on these gravitational backgrounds (see, e.g., Ref. [2]).
Even if the approach based on partial wave expansions
is natural and very effective in the context of scattering
of waves by BHs, it presents some flaws. Due to the

long-range nature of the fields propagating on a BH, some
partial wave expansions encountered are formally divergent
(see, e.g., Ref. [1]) and, moreover, it is in general rather
difficult to interpret physically results described in terms of
partial wave expansions. These problems can be overcome
by using complex angular momentum (CAM) techniques
(analytic continuation of partial wave expansions in the
CAM plane, effective resummations involving the poles of
the S-matrix in the CAM plane, i.e., the so-called Regge
poles, and the associated residues, semiclassical interpre-
tations of Regge pole expansions, etc.). Such techniques,
which proved to be very helpful in quantum mechanics
(see, e.g., Refs. [3,4]), in electromagnetism and optics
(see, e.g., Refs. [4–8]), in acoustics and seismology (see,
e.g., Refs. [9,10]) and in high-energy physics (see, e.g.,
Refs. [11–14]) to describe and analyze resonant scattering
are now also used in the context of BH physics (see, e.g.,
Refs. [15–30]).

*folacci@univ-corse.fr
†med.ouldelhadj@gmail.com

PHYSICAL REVIEW D 99, 104079 (2019)

2470-0010=2019=99(10)=104079(21) 104079-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.104079&domain=pdf&date_stamp=2019-05-31
https://doi.org/10.1103/PhysRevD.99.104079
https://doi.org/10.1103/PhysRevD.99.104079
https://doi.org/10.1103/PhysRevD.99.104079
https://doi.org/10.1103/PhysRevD.99.104079


In this article we revisit the problem of plane mono-
chromatic waves impinging upon a Schwarzschild BH
from CAM techniques. More precisely, we focus on the
differential scattering cross sections associated with scalar
and electromagnetic waves. It should be recalled that the
partial wave expansions of these cross sections have been
obtained a long time ago by Matzner [31] for the
scalar field and by Mashhoon [32,33] and Fabbri [34]
for the electromagnetic field and that many additional
works have since been done which have theoretically
and numerically completed these first investigations (see,
e.g., Refs. [15,16,35–42] for some articles directly relevant
to our own study). It is furthermore worth noting that the
important case of the electromagnetic field is of funda-
mental interest with the emergence of multimessenger
astronomy as well as with the possibility to produce
experimentally BH images or, more precisely, to “photo-
graph” with the Event Horizon Telescope the shadow of
supermassive BHs [43–45]. Here, we construct an exact
representation of the scalar and electromagnetic scattering
cross sections by replacing the discrete sum over integer
values of the angular momentum which defines their partial
wave expansions by a background integral in the CAM
plane plus a sum over the Regge poles of the S-matrix
which involves the associated residues. Surprisingly, we
find that the background integral is numerically negligible
for intermediate and high reduced frequencies (i.e., in the
short-wavelength regime) and, as a consequence, that the
differential scattering cross sections can be described in
terms of Regge poles with very good agreement for
arbitrary scattering angles. In fact, in this wavelength
regime, the sum over Regge poles allows us to extract
by resummation the physical information encoded in the
partial wave expansion defining a differential scattering
cross section and, moreover, to overcome the difficulties
linked to its lack of convergence due to the long-range
nature of the fields propagating on the BH. We show in
particular that, for large values of the scattering angle, i.e.,
in the backward direction, a small number of Regge poles
permits us to describe the BH glory (see Refs. [16,37] for
semiclassical interpretations) and that, by increasing the
number of Regge poles, we can reconstruct very efficiently
the differential scattering cross sections for small and
intermediate scattering angles and therefore describe the
orbiting oscillations (see Refs. [16,38] for semiclassical
interpretations). We then take advantage of these numerical
results to derive an analytical approximation fitting both
the BH glory and a large part of the orbiting oscillations.
This is achieved by inserting in the Regge pole sums
asymptotic approximations for the lowest Regge poles and
the associated residues.
It is important to relate or compare our results with other

results previously obtained:
(1) Our work extends but also corrects the important

studies by Andersson and Thylwe [15,16] where we

can find the first application of CAM techniques in
BH physics. In Ref. [15], Andersson and Thylwe
have considered the scattering of scalar waves by a
Schwarzschild BH from a theoretical point of view
and adapted the CAM formalism to this problem.
They have established some properties of the Regge
poles and of the S-matrix in the CAM plane. In
Ref. [16], Andersson has used this formalism to
interpret semiclassically the BH glory and the
orbiting oscillations. He has, in particular, consid-
ered surface waves propagating close to the unstable
circular photon (graviton) orbit at r ¼ 3M, i.e., near
the so-called photon sphere, and associated them
with the Regge poles. However, it should be noted
that some of the analyses and comments we can find
in Ref. [16] are invalidated by the fact that the
residues numerically obtained are incorrect (see also
Ref. [18]). In our article, we obtain precise values for
the residues of a large number of Regge poles, thus
permitting us to draw solid conclusions from our
results. Furthermore, we show that the background
integral in the CAM plane is numerically negligible
for intermediate and high reduced frequencies.
Here, it is important to recall that, in Refs. [15,16],
Andersson and Thylwe tried to extract some physi-
cal information of this background integral and that,
in electromagnetism and optics [4–8] as well as in
acoustics and seismology [9,10]), it can be associ-
ated semiclassically (i.e., for high reduced frequen-
cies) with incident and reflected rays. In the context
of scattering by BHs (or, more precisely, if we focus
on differential scattering cross sections in the short-
wavelength regime), it plays only a minor role.

(2) We have developed Andersson’s point of view
concerning the surface waves propagating close to
the photon sphere in a series of papers establishing,
in particular, that the complex frequencies of the
weakly damped quasinormal modes (QNMs) are
Breit-Wigner-type resonances generated by these
surface waves. We have then been able to construct
semiclassically the spectrum of the QNM complex
frequencies from the Regge trajectories, i.e., from
the curves traced out in the CAM plane by the Regge
poles as a function of the frequency [17,19,29],
establishing on a “rigorous” basis the physically
intuitive interpretation of the Schwarzschild BH
QNMs suggested, as early as 1972, by Goebel
[46] (see Refs. [20–23] for the extension of these
results to other BHs and to massive fields). More-
over, from the Regge trajectories and the residues
of the greybody factors, we have described analyti-
cally the high-energy absorption cross section for a
wide class of BHs endowed with a photon sphere
and explained its oscillations in terms of the geo-
metrical characteristics (orbital period and Lyapunov
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exponent) of the null unstable geodesics lying on
the photon sphere [23–25]. All these results high-
light the interpretive power of CAM techniques in
BH physics.

(3) In order to derive analytical approximations which fit
both the BH glory and a large part of the orbiting
oscillations, we shall insert into the Regge pole sums
asymptotic expansions for the Regge poles and the
associated residues. In fact, such expansions which
are valid in the short-wavelength regime are physi-
cally connected with the excitation of the surface
waves previously mentioned and with diffractive
effects due to the Schwarzschild photon sphere
[16,17,19,21,22,47]. It is moreover important to recall
that glory scattering and orbiting scattering are
usually considered as two different effects and are
described analytically by two different semiclassical
analytic formulas (see Refs. [37,38] or Sec. 4.7.2 of
Ref. [2] for a concise presentation). Here, we prove
that it is possible from Regge pole sums to describe
analytically both phenomena in a unique formula.

Our paper is organized as follows. In Sec. II, by means
of the Sommerfeld-Watson transform [4–6] and Cauchy’s
residue theorem, we construct exact CAM representations
of the differential scattering cross sections for plane
scalar and electromagnetic waves impinging upon a
Schwarzschild BH from their partial wave expansions.
These CAM representations are split into a background
integral in the CAM plane and a sum over the Regge poles
of the S-matrix involving the associated residues. In
Sec. III, we obtain numerically, for various reduced
frequencies, the Regge poles of the S-matrix, the associated
residues and the background integral. This permits us to
reconstruct, for these particular frequencies of the imping-
ing waves, the differential scattering cross sections of the
BH and to show that, in the short-wavelength regime, they
can be described from the Regge pole sum alone with very
good agreement. We also discuss the role of the back-
ground integral for low reduced frequencies, i.e., in the
long-wavelength regime. In Sec. IV, by inserting into the
Regge pole sum asymptotic approximations for the lowest
Regge poles and the associated residues, we derive a
formula fitting both the BH glory and a large part of the
orbiting oscillations. In the Conclusion, we summarize our
main results and briefly consider possible extensions of our
work. In the Appendix, we discuss the numerical evaluation
of the background integrals. Due to the long-range nature
of the fields propagating on a Schwarzschild BH, these
integrals in the CAM plane (as the partial wave expansions)
suffer of a lack of convergence. We overcome this problem,
i.e., we accelerate their convergence, by extending to
integrals the iterative method developed in Ref. [48] for
partial wave expansions.
Throughout this article, we adopt units such that

G ¼ c ¼ 1. We furthermore consider that the exterior of

the Schwarzschild BH is defined by the line element
ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dθ2 þ r2sin2θdφ2 where
fðrÞ ¼ 1 − 2M=r and M is the mass of the BH while
t ∈� −∞;þ∞½, r ∈�2M;þ∞½, θ ∈ ½0; π� and φ ∈ ½0; 2π�
are the usual Schwarzschild coordinates. We finally assume
a time dependence expð−iωtÞ for the plane monochromatic
waves considered.

II. DIFFERENTIAL SCATTERING CROSS
SECTIONS FOR SCALAR AND

ELECTROMAGNETIC WAVES, THEIR CAM
REPRESENTATIONS AND THEIR REGGE

POLE APPROXIMATIONS

In this section, we recall the partial wave expansions of
the differential scattering cross sections for plane mono-
chromatic scalar and electromagnetic waves impinging
upon a Schwarzschild BH and we construct exact CAM
representations of these cross sections by means of the
Sommerfeld-Watson transform [4–6] and Cauchy’s theo-
rem. These CAM representations are split into a back-
ground integral in the CAM plane and a sum over the
Regge poles of the S-matrix involving the associated
residues.

A. Partial wave expansions of differential scattering
cross sections

We recall that, for the scalar field, the differential
scattering cross section is given by [31]

dσ
dΩ

¼ jfðω; θÞj2 ð1Þ

where

fðω; θÞ ¼ 1

2iω

X∞
l¼0

ð2lþ 1Þ½SlðωÞ − 1�Plðcos θÞ ð2Þ

denotes the scattering amplitude and that, for the electro-
magnetic field, the differential scattering cross section can
be written in the form [32,33] (see also Refs. [34,42])

dσ
dΩ

¼ jAðω; θÞj2 ð3Þ

where the scattering amplitude is given by

Aðω; θÞ ¼ DθBðω; θÞ ð4Þ

with

Bðω; θÞ ¼ 1

2iω

X∞
l¼1

ð2lþ 1Þ
lðlþ 1Þ ½SlðωÞ − 1�Plðcos θÞ ð5Þ

and
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Dθ ¼ −ð1þ cos θÞ d
d cos θ

�
ð1 − cos θÞ d

d cos θ

�
ð6aÞ

¼ −
�
d2

dθ2
þ 1

sin θ
d
dθ

�
: ð6bÞ

The expression (4)–(6) takes into account the two
polarizations of the electromagnetic field. In Eqs. (2)
and (5), the functions Plðcos θÞ are the Legendre poly-
nomials [49]. We also recall that the S-matrix elements
SlðωÞ appearing in Eqs. (2) and (5) can be defined from the
modes ϕin

ωl solutions of the homogenous Regge-Wheeler
equation

�
d2

dr2�
þ ω2 − VlðrÞ

�
ϕωl ¼ 0 ð7Þ

[here r� ¼ rþ 2M ln½r=ð2MÞ − 1� þ const denotes the
tortoise coordinate] where

VlðrÞ ¼
�
1 −

2M
r

��
lðlþ 1Þ

r2
þ ð1 − s2Þ 2M

r3

�
ð8Þ

(here s ¼ 0 corresponds to the scalar field and s ¼ 1 to the
electromagnetic field) which have a purely ingoing behav-
ior at the event horizon r ¼ 2M (i.e., for r� → −∞)

ϕin
ωlðrÞ ∼

r�→−∞
e−iωr� ð9aÞ

and, at spatial infinity r → þ∞ (i.e., for r� → þ∞), an
asymptotic behavior of the form

ϕin
ωlðrÞ ∼

r�→þ∞
Að−Þ
l ðωÞe−iωr� þ AðþÞ

l ðωÞeþiωr� : ð9bÞ

In this last equation, the coefficients Að−Þ
l ðωÞ and AðþÞ

l ðωÞ
are complex amplitudes and we have

SlðωÞ ¼ eiðlþ1Þπ A
ðþÞ
l ðωÞ

Að−Þ
l ðωÞ

: ð10Þ

B. CAM representation of the scattering amplitude
for scalar waves

1. Sommerfeld-Watson representation
of the scattering amplitude

By means of the Sommerfeld-Watson transformation
[4–6] which permits us to write

Xþ∞

l¼0

ð−1ÞlFðlÞ ¼ i
2

Z
C
dλ

Fðλ − 1=2Þ
cosðπλÞ ð11Þ

for a function F without any singularities on the real λ axis,
we can replace in Eq. (2) the discrete sum over the ordinary
angular momentum l by a contour integral in the complex λ
plane (i.e., in the complex l plane with λ ¼ lþ 1=2). By
noting that Plðcos θÞ ¼ ð−1ÞlPlð− cos θÞ, we obtain

fðω; θÞ ¼ 1

2ω

Z
C
dλ

λ

cosðπλÞ
× ½Sλ−1=2ðωÞ − 1�Pλ−1=2ð− cos θÞ: ð12Þ

In Eqs. (11) and (12), the integration contour encircles
counterclockwise the positive real axis of the complex λ
plane, i.e., we take C ¼� þ∞þ iϵ;þiϵ� ∪ ½þiϵ;−iϵ� ∪
½−iϵ;þ∞− iϵ½ with ϵ → 0þ (see Fig. 1). We can recover
)2 ) from (12) by using Cauchy’s theorem and by noting that
the poles of the integrand in (12) that are enclosed into C are
the zeros of cosðπλÞ, i.e., the semi-integers λ ¼ lþ 1=2
with l ∈ N. It should be recalled that, in Eq. (12), the
Legendre function of first kind Pλ−1=2ðzÞ denotes the
analytic extension of the Legendre polynomials PlðzÞ. It
is defined in terms of hypergeometric functions by [49]

Pλ−1=2ðzÞ ¼ F½1=2 − λ; 1=2þ λ; 1; ð1 − zÞ=2�: ð13Þ

In Eq. (12), Sλ−1=2ðωÞ denotes “the” analytic extension of
SlðωÞ. It is given by [see Eq. (10)]

FIG. 1. The integration contour C ¼ Cþ ∪ C− in the complex λ
plane. It defines the scattering amplitude (12) and its deforma-
tions permit us to collect, by using Cauchy’s theorem, the
contributions of the Regge poles λnðωÞ.
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Sλ−1=2ðωÞ ¼ eiðλþ1=2Þπ A
ðþÞ
λ−1=2ðωÞ

Að−Þ
λ−1=2ðωÞ

ð14Þ

where the complex amplitudes Að−Þ
λ−1=2ðωÞ and AðþÞ

λ−1=2ðωÞ are
defined from the analytic extension of the modes ϕin

ωl, i.e.,
from the function ϕin

ω;λ−1=2 solution of the problem (7)–(9)
where we now replace l by λ − 1=2. With the deformation
of the contour C in mind, it is important to note the
symmetry property

eiπλS−λ−1=2ðωÞ ¼ e−iπλSλ−1=2ðωÞ ð15Þ

of the S-matrix which can be easily obtained from its
definition (see also Ref. [15]).

2. Regge poles and associated residues

With the deformation of the contour C in mind, it is also
important to recall that the poles of Sλ−1=2ðωÞ in the
complex λ plane (i.e., the Regge poles) lie in the first
and third quadrants of this plane, symmetrically distributed
with respect to the origin O. The poles lying in the first
quadrant can be defined as the zeros λnðωÞ with n ¼
1; 2; 3;… of the coefficient Að−Þ

λ−1=2ðωÞ [see Eq. (14)]. They
therefore satisfy

Að−Þ
λnðωÞ−1=2ðωÞ ¼ 0: ð16Þ

In the following, the associated residues will play a central
role. We note that the residue of the matrix Sλ−1=2ðωÞ at the
pole λ ¼ λnðωÞ is defined by [see Eq. (14)]

rnðωÞ ¼ eiπ½λnðωÞþ1=2�
"
AðþÞ
λ−1=2ðωÞ

d
dλA

ð−Þ
λ−1=2ðωÞ

#
λ¼λnðωÞ

: ð17Þ

3. CAM representation of the scattering amplitude

We can now “deform” the contour C in Eq. (12) in order
to collect, by using Cauchy’s theorem, the contributions of
the Regge poles lying in the first quadrant of the CAM
plane (for more details, see, e.g., Ref. [4]). We consider that
C ¼ Cþ ∪ C− with Cþ ¼� þ∞þ iϵ;þiϵ� ∪ ½þiϵ; 0� and
C− ¼ ½0;−iϵ� ∪ ½−iϵ;þ∞− iϵ½ and we introduce the
closed contours Cþ ∪ ½0;þi∞½∪ C∞þ and C− ∪ C∞− ∪
½−i∞; 0� (see Fig. 1). Here, the integration paths C∞þ
and C∞− are quarter circles at infinity lying respectively in
the first and fourth quadrants of the complex λ plane.
We first use Cauchy’s residue theorem in connection

with the closed contour Cþ ∪ ½0;þi∞½∪ C∞þ. We obtain

Z
Cþ

dλ
λ

cosðπλÞ ½Sλ−1=2ðωÞ − 1�Pλ−1=2ð− cos θÞ

¼ −
Z þi∞

0

dλ
λ

cosðπλÞ ½Sλ−1=2ðωÞ − 1�Pλ−1=2ð− cos θÞ

− 2iπ
Xþ∞

n¼1

λnðωÞrnðωÞ
cos½πλnðωÞ�

PλnðωÞ−1=2ð− cos θÞ: ð18Þ

Here we have dropped the contribution coming from C∞þ
by noting that

λ

cosðπλÞ ½Sλ−1=2ðωÞ − 1�Pλ−1=2ð− cos θÞ ð19Þ

vanishes faster than 1=λ for jλj → þ∞ and Imλ > 0.
We then use Cauchy’s residue theorem in connection

with the closed contour C− ∪ C∞− ∪� − i∞; 0�. This must
be done with great caution because

λ

cosðπλÞ Sλ−1=2ðωÞPλ−1=2ð− cos θÞ ð20Þ

diverges for jλj → þ∞ and Imλ < 0 and, as a consequence,
taking into account the contribution coming from the
quarter circle C∞− is problematic. (It is interesting to note
that, in addition, this result forbids us to collect, in a simple
way, the Regge poles lying in the third quadrant of the
complex λ plane.) The difficulties encountered can be
partially bypassed by using the relation [49]

Qλ−1=2ðcos θ þ i0Þ ¼ π

2 cosðπλÞ ½Pλ−1=2ð− cos θÞ

− e−iπðλ−1=2ÞPλ−1=2ðþ cos θÞ� ð21Þ

where Qλ−1=2ðzÞ denotes the Legendre function of the
second kind. Indeed, it permits us to replace (20) by the
equivalent expression

λ

cosðπλÞ Sλ−1=2ðωÞe
−iπðλ−1=2ÞPλ−1=2ðþ cos θÞ

þ 2

π
λSλ−1=2ðωÞQλ−1=2ðcos θ þ i0Þ ð22Þ

where the first term vanishes faster than 1=λ for jλj → þ∞
and Imλ < 0. By moreover noting that

λ

cosðπλÞPλ−1=2ð− cos θÞ ð23Þ

vanishes faster than 1=λ for jλj → þ∞ and Imλ < 0, we
can write
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Z
C−

dλ
λ

cosðπλÞ ½Sλ−1=2ðωÞ − 1�Pλ−1=2ð− cos θÞ

¼
Z

0

−i∞
dλ

λ

cosðπλÞPλ−1=2ð− cos θÞ

þ 2

π

Z
C−

dλ λSλ−1=2ðωÞQλ−1=2ðcos θ þ i0Þ

−
Z

0

−i∞
dλ

λ

cosðπλÞ Sλ−1=2ðωÞ

× e−iπðλ−1=2ÞPλ−1=2ðþ cos θÞ: ð24Þ

We finally insert the results (18) and (24) into (12) and
by using (15) as well as the relation [49]

P−λ−1=2ðzÞ ¼ Pλ−1=2ðzÞ ð25Þ

we obtain

fðω; θÞ ¼ fBðω; θÞ þ fRPðω; θÞ ð26Þ

where

fBðω; θÞ ¼ fB;Reðω; θÞ þ fB;Imðω; θÞ ð27aÞ

with

fB;Reðω; θÞ ¼ 1

πω

Z
C−

dλ λSλ−1=2ðωÞQλ−1=2ðcos θ þ i0Þ

ð27bÞ

and

fB;Imðω; θÞ ¼ 1

πω

Z
0

þi∞
dλ λSλ−1=2ðωÞQλ−1=2ðcos θ þ i0Þ

ð27cÞ

is a background integral contribution and where

fRPðω; θÞ ¼ −
iπ
ω

Xþ∞

n¼1

λnðωÞrnðωÞ
cos½πλnðωÞ�

× PλnðωÞ−1=2ð− cos θÞ ð28Þ

is a sum over the Regge poles lying in the first quadrant
of the CAM plane. Of course, Eqs. (26)–(28) provide an
exact representation of the scattering amplitude fðω; θÞ for
the scalar field, equivalent to the initial partial wave
expansion (2). From this CAM representation, we can
extract the contribution fRPðω; θÞ given by (28) which, as a
sum over Regge poles, is only an approximation of fðω; θÞ,
and which provides us with an approximation of the
differential scattering cross section (1).

4. Remarks concerning the background integral

It is important to note that the path of integration defining
the background integral (27) is a continuous one running
down first the positive imaginary axis and then running
along C−, i.e., slightly below the positive real axis. But, in
fact, because the integrand in the right-hand side of (27b) is
regular, this second branch can be deformed in order to
coincide exactly with the positive real axis. As a conse-
quence, we can take for the path of integration defining
the background integral (27) the path � þ i∞; 0� ∪ ½0;þ∞½
(see Fig. 3) and we can replace (27b) by

fB;Reðω; θÞ ¼ 1

πω

Z þ∞

0

dλ λSλ−1=2ðωÞ

×Qλ−1=2ðcos θ þ i0Þ: ð29Þ

Moreover, with numerical calculations in mind, it is
interesting to remark that the function Qλ−1=2ðcos θ þ i0Þ
appearing in the integrand of the background integral can
be expressed in the alternative forms [49]

Qλ−1=2ðcos θ þ i0Þ ¼ Qλ−1=2ðcos θÞ
− i

π

2
Pλ−1=2ðcos θÞ ð30aÞ

and

Qλ−1=2ðcos θ þ i0Þ ¼ Γðλþ 1=2Þ
Γðλþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
π

2 sin θ

r
e−i½λθþπ=4�

× F½1=2; 1=2; λþ 1; ie−iθ=ð2 sin θÞ�:
ð30bÞ

C. CAM representation of the scattering amplitude
for electromagnetic waves

1. Sommerfeld-Watson representation
of the scattering amplitude

In order to obtain the CAM representation of the scatter-
ing amplitudes (4) and (5), we use the Sommerfeld-Watson
transformation in the form

Xþ∞

l¼1

ð−1ÞlFðlÞ ¼ i
2

Z
C0
dλ

Fðλ − 1=2Þ
cosðπλÞ : ð31Þ

Here C0 ¼� þ∞þ iϵ; 1þ iϵ� ∪ ½1þ iϵ; 1 − iϵ� ∪ ½1 − iϵ;
þ∞− iϵ½ with ϵ → 0þ because we must take into account
that the sum over l defining the scattering amplitude (5)
begins at l ¼ 1. We then obtain
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Bðω; θÞ ¼ 1

2ω

Z
C0
dλ

λ

ðλ2 − 1=4Þ cosðπλÞ
× ½Sλ−1=2ðωÞ − 1�Pλ−1=2ð− cos θÞ: ð32Þ

With the collect of Regge poles in mind, the contour C0 is
not as convenient as the contour C used in Sec. II B.

However, it is possible to move C0 to the left so that it
coincides with C but we then introduce a spurious double
pole at λ ¼ 1=2 (i.e., at l ¼ 0) corresponding to the term
1=½ðλ − 1=2Þ cosðπλÞ� (see Fig. 2). It is necessary to remove
the associated residue contribution and we obtain

Bðω; θÞ ¼ 1

2ω

�Z
C
dλ

λ

ðλ2 − 1=4Þ cosðπλÞ ½Sλ−1=2ðωÞ − 1�Pλ−1=2ð− cos θÞ

− 2iπ lim
λ→1=2

d
dλ

�
ðλ − 1=2Þ2 × λ

ðλ2 − 1=4Þ cosðπλÞ ½Sλ−1=2ðωÞ − 1�Pλ−1=2ð− cos θÞ
��

: ð33Þ

In this equation, the residue contribution can be explicitly
derived by using

�
d
dλ

Pλ−1=2ð−xÞ
�
λ¼1=2

¼ ln

�
1 − x
2

�
ð34Þ

which is a consequence of the definition (13) and by noting
that, for the electromagnetic field, we have formally
S0ðωÞ ¼ 0 [see Eqs. (7)–(9)]. We can then write

Bðω; θÞ ¼ 1

2ω

Z
C
dλ

λ

ðλ2 − 1=4Þ cosðπλÞ ½Sλ−1=2ðωÞ − 1�

× Pλ−1=2ð− cos θÞ

−
i
2ω

ln

�
1

2
ð1 − cos θÞ

�
þ terms independent of θ: ð35Þ

By now noting that

Dθ

�
ln
�
1

2
ð1 − cos θÞ

��
¼ 0 ð36Þ

we finally obtain

Bðω; θÞ ¼ 1

2ω

Z
C
dλ

λ

ðλ2 − 1=4Þ cosðπλÞ
× ½Sλ−1=2ðωÞ − 1�Pλ−1=2ð− cos θÞ: ð37Þ

Here we have dropped terms which do not contribute to the
scattering amplitude Aðω; θÞ.

2. CAM representation of the scattering amplitude

We now deform the contour C in Eq. (37) in order to
collect, by using Cauchy’s residue theorem, the Regge pole
contributions. This is achieved by following, mutatis
mutandis, the approach of Sec. II B. We then obtain

Aðω; θÞ ¼ ABðω; θÞ þ ARPðω; θÞ ð38Þ

where

ABðω; θÞ ¼ AB;Reðω; θÞ þ AB;Imðω; θÞ ð39aÞ

with

AB;Reðω; θÞ ¼ Dθ

�
1

πω

Z
C−

dλ
λ

λ2 − 1=4
Sλ−1=2ðωÞ

×Qλ−1=2ðcos θ þ i0Þ
�

ð39bÞ

and

AB;Imðω; θÞ ¼ Dθ

�
1

πω

Z
0

þi∞
dλ

λ

λ2 − 1=4
Sλ−1=2ðωÞ

×Qλ−1=2ðcos θ þ i0Þ
�

ð39cÞ
FIG. 2. Integration contours in the CAM plane: C0 is associated
with the scattering amplitude (32) and C with the scattering
amplitude (33).
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is a background integral contribution and where

ARPðω; θÞ ¼ Dθ

�
−
iπ
ω

Xþ∞

n¼1

λnðωÞrnðωÞ
½λnðωÞ2 − 1=4� cos½πλnðωÞ�

× PλnðωÞ−1=2ð− cos θÞ
�

ð40Þ

is a sum over the Regge poles of the S-matrix lying in the
first quadrant of the CAM plane involving the associated
residues.
It is worth pointing out that, as for the scalar theory, we

can take for the path of integration defining the background
integral (39) the path � þ i∞; 0� ∪ ½0;þ∞½ depicted in
Fig. 3. Indeed, because the integrand in the right-
hand side of (39b) is regular [note that the divergence of
1=ðλ − 1=2Þ for λ ¼ 1=2 is compensated by the vanishing
of Sλ−1=2ðωÞ], the path C− can be deformed in order to
coincide exactly with the positive real axis.

III. RECONSTRUCTION OF DIFFERENTIAL
SCATTERING CROSS SECTIONS

FROM REGGE POLE SUMS

In this section, we compare numerically the partial wave
expansions of the differential scattering cross sections with
their CAM representations or, more precisely, with their
Regge pole approximations in order to highlight the
benefits of working with Regge pole sums.

A. Computational methods

In order to construct numerically the scattering ampli-
tudes (2) and (4), the background integrals (27b), (27c),
(39b) and (39c) as well as the Regge pole sums (28)
and (40), it is necessary:
(1) To solve the problem (7)–(9) permitting us to obtain

the function ϕin
ω;lðrÞ, the coefficients Að−Þ

l ðωÞ and

AðþÞ
l ðωÞ and the S-matrix elements SlðωÞ. This must

be achieved (i) for l ∈ N and ω > 0 as well as
(ii) for l ¼ λ − 1=2 ∈ C and ω > 0.

(2) To determine for ω > 0 the Regge poles λnðωÞ, i.e.,
the solutions of (16) and to obtain the corresponding
residues (17).

All these numerical results can be obtained by using,
mutatis mutandis, the methods that have permitted us to
provide in Ref. [29] a description of gravitational radiation
from BHs based on CAM techniques (see, in particular,
Secs. III B and IVA of this previous paper). It is moreover
important to note that, due to the long-range nature of the
fields propagating on a Schwarzschild BH, the scattering
amplitudes (2) and (4) and the background integrals (27b)
and (39b) suffer a lack of convergence [this is not the
case for the background integrals (27c) and (39c) because
their integrands vanish exponentially as λ → þi∞]. In the
Appendix, we explain how to overcome this problem, i.e.,
how to accelerate their convergence by employing an
iterative method, the number of iterations being chosen
to obtain stable numerical results. It should be noted that
we have performed all the numerical calculations by using
MATHEMATICA [50].

B. Results and comments

In Figs. 4–9, we focus on the scalar field and we compare
the differential scattering cross section (1) constructed
from the partial wave expansion (2) with its Regge pole
approximation obtained from the Regge pole sum (28). In
Figs. 10–15 we focus on the electromagnetic field and we
compare the differential scattering cross section (3) con-
structed from the partial wave expansion (4)–(6) with its
Regge pole approximation obtained from the Regge pole
sum (40). The comparisons are achieved for the reduced
frequencies 2Mω ¼ 0.1, 0.3, 0.6, 1, 3 and 6 and, for these
frequencies, we have displayed the lowest Regge poles and
the associated residues in Table I (for the scalar field) and in
Table II (for the electromagnetic field). The higher Regge
poles and their residues that have been necessary to obtain
some of the results displayed in Figs. 4–15 are available
upon request from the authors.
In Figs. 6–9 and 12–15, we display the results obtained

for intermediate and high reduced frequencies (here, we
consider the reduced frequencies 2Mω ¼ 0.6, 1, 3 and 6).
We can observe that, in the “short”-wavelength regime, the
Regge pole approximation involving a small number of
Regge poles permits us to describe very well the cross
sections for intermediate and large values of the scattering
angle and, in particular, the BH glory. Taking into account
additional Regge poles improves the Regge pole approxi-
mation and we can see that, by summing over a large
number of Regge poles, the whole scattering cross section
is impressively described, this being valid even for small
scattering angles.
It is important to note that, for “high” reduced frequen-

cies, it is not necessary to take into account the background
integrals in order to reproduce the differential scattering
cross sections. In fact, we can numerically obtain these

FIG. 3. The path of integration in the complex λ plane which
defines the background integrals (27) and (39).
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FIG. 5. The scalar cross section of a Schwarzschild BH for 2Mω ¼ 0.3, its Regge pole approximation and the background integral
contribution.

FIG. 4. The scalar cross section of a Schwarzschild BH for 2Mω ¼ 0.1, its Regge pole approximation and the background integral
contribution.
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contributions and observe that they are completely negli-
gible for intermediate and large scattering angles. It seems
they begin to play a role only for small angles. In Table III,

we have considered, for the electromagnetic field at
2Mω ¼ 1, the various contributions to the CAM represen-
tation (38). We can see that, for the scattering angles

FIG. 7. The scalar cross section of a Schwarzschild BH for 2Mω ¼ 1 and its Regge pole approximation.

FIG. 6. The scalar cross section of a Schwarzschild BH for 2Mω ¼ 0.6 and its Regge pole approximation.
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FIG. 9. The scalar cross section of a Schwarzschild BH for 2Mω ¼ 6 and its Regge pole approximation.

FIG. 8. The scalar cross section of a Schwarzschild BH for 2Mω ¼ 3 and its Regge pole approximation.
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FIG. 11. The electromagnetic cross section of a Schwarzschild BH for 2Mω ¼ 0.3, its Regge pole approximation and the background
integral contribution.

FIG. 10. The electromagnetic cross section of a Schwarzschild BH for 2Mω ¼ 0.1, its Regge pole approximation and the background
integral contribution.
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θ ¼ 15° and θ ¼ 20°, the background integrals, although
not completely negligible, play a minor role. It would be
interesting to check if this remains valid even for scattering

angles θ ≪ 1=ð2MωÞ but, due to numerical instabilities
when θ → 0, we are not currently able to provide such a
result.

FIG. 13. The electromagnetic cross section of a Schwarzschild BH for 2Mω ¼ 1 and its Regge pole approximation.

FIG. 12. The electromagnetic cross section of a Schwarzschild BH for 2Mω ¼ 0.6 and its Regge pole approximation.
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FIG. 15. The electromagnetic cross section of a Schwarzschild BH for 2Mω ¼ 6 and its Regge pole approximation.

FIG. 14. The electromagnetic cross section of a Schwarzschild BH for 2Mω ¼ 3 and its Regge pole approximation.
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TABLE I. The lowest Regge poles λnðωÞ for the scalar field and
the associated residues rnðωÞ. We assume 2M ¼ 1.

n ω λnðωÞ rnðωÞ
1 0.1 0.299705þ 0.532035i 0.110788 − 0.088226i

0.3 0.768159þ 0.531039i 0.229999 − 0.159051i
0.6 1.543385þ 0.511888i 0.389142 − 0.125974i
1 2.586845þ 0.504736i 0.527572þ 0.019732i
3 7.790118þ 0.500553i −0.136670þ 0.901886i
6 15.586384þ 0.500139i −0.594258 − 1.144512i

2 0.1 0.495889þ 1.176250i 0.099116 − 0.087234i
0.3 0.976977þ 1.364123i 0.119559 − 0.228260i
0.6 1.695146þ 1.448184i 0.181312 − 0.487058i
1 2.688355þ 1.479587i 0.447998 − 0.888968i
3 7.825611þ 1.497769i 4.596565þ 1.422003i
6 15.604187þ 1.499447i −12.419829þ 5.305460i

3 0.1 0.650192þ 1.778513i 0.087664 − 0.087739i
0.3 1.164769þ 2.098578i 0.056734 − 0.236550i
0.6 1.878969þ 2.288202i −0.078148 − 0.527337i
1 2.843093þ 2.391435i −0.357084 − 1.170498i
3 7.893803þ 2.484084i 7.751902 − 10.715411i
6 15.639426þ 2.495896i 16.758993þ 69.494273i

4 0.1 0.788665þ 2.349868i 0.079894 − 0.087791i
0.3 1.339372þ 2.783917i 0.016812 − 0.232342i
0.6 2.065320þ 3.068702i −0.245770 − 0.466956i
1 3.018870þ 3.248630i −0.987253 − 0.88251i
3 7.990039þ 3.454396i −11.471634 − 23.211359i
6 15.691407þ 3.487740i 256.923913þ 5.083667i

5 0.1 0.917562þ 2.899702i 0.074199 − 0.087641i
0.3 1.504128þ 3.437384i −0.011069 − 0.224974i
0.6 2.248056þ 3.809074i −0.348103 − 0.384562i
1 3.201835þ 4.063591i −1.301089 − 0.421317i
3 8.109029þ 4.405790i −40.72701 − 6.755946i
6 15.759163þ 4.473447i 251.611779 − 664.675235i

6 0.1 1.039655þ 3.433425i 0.069763 − 0.087418i
0.3 1.661166þ 4.067794i −0.031853 − 0.216897i
0.6 2.425852þ 4.520191i −0.410128 − 0.302558i
1 3.386161þ 4.845810i −1.384667þ 0.028934i
3 8.245770þ 5.337166i −45.341516þ 35.668449i
6 15.841536þ 5.451746i −1147.818563 − 1147.131306i

7 0.1 1.156528þ 3.954439i 0.066156 − 0.087170i
0.3 1.811951þ 4.680400i −0.048060 − 0.208882i
0.6 2.598670þ 5.208747i −0.446908 − 0.227138i
1 3.569316þ 5.602015i −1.328185þ 0.409299i
3 8.396000þ 6.248658i −12.517767þ 72.751731i
6 15.937250þ 6.421641i −3071.847422þ 904.87469i

8 0.1 1.269207þ 4.465047i 0.063133 − 0.086918i
0.3 1.957532þ 5.278644i −0.061116 − 0.201188i
0.6 2.766835þ 5.879184i −0.467343 − 0.159566i
1 3.750196þ 6.337011i −1.193204þ 0.709887i
3 8.556293þ 7.141111i 41.280909þ 78.754435i
6 16.044990þ 7.382406i −1576.690323þ 5414.570984i

9 0.1 1.378403þ 4.966897i 0.060539 − 0.086669i
0.3 2.098692þ 5.864936i −0.071892 − 0.193894i
0.6 2.930753þ 6.534615i −0.476862 − 0.099550i
1 3.928352þ 7.054311i −1.017928þ 0.937403i
3 8.723992þ 8.015714i 89.972545þ 49.380751i
6 16.163453þ 8.333555i 5509.049968þ 7209.509940i

TABLE II. The lowest Regge poles λnðωÞ for the electromag-
netic field and the associated residues rnðωÞ. We assume 2M ¼ 1.

n ω λnðωÞ rnðωÞ
1 0.1 0.610235þ 0.1857157i 0.141533þ 0.042574i

0.3 1.022046þ 0.3598438i 0.261310 − 0.042212i
0.6 1.719903þ 0.4428220i 0.383610 − 0.048683i
1 2.705358þ 0.475454i 0.508191þ 0.067329i
3 7.832474þ 0.496948i −0.159996þ 0.894283i
6 15.607716þ 0.499228i −0.578675 − 1.150971i

2 0.1 0.525188þ 1.002194i 0.125937 − 0.097912i
0.3 1.041088þ 1.218701i 0.159661 − 0.245504i
0.6 1.778902þ 1.346966i 0.242164 − 0.499689i
1 2.769262þ 1.419171i 0.526456 − 0.877988i
3 7.865654þ 1.487542i 4.568657þ 1.545802i
6 15.62521þ 1.496753i −12.494555þ 5.146258i

3 0.1 0.662252þ 1.674293i 0.095812 − 0.093134i
0.3 1.190599þ 2.002822i 0.065892 − 0.251733i
0.6 1.919344þ 2.206835i −0.064979 − 0.560444i
1 2.892291þ 2.330093i −0.325379 − 1.231546i
3 7.929898þ 2.468721i 8.065346 − 10.612212i
6 15.65986þ 2.491532i 15.910509þ 69.844271i

4 0.1 0.795653þ 2.274956i 0.083712 − 0.091011i
0.3 1.353709þ 2.713393i 0.018874 − 0.241698i
0.6 2.088487þ 3.004734i −0.250327 − 0.488373i
1 3.049989þ 3.194709i −1.005893 − 0.931457i
3 8.021481þ 3.435669i −11.138536 − 23.703501i
6 15.711016þ 3.481878i 257.725106þ 8.206397i

5 0.1 0.922279þ 2.841097i 0.076365 − 0.089785i
0.3 1.513455þ 3.381624i −0.011075 − 0.231005i
0.6 2.263145þ 3.757064i −0.356562 − 0.396595i
1 3.22292þ 4.017259i −1.333866 − 0.443471i
3 8.135861þ 4.385262i −41.163827 − 7.491406i
6 15.77777þ 4.466296i 260.251292 − 664.857185i

6 0.1 1.043127þ 3.385241i 0.071135 − 0.088951i
0.3 1.667826þ 4.021677i −0.032532 − 0.221005i
0.6 2.436547þ 4.476543i −0.418506 − 0.308999i
1 3.401342þ 4.805736i −1.41496þ 0.025197i
3 8.268455þ 5.315989i −46.408075þ 35.620183i
6 15.859025þ 5.443533i −1142.290033 − 1165.297141i

7 0.1 1.159231þ 3.913502i 0.067092 − 0.088324i
0.3 1.817004þ 4.641067i −0.048946 − 0.211809i
0.6 2.606707þ 5.171198i −0.454210 − 0.230350i
1 3.580784þ 5.566912i −1.351547þ 0.415443i
3 8.41515þ 6.227581i −13.342348þ 73.643709i
6 15.953564þ 6.412592i −3099.407958þ 881.950573i

8 0.1 1.271395þ 4.429445i 0.063805 − 0.087819i
0.3 1.961534þ 5.244345i −0.062033 − 0.203348i
0.6 2.773137þ 5.846253i −0.473449 − 0.160898i
1 3.759191þ 6.305865i −1.209644þ 0.720509i
3 8.572514þ 7.120576i 41.311379þ 80.054461i
6 16.060119þ 7.372728i −1632.012756þ 5438.076537i

9 0.1 1.380226þ 4.935390i 0.061041 − 0.087394i
0.3 2.101964þ 5.834520i −0.072774 − 0.195533i
0.6 2.935855þ 6.505296i −0.481896 − 0.099774i
1 3.935619þ 7.026361i −1.028681þ 0.949498i
3 8.737816þ 7.995955i 90.843271þ 50.395101i
6 16.177423þ 8.323434i 5495.804514þ 7300.293176i
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In Figs. 4, 5, 10 and 11, we focus on the results obtained
for low reduced frequencies (here, we consider the reduced
frequencies 2Mω ¼ 0.1 and 0.3). We can observe that, in
the long-wavelength regime, the Regge pole approxima-
tions (28) and (40) alone do not permit us to reconstruct the
differential scattering cross sections but that this can be
achieved by taking into account the background integral
contributions (27) and (39).

IV. BH GLORY AND ORBITING OSCILLATIONS

In this section, we provide an analytical description of
both the glory and orbiting cross sections based on the
Regge pole sums (28) and (40). This is achieved by
inserting in these sums analytical approximations for the
lowest Regge poles and the associated residues. These
approximations are obtained by assuming that, at large
reduced frequencies 2Mω, the lowest Regge poles are in a
one-to-one correspondence with surface waves propagating
close to the unstable circular photon (graviton) orbit at
r ¼ 3M, i.e., near the Schwarzschild photon sphere
[17,19,21,47].

A. Remarks concerning backward glory scattering
and orbiting scattering

It is well known that, for intermediate and high reduced
frequencies, two interesting structures which are associated
“classically and/or semiclassically” with backward glory
scattering and orbiting scattering can be observed in the
plots of BH cross sections (see, e.g., Ref. [1] or Chap. 4 of
Ref. [2] and references therein). Roughly speaking, we can
consider that glory scattering explains the behavior of the
cross section in the backward direction, i.e., for scattering
angles θ ≈ π and that orbiting scattering permits us to
understand the oscillations arising for “intermediate” scat-
tering angles. A pioneering analysis, in the context of BH
physics, of these two phenomena, can be found in an article
by Handler and Matzner [51]. It is based on ideas
developed by Ford and Wheeler in their semiclassically
study of quantum mechanical scattering [52]. A deeper
analysis based on path integration has been carried out by
DeWitt-Morette and co-workers [37,38] leading to semi-
classical analytic formulas.

In Ref. [37], the authors have established that, for a
Schwarzschild BH, the glory scattering cross section of
massless waves of spin s can be approximated by

dσ
dΩ

				
glory

¼ 30.752M3ω½J2sð5.357Mω sin θÞ�2; ð41Þ

a formula which is formally valid for 2Mω ≫ 1 and
jθ − πj ≪ 1. Here, J2s is a Bessel function of the first
kind. It should be noted that (41) encodes only the
contribution of the first backward glory and that the
numerical factors appearing in this approximation are those
obtained in Ref. [53]. It is moreover interesting to recall
that, in Ref. [38], the authors have proposed a formula
which roughly describes the orbiting oscillations of the
scalar cross section. In our opinion, we cannot be satisfied
with that formula. Indeed, it involves two free parameters
which must be adjusted and, even if this job is done
effectively, it does not permit us to reproduce with good
agreement the exact result (see Fig. 9 of Ref. [38]).

B. Analytical Regge pole approximations
of scattering amplitudes

As we shall see, it is possible from Regge pole sums to
describe analytically both phenomena, i.e., to establish a
unique formula which fits the glory and orbiting cross
sections. At first sight, this is rather surprising because, in
the geometrical-optics limit (i.e., if we only focus on the
concepts of geodesic and bundle of geometrical rays), the
two phenomena are very different in that they are associated
with very different mathematical behavior of the deflection
function [37,38,51,52]. But, here, we must not be too
obsessed by classical results. Indeed, we are working in the
framework of wave physics and it is tempting to consider
that the glory and orbiting effects are not fundamentally
different insofar as they are both generated by the excitation
of surface waves propagating close to the BH photon
sphere. By using the Regge pole approach of BH physics,
we can take into account these diffractive effects due to the
Schwarzschild photon sphere [16,17,19,21,22] and derive
asymptotic expansions for the Regge poles and the asso-
ciated residues.

TABLE III. We compare, for the electromagnetic field at ω ¼ 1 (2M ¼ 1), the exact value of the scattering
amplitude (4) with the sum over Regge poles (40) and we highlight the minor role of the background integral
contributions (39b) and (39a).

Electromagnetic field at ω ¼ 1 (2M ¼ 1) θ ¼ 15° θ ¼ 20°

jAðω; θÞj2 1023.0681 335.2717
jARPðω; θÞj2 (n ¼ 1;…; 60) 1025.5432 335.8305
jARPðω; θÞj2 (n ¼ 1;…; 90) 1025.4676 335.8343
jAB;Reðω; θÞ þ ARPðω; θÞj2 (n ¼ 1;…; 90) 1023.0754 335.2743
jABðω; θÞ þ ARPðω; θÞj2 (n ¼ 1;…; 90) 1023.0762 335.2718

ANTOINE FOLACCI and MOHAMED OULD EL HADJ PHYS. REV. D 99, 104079 (2019)

104079-16



Analytical expressions for the lowest Regge poles of the
Schwarzschild BH have been obtained in Ref. [19]. This
has been achieved by using a third-order WKB approxi-
mation to solve the Regge-Wheeler equation (7) and (8) or,
more precisely, by extending to Regge poles the approach
developed in the context of the determination of the QNMs
by Schutz and Will [54] and by Iyer and Will [55,56]. It
should be noted that it is possible to go beyond the third-
order WKB approximation (see Refs. [21,23]) but here we
will not need these improved results. In fact, we shall only
consider that, at large 2Mω, the lowest Regge poles closely
adhere to the asymptotic form

λnðωÞ ≈ 3
ffiffiffi
3

p
Mωþ iðn − 1=2Þ þ

ffiffiffi
3

p
an

18Mω
ð42Þ

[here we have neglected the terms of order 1=ð2MωÞ2
derived in Ref. [19] ] where

an ¼
2

3

�
5

12
ðn − 1=2Þ2 þ 115

144
− 1þ s2

�
: ð43Þ

It is moreover possible to obtain an analytical expression
for the residues associated with the lowest Regge poles of
the Schwarzschild BH. By extending to Regge poles the
calculations which have permitted Dolan and Ottewill to

derive an analytical expression for the QNM excitation
factors [57], we have obtained [47]

rnðωÞ ≈
½−i216ð3 ffiffiffi

3
p

MωÞ=ξ�n−1=2ffiffiffiffiffiffi
2π

p ðn − 1Þ! ei2MωyeiπλnðωÞ ð44Þ

where

ξ ¼ 7þ 4
ffiffiffi
3

p
and y ¼ 3 − 3

ffiffiffi
3

p
þ 4 ln 2 − 3 ln ξ: ð45Þ

By inserting now the approximations (42) and (43) for
the Regge poles and (44) and (45) for the residues into the
Regge pole sum (28) for the scalar field and into the Regge
pole sum (40) for the electromagnetic field, we have at our
disposal analytical approximations for the scattering cross
sections associated with these two fields which are formally
valid for 2Mω → þ∞. It should be however noted that the
Regge pole sums considered can only involve a small
number of terms because the approximations (42) and (44)
are accurate only for the lowest Regge poles. As a
consequence, from a theoretical point of view, our ana-
lytical Regge pole approximations cannot describe the
cross sections for small scattering angles.

FIG. 16. The scalar cross section of a Schwarzschild BH for
2Mω ¼ 3 and 2Mω ¼ 6. We compare the exact result with the
glory formula and with that obtained from the analytical Regge
pole approximation.

FIG. 17. The electromagnetic cross section of a Schwarzschild
BH for 2Mω ¼ 3 and 2Mω ¼ 6. We compare the exact result
with the glory formula and with that obtained from the analytical
Regge pole approximation.
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C. Results and comments

In Figs. 16 and 17, we complete our study of Sec. III B
by now comparing the exact scattering cross sections with
their analytical approximations constructed in Sec. IV B.
The comparisons are achieved for the reduced frequencies
2Mω ¼ 3 and 6 and the summations are over the first five
Regge poles. We can observe that the analytical Regge pole
approximations permit us to reproduce with very good
agreement both the glory cross section and a large part of
the orbiting cross section. It is moreover surprising to note
that, by considering analytical Regge pole sums involving a
large number of terms, we are able to describe the cross
sections in a wide range of scattering angles despite the
inaccuracy of the approximations (42) and (44) for the
higher Regge poles (see Fig. 18 where we have considered
the case of the scalar field at 2Mω ¼ 6).

V. CONCLUSION

In this article, we have considered the scattering of scalar
and electromagnetic waves by a Schwarzschild BH by
focusing on the associated differential scattering cross
sections and we have shown that, for intermediate and
high reduced frequencies, these cross sections can be
reconstructed in terms of Regge poles with great precision.
This is really surprising and certainly due to the fact that
BHs are very particular physical objects. Indeed, in
quantum mechanics [3,4], electromagnetism and optics
[4–8] and acoustics [9], background integral contributions
are never negligible (this remains true regardless of the
frequency) and, as a consequence, a Regge pole sum alone
does not permit us to reproduce a differential scattering
cross section. In the context of scattering of scalar and
electromagnetic waves by a Schwarzschild BH, we have
observed that it is necessary to take into account

background integral contributions only for low reduced
frequencies.
In the short-wavelength regime, from Regge pole sums

we have also been able to describe numerically, with an
impressive agreement, the BH glory occurring in the
backward direction as well as the orbiting oscillations
appearing on the differential scattering cross sections for
small and intermediate scattering angles. Moreover, it is
important to note that working with Regge pole sums has
permitted us to overcome the difficulties linked to the lack
of convergence of the partial wave expansions defining the
cross sections which are due to the long-range nature of the
fields propagating on a Schwarzschild background.
Finally, taking into account the fact that, in the short-

wavelength regime, a Regge pole sum encodes the physical
information hidden into the partial wave expansion defin-
ing a differential scattering cross section, we have derived
an analytical approximation fitting both the BH glory and a
large part of the orbiting oscillations. This has been
achieved by inserting into the Regge pole sum asymptotic
approximations for the lowest Regge poles and the asso-
ciated residues. In our opinion, our analytical approxima-
tion is far superior to existing formulas [37,38].
We hope in next works to extend our study to scattering

of gravitational waves by a Schwarzschild BH as well as to
scattering of waves by a Kerr BH (see Refs. [40,41,51,
58–60] for articles concerning these two topics and which
could serve as departure points for such works).
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APPENDIX: ITERATIVE METHOD TO
ACCELERATE THE CONVERGENCE OF

BACKGROUND INTEGRALS

Due to the long-range nature of the fields propagating
on a Schwarzschild BH, the background integrals (27b)
and (39b) suffer of a lack of convergence. In this Appendix
we explain how to overcome this problem, i.e., how to
accelerate their convergence. In fact, the same problem
occurs for the partial wave expansions (2), (5) and (4) (see,
e.g., Refs. [38] where the case of the scalar field is
discussed). For these partial wave expansions, the con-
vergence can be obtained by employing an iterative method
introduced a long time ago in the context of Coulomb
scattering by Yennie et al. [48] [see also Refs. [41,42]
where this method is used in the context of scattering by
BHs and see, e.g., Ref. [38] for another approach based on
the truncation of partial wave expansions and on the
matching of the Schwarzschild S-matrix elements SlðωÞ

FIG. 18. The scalar cross section of a Schwarzschild BH for
2Mω ¼ 6. We compare the exact result with the glory formula
and with that obtained from the analytical Regge pole approxi-
mation where we sum over a large number of terms despite the
inaccuracy of the approximations (42) and (44) for the higher
Regge poles.
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with the Newtonian ones]. In this Appendix, we briefly
recall this iterative method because we use it in Sec. III in
order to accelerate the convergence of the partial wave
expansions (2) and (5) and we generalize it in order to deal
with the background integrals (27b) and (39b).

1. Acceleration of the convergence
of partial wave expansions

In order to improve the convergence of the partial wave
expansion

αðθÞ ¼
X∞
l¼0

alPlðcos θÞ ðA1Þ

[see Eqs. (2) and (5)] we introduce the associated “reduced”
series [48]

α̃ðnÞðθÞ ¼
X∞
l¼0

ãðnÞl Plðcos θÞ ðA2Þ

defined by

αðθÞ ¼ ð1 − cos θÞ−nα̃ðθÞ: ðA3Þ

It should be noted that, by reexpressing the series (A1)
in the form (A3), we isolate the pathological behavior of
the partial wave expansions (2) and (5) occurring for θ → 0.
By using now the recursion relation [49]

ðlþ 1ÞPlþ1ðcos θÞ − ð2lþ 1Þ cos θPlðcos θÞ
þ lPl−1ðcos θÞ ¼ 0 ðA4Þ

in the form

ð1 − cos θÞPlðcos θÞ ¼ Plðcos θÞ −
lþ 1

2lþ 1
Plþ1ðcos θÞ

−
l

2lþ 1
Pl−1ðcos θÞ ðA5Þ

we can show from (A1)–(A3) that the coefficients ãðnÞl can

be expressed in terms of the coefficients ãðn−1Þl . We have,
for l ∈ N,

ãðnÞl ¼ ãðn−1Þl −
lþ 1

2lþ 3
ãðn−1Þlþ1 −

l
2l − 1

ãðn−1Þl−1 ðA6Þ

(here we take ãðn−1Þ−1 ¼ 0). As noted in Ref. [48], we have
for large values of l,

ãðnÞl ¼ Oðãðn−1Þl =l2Þ: ðA7Þ

This explicitly shows that using the reduced series (A2)
greatly improves the convergence of the initial partial wave
expansion (A1).

2. Acceleration of the convergence
of background integrals

In order to improve the convergence of the background
integral

αðθÞ ¼
Z þ∞

0

dλ aðλÞQλ−1=2ðcos θ þ i0Þ ðA8Þ

[see Eqs. (27b) and (39b)], we first split it in the form

αðθÞ ¼
Z

λ0

0

dλ aðλÞQλ−1=2ðcos θ þ i0Þ þ αλ0ðθÞ ðA9Þ

where

αλ0ðθÞ ¼
Z þ∞

λ0

dλ aðλÞQλ−1=2ðcos θ þ i0Þ: ðA10Þ

The choice of the truncation parameter λ0 will be discussed

later. We then introduce the reduced integrals α̃ðnÞλ0
ðθÞ

defined by

αλ0ðθÞ ¼ ð1 − cos θÞ−nα̃ðnÞλ0
ðθÞ: ðA11Þ

By using the relation

ð1 − cos θÞQλ−1=2ðcos θ þ i0Þ ¼ Qλ−1=2ðcos θ þ i0Þ

−
�
λþ 1=2

2λ

�
Qλþ1=2ðcos θ þ i0Þ

−
�
λ − 1=2

2λ

�
Qλ−3=2ðcos θ þ i0Þ ðA12Þ

which is a consequence of the definition (21) and of the
relation [49]

ðνþ 1ÞPνþ1ðcos θÞ − ð2νþ 1Þ cos θPνðcos θÞ
þ νPν−1ðcos θÞ ¼ 0; ðA13Þ

we can show that these reduced integrals can be written in
the form

α̃ðnÞλ0
ðθÞ ¼

Z þ∞

λ0

dλãðnÞðλÞQλ−1=2ðcos θ þ i0Þ þ R̃ðnÞðθÞ

ðA14Þ

where R̃ðnÞðθÞ is an integral over a finite integration domain
which can be expressed in terms of the integral R̃ðn−1ÞðθÞ
and where the function ãðnÞðλÞ can be expressed in terms of
the function ãðn−1ÞðλÞ. We have
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ãðnÞðλÞ ¼ ãðn−1ÞðλÞ −
�
λþ 1=2
2ðλþ 1Þ

�
ãðn−1Þðλþ 1Þ

−
�
λ − 1=2
2ðλ − 1Þ

�
ãðn−1Þðλ − 1Þ ðA15Þ

and

R̃ðnÞðθÞ¼ð1−cosθÞR̃ðn−1ÞðθÞ

þ
Z

λ0

λ0−1
dλ

��
λþ1=2
2λ

�
ãðn−1ÞðλÞQλþ1=2ðcosθþ i0Þ

−
�
λþ1=2
2ðλþ1Þ

�
ãðn−1Þðλþ1ÞQλ−1=2ðcosθþ i0Þ

�
:

ðA16Þ

From the relation (A15) we can see that, for large values
of λ,

ãðnÞðλÞ ¼ Oðãðn−1ÞðλÞ=λ2Þ: ðA17Þ

This explicitly shows that using the reduced integral (A14)
greatly improves the convergence of the initial background
integral (A8). As far as the choice of the truncation
parameter λ0 is concerned, it should be noted that it
depends on the number n of iterations performed.
Indeed, due to the shift of the variable λ induced by the
relation (A15), we can observe that ãðnÞðλÞ is not defined
for λ ∈ ½0; n½ and, in order to have the integrals (A16)
and (A14) well defined, it is necessary to take λ0 ≥ n.
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