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DOI: 10.12762/2018.AL14-08 T he design of vibration absorbers is a challenging task for complex real-life 
structures. Although several technological solutions have now reached maturity, 

a need for better efficiency in terms of added mass, broadband frequency range and 
level of reduction requires the study of new ideas and concepts coming from nonlinear 
dynamics. In this paper an introduction to a class of absorbers called Nonlinear Energy 
Sinks (NES) is proposed to highlight their potential for vibration mitigation. After a 
reminder of the different categories of vibration control, some principles of NES and 
their relationship with linear absorbers are presented. Two experimental NES prototypes 
are studied and the results have shown interesting capacities for vibration mitigation.

Introduction

During their operation, aeronautical structures often endure strong 
dynamical excitations and their vibrations can reach high levels. This 
has many undesirable consequences: shorter lifetime of structures, 
less user comfort in terms of the vibrations felt (and even vibroacous-
tics), and penalized controllability of trajectories (aircraft, missiles). 
For all of these reasons, the study of technological solutions that can 
mitigate vibrations is still an active and open research subject.

Indeed, several ways have already been investigated and the mitiga-
tion methods can be classified into three main categories. 

•	 Active control methods have been widely developed over the last 
decades [1]. The principle is to reduce undesirable vibrations 
by generating an out-of-phase input. Active control usually gives 
good performance in terms of vibration reduction, but it requires 
an external energy supply. Since adding excitation to structures, 
even for their benefit, could seem tricky and perilous, active con-
trol has not achieved great success in industrial applications.

•	 Semi-active control methods using electro- and magneto-rhe-
ological fluids have been proposed [6], [1]. The particularity 
of these fluids lies in their varying viscosity with respect to the 
electric or magnetic field in which they are immersed. Since no 
energy is transferred to the controlled system, these techniques 
are robust and reliable, while offering a vibration reduction level 
similar to that of active techniques. However, both the modeling 
of fluid behaviors and the development of the controller represent 
major challenges that still complicate the use of the systems for 
real-life structures.

•	 Passive control methods reduce vibrations by adding to the 
structure a dissipative material [16] or a Dynamical Vibration 
Absorber (DVA) [1], [5]. Given that this can be achieved by 

using only mechanical components, this technique is an im-
portant alternative to the previous methods. DVAs can behave 
linearly or nonlinearly, with the latter case being the main sub-
ject of this article.

Indeed, nonlinear absorbers, also called NES (Nonlinear Energy 
Sinks), have drawn the attention of many laboratories in recent years, 
since their performance and robustness are very promising. How-
ever, relying on nonlinear dynamics for vibration mitigation is also 
very challenging, because almost all concepts coming from linear 
dynamics no longer apply for these devices. In this paper, we aim to 
present the basic principles of NES and their potential for industry. In 
a first part, we will introduce the concept of NES and its link to linear 
absorbers. The second part will be devoted to two experimental NES 
prototypes developed in our facilities.

Reminder of the concept of linear absorbers

Before presenting nonlinear absorbers, a reminder of the linear version 
should be instructive, since it preceded them historically. The Tuned 
Mass Damper (TMD) is probably the most popular device for pas-
sive vibration mitigation of mechanical structures. Thanks to its linear 
behavior and the well-established mathematical theory that it relies 
on, the TMD is widely implemented in various areas, such as civil 
buildings (e.g. Millennium Bridge, Taipei 101 skyscraper, Burj-el-Arab 
Hotel), electromechanical engineering structures (cars and high-ten-
sion lines), and aircraft (especially helicopters). Despite being widely 
used in industrial applications, the design of such absorbers can still 
be a challenging problem when it is coupled to complex structures.



Issue 14 - September 2018 - Vibration Mitigation Based on Nonlinear Absorbers
	 AL14-08	 2

In 1911, Frahm initiated the TMD with a patent describing his ideas. 
He considered a small mass m2 coupled to a linear oscillator (LO) by 
a linear spring k2 . In his works, the LO is itself made of a mass m1 
and a linear spring k1 , the LO is forced by a harmonic excitation, and 
damping terms are skipped in computations. If the natural angular 
frequencies of both masses ω1 and ω2 are set to be equal, then it 
can be shown that the movement of a large mass is minimized when 
the LO is excited at its natural frequency. Hence, designing a TMD is 
basically tuning the eigenfrequency of a small mass to the critical 
frequency of a structure. 

Considering damping terms c1 and c2 complicates the reasoning. 
Ormondroyd and Den Hartog [17] first proposed a damped version 
of the absorber by adding c2 to the design parameters. An optimiza-
tion process is then undertaken by means, for example, of the H∞ 
technique or, more commonly now, the Den Hartog method, called 
the fixed-point theory [5].

Unfortunately, when the damping term c1 of the LO is also taken into 
account, the fixed-point theory can no longer be used. Nevertheless, 
several solutions have been proposed, based on the Chebyshev min-
max criterion [18], control theory [24] [25], perturbation techniques 
[1] [8] and nonlinear programming [13] [14]. 

k1 k2

c1

( )0 sineF F tω=

m1 m2

c2

x1

x2

Figure 1 – A Tuned Mass Damper coupled to a linear oscillator (LO)

Although the design of TMD is now known and well mastered, it still 
has two main drawbacks. First, by definition, a TMD needs to be tuned 
to the natural frequency of an undesirable mode. Thus, its efficiency is 
strongly related to the actual closeness 2 1ω ω− . However, if ω1 is 
itself badly known or changing (lack of experimental testing, evolution 
over time, or influence of nonlinear components), the expected degree 
of closeness cannot be easily fulfilled, and the efficiency of the TMD 
drops drastically. Furthermore, since the TMD has to be tuned to one 
specific frequency, it is difficult, or even impossible, to damp several 
modes of a multiple-degree-of-freedom system with the same device.

Secondly, it can be shown that the efficiency of a TMD also depends 
on the mass ratio 2 1m mε = . In general, the order of magnitude ε is 
about 10%, even though lower values can be obtained for particular 
applications. However, it represents a significant added mass, which 
is highly undesirable in certain domains, such as aircraft.

Principles of Nonlinear Absorbers

The evolution from linear to nonlinear absorbers has been driven by 
the need to find an answer to the two previously mentioned draw-
backs of TMD: the lack of robustness and, in a less important aspect, 
the significant added mass. The first studies focusing on using non-
linearities in vibration mitigation date back to the 50s [22] [20] [1]. In 
1982, a first practical nonlinear absorber using a softening stiffness 
was presented [12]. 

A nonlinear absorber can be outlined as a mass m2 that is coupled to 
a structure by a link Fnl . The device mass-link behaves nonlinearly as 
a function of its relative (or sometimes absolute) movement. In the 
specialized literature, the dynamical law ( )nlF  of this link is generally 
called a "restoring force" [28].

k1

c1

( )0 sineF F tω=

m1 m2

Fnl

x1

x2

Figure 2 – A nonlinear absorber coupled to a linear oscillator

For a nonlinear absorber, the restoring force can take many forms 
(polynomial, friction, hysteretic, impacts, etc.), with the notable 
exception of the linear one. If the coefficients of the purely nonlinear 
part of Fnl are minor compared to its linear part, the restoring force 
can be approximated by its linear and nonlinear components 

	 ( ),    nlF x x kx cx other minor nonlinear terms= + +  	 [1]

The dynamics of the small mass m2 are then close to the behavior of 
a TMD, except that it depends on amplitude. In fact, it does not show 
solutions specific to nonlinear dynamics.

When the dynamics of the primary mass m1 are not purely linear (i.e., 
k1 and c1 are not constant), a relevant solution consists in designing 
an absorber whose restoring force is tuned according to the restoring 
force of the primary system. Such an absorber is called a Nonlinear 
Tuned Vibration Absorber (NTVA) [11].

Nevertheless, let us assume now that the dynamics of the primary 
system are linear, and that the nonlinear part is only due to the restor-
ing force of the absorber. When the nonlinear restoring force of m2 has 
no linear stiffness part, i.e., 0nldF dx = , then this DVA belongs to a 
specific category called "essentially nonlinear absorbers", because it 
cannot be approximated for small displacements by a linear spring.

Essentially, nonlinear absorbers captured the attention of research-
ers especially, because of their ability to "adapt" themselves to the 
primary system that they are attached to without being tuned to a 
specific frequency. Since they do not have a preferential resonant 
frequency, they are able to interact with the primary system over 
a broad range of frequencies and then to be effective on all of the 
modes within that range. Nonlinear Targeted Energy Transfer (TET or 
energy pumping) was observed by Gendelman [9], who studied a 
2-DOF system composed of a linear oscillator nonlinearly coupled to 
an oscillator with zero linear stiffness. Not having a linear stiffness is 
a crucial point in order to not have a preferential frequency of oscilla-
tion. In [26] it was shown that when the energy of the LO is above a 
certain threshold, a localized periodic motion of the nonlinear oscilla-
tor is excited so that the energy is transferred from the LO and finally 
dissipated. A nonlinear absorber exhibiting this kind of behavior is 
called a Nonlinear Energy Sink (NES).

Furthermore, if the linear stiffness coefficient decreases further and 
becomes negative, there are two points of equilibrium instead of 
one. The resulting bi-stable absorber could be much more reactive 
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because the TET activation threshold is lower [15]. In any case, creat-
ing a negative linear stiffness requires more imagination, and elegant 
technological solutions based on magnets have been proposed in [3].

In the following sections we will present two NES prototypes: the 
cubic stiffness NES and the Vibro-Impact NES. For each case, the 
experimental and analytic study of the NES coupled to a harmonically 
forced Linear Oscillator (LO) will be carried out. The systems will be 
analyzed both analytically and experimentally. Finally, their vibratory 
behaviors will be explained through the analytical models.

Experimental Case No. 1: the cubic stiffness NES

The inspiration for the first NES comes from the literature [26] [27]. 
The LO is composed of a moving mass of 63.2kg (see Figure  3), 
attached to the ground by 4 springs. The LO can translate along one 
direction only. Its natural frequency is 5.05 Hz. The LO is excited by 
one modal shaker, with a cell force between the LO and the shaker. 
A lighter moving mass of 0.61 kg is installed on the top of the LO: it 
is the NES. Through linear bearings, the NES can move along two 
shafts. The restoring force of the NES is generated by 4 springs that 
can rotate and lengthen to follow the translation of the NES (see  
Figure 4). The NES/ LO mass ratio is 0.97%.

A sketch of the NES displacement is given in Figure 5. We assume 
that the length of the springs is l0 at rest (totally free, not yet installed 

on the LO) and l when it is installed with zero-translation of the NES 
( )0x = . For a translation x, its extension 2 2l x+  is given by a simple 
geometrical projection. Thus, the restoring force is (here only the con-
servative part):

	 ( ) ( )2 22k l x lnlf x = + − 	 [2]

where k is the stiffness coefficient of two parallel springs. Using a 
Taylor series development, the nonlinear relationship between the 
displacement and the restoring force can be approximated by a 3rd 
degree polynomial

	 ( ) 3
1 3k x k xnlf x ≈ + 	 [3]

With the stiffness coefficients given by

	

0
1

0
3 3 3

2 2 1 lPk k
l l

kl Pk
l l

  = + −   

 = −

	 [4]

where P is the preload of two parallel springs. As can be noticed by 
the expression of k1, the linear part of fnl depends on the level of 
preload P and on the relative extension of the springs installed 0l l . 
For a pure cubic restoring force, k1 set to null requires 0P =  and 

0l l= . 

Zero-preload cannot be guaranteed by extension springs: in fact, by 
design, extension springs always have a certain amount of preload P. 
This is the reason why here compression springs were selected for 
the NES, even though they are used extended (see Figure 4). Given 
that their coils are non-contiguous, they guarantee a regular Hooke 
law, even for a small extension of the springs, and then have a preload 
P that is almost negligible.

Experiments were performed to ensure the nonlinear relationship 
between displacement and force. The static force is identified by 
blocking the movement of the LO and by attaching weights to the 
NES. The static displacements due to weights were successively 
measured by a Laser sensor (see Figure  6). The curve obtained 
shows the typical inverted S shape of a cubic stiffness force. Fur-
thermore, a polynomial was curve-fitted on data and computed 

Figure 4 – The NES attached by springs to the LO

NES

LO

Excitation shaker

Figure 3 – A cubic stiffness NES on a LO

k k

2 2l x+

m2

l

θ

x

Figure 5 – Simplified movement model of the NES
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coefficients (top of Figure 6) ensuring that the cubic part is predomi-
nant over the linear part.

Finally, the restoring force Fnl comprises the nonlinear conservative 
part Fnl , which has just been derived, and a dissipative part. For the 
sake of simplicity, this dissipative part is modeled here by a viscous 
damping ac x . Hence, the restoring force Fnl is given by

	 ( ) ( ),nl a nlF x x c x f x= +  	 [5]

Hopefully, in this case, the conservative and dissipative parts are 
clearly distinct, making the following dynamical analysis easier. It 
should be noted that, in general, nonlinear oscillator equations are 
more complicated and formulae usually involve entangled displace-
ment x and speed x  terms.

Dynamical equations of the coupled system (Figure 2) can now be 
derived by considering xs, the displacement of the LO and xa, the dis-
placement of the NES. 

	
( ) ( )

( ) ( )
sin

0
s s s s s nl s a e

a a a a s nl a s

sm c x k x f x x F t

m c x x f x

x

xx

 + + + − = Ω


+ − + − =

 

  

	 [6]

Equations clearly show the dependency of the restoring force as a 
function of the relative displacement s ax x− . Let us now introduce the 
following change of variables

	 22 1 2 1
0 12

1 1 2 0 2 0

, , , ,m k k cK
m m m m

ε ω λ
ω ω

= = = = 	

	 2
2 0 0

2 0 0

 , , , ,c dxt x
m dt

λ τ ω ω
ω ω

Ω= Ω = = =  	 [7]

	
2

2
02 2

1 0

 , eFd x x F
dt m

ω
ε ω

= = 	

And the following change of coordinates

	 , s a s av x x w x xε= + = − 	 [8]

Thus, the system of dynamical equations [6] becomes

	

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

1

1 2

3

1 sin
1 1

1
1

1 1 sin
1

v v w v w F

w v w w

v w K w F

ε λ ε ε ε τ
ε ε

ε λ ε λ ε
ε

ε ε ε τ
ε

 + + + + = Ω + +
 + + + + +
 + +

+
=+ + Ω





 

   	 [9]

The cubic term in the second equation prevents the system from being 
resolved analytically. In any case, approximated periodic solutions can be 
sought through a combination of the Complexification-Averaging method 
and the Multiple Scales method [1]. First, complex variables are introduced

	 1 2

1 1 2 2

,
    

,i i

v i v w i w
e eτ τ

ψ ψ
ψ φ ψ φΩ Ω

= + Ω = + Ω
= =

 

	 [10]

noting that

	

( )

( )

( )

( )

( )

( )

* *
1 1 2 2

* *
1 1 2 2

* *
1 1 1 2 2 2

1 1,
2 2
1 1,       
2 2

,
2 2

v w
i i

v w

i iv w

ψ ψ ψ ψ

ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ

= − = −
Ω Ω

= + = +

Ω Ω= − + = − +











	 [11]

Thanks to complex variables, fast oscillations of the system at the 
excitation frequency Ω can be separated from slow modulations of 
complex amplitudes. The following system is obtained

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )
( )( )

( ) ( ) ( )

( ) ( ) ( )

* * *
1 1 1 1 1 1 2 2

* *
1 1 2 2

* * *
2 2 2 1 1 1 2 2

*
2 2 2

* *
1 1 2 2

3*
2 23

1
2 1 2 2

1 1 sin
2 1 2 2

1
2 1 2 2

2 1

1 1
2 1 2 2

1 sin
8

i

F
i

i

i
iK F

ε εψ ψ ψ λ ψ ψ ψ ψ
ε

εψ ψ ψ ψ ε τ
ε

ε εψ ψ ψ λ ψ ψ ψ ψ
ε

λ ε ψ ψ

εψ ψ ψ ψ
ε

ε ψ ψ ε τ

 Ω  − + + + + +  +  
  + + + + = Ω  Ω +  

Ω  − + + + + + +  
+ + +

 + + + + Ω +  

=+ + − Ω
Ω

















	

[12]

In a second step, equations [12] are averaged over the fast scale, i.e., 
keeping terms only of ie τΩ . Then, terms of iψ  are replaced by i

ie
τφ Ω  

and, hence, equations are simplified to

	

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1
1 1 1 2

1 2

1
2 2 1 2 1 2

232
2 2 23

2 2 1

0
2 1 2

2 2 1 2 1
31 1 0

2 8 2

i

i i F

i i

i K i F

ελφ φ φ εφ
ε

εφ εφ
ε

ελφ φ φ εφ φ εφ
ε ε

λ εε φ ε φ φ

Ω + + + +


− + + = Ω +


Ω + + + − + + Ω +

 + + − + + = Ω





	 [13]

It is important to remember that 1φ  and 2φ  are the slow evolutions of 
amplitudes for a 1:1 resonance. Thus, the temporal evolution of the 
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Figure 6 – Static force identified with weights
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LO-NES couple is governed by the previous system of equations [13], 
under the assumption of a periodic movement of both oscillators at 
frequency Ω.

In a third step, the method of Multiple Scales is used to obtain approx-
imated solutions [1]. The idea is to break down the time scale τ into 
several time subscales that depend on τ and ε . Derivation is per-
formed through a series of partial derivatives

	 2

0 1 2

,  ,  0,1,2,k
k

d k
d

ε ε τ ε τ
τ τ τ τ

∂ ∂ ∂= + + +… = = …
∂ ∂ ∂

	 [14]

Solutions 1φ  and 2φ  are written as polynomials of ε

( )
( )

( )

( )

10 101 11

0 0 11 10 11

2 20 21 20 202 21

0 0 1

,
   

,

d o
do

o d o
d

φ φφ φε ε
τ τ τ τφ φ εφ ε

φ φ εφ ε φ φφ φε ε
τ τ τ τ

 ∂ ∂∂= + + + ∂ ∂ ∂ = + +
= + +  ∂ ∂∂= + + + ∂ ∂ ∂ 

	[15]

Furthermore, the excitation frequency is assumed to be close to the 
natural frequency of the LO

	 1 εσΩ = + 	 [16]

where σ denotes a small variation around the natural frequency.

By approximating the system of dynamical equations [13] through 
this derivation, we can group the terms proportional to 0ε :

	
( )

10

00

220 2
20 20 10 20 20

0

0
:

3 0
2 2 8

i iK

φ
τ

ε
φ λ φ φ φ φ φ
τ

∂ = ∂
∂ + + − − =
 ∂

	 [17]

At the first time scale 0
0τ ε τ= , amplitude modulations do not depend on 

the force amplitude F. In fact, F appears at the slower time scale 1
1τ ε τ=  . 

Then, the dynamical system [17] at scale 0τ  is written in polar form

	 10 20
10 10 20 20,  i iN e N eθ θφ φ= = 	 [18]

Introducing these polar forms into the dynamic equations [17] at 
scale 0ε , after separating the real and complex parts, we obtain

	 ( )

( )

10

0

20 102
20 0

0

20 10
0 3 20

0 20

0

sin
2 2

1 3cos
2 2 8

N

N NN

N K N
N

τ
λ θ

τ
θ θ
τ

∂
= ∂

∂
= − + ∂

∂
= − +

∂

	 [19]

with 0 20 10θ θ θ= − . At equilibrium, this phase is given by

	

( )

( )

20
0 2

10

220
0 20

10

sin

3cos 1
4

N
N

N KN
N

θ λ

θ

 =


  = −   

	 [20]

By squaring both expressions [20] and adding them, the fixed points 
of the system [19] satisfy the equation

	 ( )2 2 2 3 2
2 10

3 91
2 16

Z KZ K Z Nλ + − + = ,   with   2
20Z N= 	 [21]

This equation defines the invariant manifold of the coupled system:  
it means that it gives a relation between the main parameters of the 
system that can characterize its amplitude evolution. For a fixed value 
of the amplitude N10 , this 3rd degree polynomial can be solved analyti-
cally: for each value of N10 , either 1 or 3 solutions can be found for N20.

To know the nature of the solutions given by this invariant manifold, 
we need to study the eigenvalues of the stability matrix

0

22 20 202
20

10

2 2
20 20

10 20

0 0 0
31

2 2 2 4
1 3 1 91

2 4 2 8 2

N N KN
NM

KN KN
N N

ε

λ λ

λ

 
   − −   =
 

  − − + −    

	[22]

This matrix was computed by considering small perturbations of the 
previous system of dynamical equations. It can be observed that the 
stability matrix is independent of the phase difference 0θ .
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Figure 7 – Invariant manifold (blue circles: stable solutions, red circles: 
unstable solutions)

An example of an invariant manifold is presented in Figure 7. In this 
figure, each circle represents a possible solution for the movement. 
To understand this manifold, let us look at a particular point. For 
instance, if the periodic amplitude of the LO is 4 mm, then there is 
only one corresponding amplitude at 4.1 mm for the NES. 

In the whole plot, solutions can be grouped into three distinct 
branches, depending on the NES amplitude: the low-amplitude 
branch (blue), the intermediate-amplitude branch (red) and the 
high-amplitude branch (blue). For a movement of the LO below 
6.2 mm, only one stable branch of solutions exists for N1 and N2 .  
A 1:1 resonance, also called a Constant Response Amplitude (CAR), 
can be observed: the NES has almost the same amplitude as the LO, 
but with a phase difference of 180°. In this zone, the NES is inactive 
because it only follows the LO movement.
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Between 6.2 and 7.6 mm, a first bifurcation point B1 is reached. In 
this zone, there are three solution branches: two stable ones on either 
side of an unstable one. These three solutions are differentiated by the 
NES amplitude: the low-amplitude one and the high-amplitude one for 
stable solutions, and the intermediate-amplitude one for the unstable 
solution. This particular configuration is called a "cusp catastrophe" in 
nonlinear dynamics literature ([23], [10]) and is at the origin of a spe-
cial movement called "relaxation cycles", which can be observed both 
numerically and experimentally. For one value of the LO amplitude, 
the system is first attracted by a low-amplitude solution of the NES, 
but fast jumped to the high-amplitude branch. Being on this branch, 
the NES dissipates much more energy through viscous damping 
c2 . Thus, the whole system loses energy and jumps back to a low-
amplitude solution. Of course, being back on this branch, the system 
receives vibratory energy again and its amplitude increases, until its 
jump to the high-amplitude solution is repeated. This strange behav-
ior is due to the presence of an unstable solution, which makes the 
jumps appear constantly. This phenomenon, also called a Strongly 
Modulated Response (SMR), will be illustrated in the following by 
experimental tests.

Above 7.6 mm, a second bifurcation point B2 is crossed: there is 
again a single stable solution for the LO-NES couple. It is character-
ized by a very high magnification of the NES compared to the LO, and 
then by a high dissipation of energy by the NES. However, contrary 
to the previous zone, here the dynamical system is simply locked in 
a 1:1 resonance (CAR).

As displayed in Figure 7, the invariant manifold has three zones that 
are delimited by two points of inflexion. These points can be ana-
lytically computed by deriving the invariant manifold expression and 
equaling the resulting equation to zero

	 ( ) ( )2 2
1 2 2 2

9 92 1 3 ,   2 1 3
4 4

Z Z
K K

λ λ= − − = + + 	 [23]

With 2
20Z N= . Two remarks should be made on these points. First, 

they both depend on the cubic stiffness coefficient K and on the NES 
damping 2λ . From Z1 , a condition of existence for relaxation cycles is 

2 1 3λ < . It means that the NES damping should not be higher  

than this threshold; otherwise, no energetic relaxation cycles could 
appear.

Secondly, the NES activation threshold depends on the inverse of the 
cubic stiffness coefficient K. Thus, a low threshold would be obtained 
for a high value of K, which implies a high value of the spring stiff-
ness coefficient k. Therefore, contrary to common sense when look-
ing at Figure 3, it is better to select very stiff springs when a high 
NES amplitude is sought. In fact, softer springs would not be able to 
create strongly nonlinear dynamics, and thus achieve efficient vibra-
tion mitigation.

After having presented the analytical model and the mathematical 
methods that gave approximated solutions, all inputs are now gath-
ered to analyze data coming from the experimental demonstrator 
(Figure  3). As a reminder, the natural frequency of LO is 5.05  Hz. 
Swept-sine tests were performed between 4 and 6 Hz at a slow rate 
of 0.05 oct/min and at 7 levels of force, regularly spaced between 
17.2 and 23.1 N. The response of the LO is shown in Figure 8. Two 
kinds of response can be observed. As long as the LO movement has 
not reached a certain amplitude level, it behaves like a classical linear 
oscillator. Once this threshold is exceeded, relaxation cycles appear 
(see Figure 9). They are characterized by a strong irreversible transfer 
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Figure 8 – Response of the LO in the temporal domain
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Figure 10 – Response of the NES

Caption for the three figures: 7 curves for 7 levels of force (17.2 to 23.1 N), sweep-sines from 4 to 6 Hz, sweep rate of 0.05 oct/min
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of energy between the LO and the NES. Consequently, we can see in 
Figure 10 that the NES moves significantly only when these cycles are 
activated. Outside this regime, the NES movement only follows the LO 
oscillations: therefore it can be considered as inactive.

The LO and NES spectra are also instructive. The NES prevents the 
structure from exceeding a certain level of vibration (Figure 11 and 
Figure 12). The more the excitation force increases, the more broad-
band the frequency range is, since relaxation cycles are increasingly 
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Figure 11 – LO spectra 
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Figure 13 – NES spectra

Caption for the three figures: 7 curves for 7 levels of force, from dark blue 
(17.2 N) to dark red (23.1 N)
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present. This clearly demonstrates that the efficiency frequency range 
does not depend on the excitation frequency (at least not on the first 
order), but rather on the level of excitation. The NES spectra are 
very disturbed, and it is difficult to interpret them (see Figure 13). It 
can only be noticed that, when the NES is active, its amplitude level 
increases as a function of the force level.

Strictly speaking, Frequency Response Functions (FRFs) are not 
appropriate tools for studying highly nonlinear systems [28]. In any 
case, they can still be useful to qualify the deviation of a system from 
a classical linear one. FRFs are computed by taking the cell force as a 
reference. FRFs of LO are presented in Figure 14. The FRF at the low-
est level can easily be found (dark blue curve): it is the only smooth 
one and there are no relaxation cycles. Indeed, since relaxation cycles 
are a manifestation of a highly nonlinear behavior, the spectral content 
during these cycles is very rich. It affects FRFs and gives them a 
noisy appearance. Furthermore, when the force level was increased, 
two peaks appeared instead of one, as if the FRFs were cut at their 
summits (Figure 15). The FRFs of the NES clearly show that this reso-
nance phenomenon suppression is due to the activation of the NES 
(Figure 16).

Experimental case No. 2: the Vibro-Impact NES (VI-NES)

The experimental study has been conducted with the aim of observ-
ing the behavior of the system and of exploring the different types 

of response that the system can exhibit. The relationship between 
the regimes and the external forcing, in terms of magnitude and fre-
quency, is of particular interest. 

The experimental setup is shown in Figure 17 and comprises a primary 
single-degree-of-freedom linear oscillator (LO), to which the VI-NES is 
attached. The LO is harmonically forced by an electrodynamic shaker.

The system is forced by a swept-sine external force with constant 
amplitude and the primary mass displacement is measured by means 
of a Laser Doppler Vibrometer.

f0 [Hz] K [N/m] C [N/ms] ξ  [%] M [kg] m [kg] /m Mε =  [%]

21.18 67421 8.566 0.8 3.807 0.032 0.84

Figure 18: Modal parameters of the primary system and mass value of the 
primary system M, of the VI-NES m and their ratio ε

The modal parameters of the LO and the mass values are shown in 
Figure 18. It is important to notice the very small mass ratio between 
the VI-NES and the primary system, i.e., less than 1%. 

Figure 19 (left) shows the displacement spectra for the system with 
and without VI-NES. We can observe that two types of qualitatively 
different responses exist when the VI-NES is active and, depending 
on the magnitude and the frequency of the external forcing, either one 
or the other may appear. 
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Figure 17 – LO coupled to a VI-NES: the system placed on the vibrating table (left), the LO and VI-NES (center) and its schematic diagram (right)
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Figure 19 – Left: experimental spectra of the primary mass displacement with (red) and without (blue) the VI-NES. Right: recorded time signal of a SMR, the 
dashed lines indicate the amplitude of the LO without the VI- NES under the same forcing conditions.
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We can classify the responses as:
•	 Strongly Modulated Response (SMR): the primary system goes 

through alternatively increasing and decreasing amplitude cy-
cles and then the fast oscillations appear to be modulated. This 
behavior is caused by a repeated activation/deactivation of the 
VI-NES (Figure 19 right). 

•	 Constant Amplitude Response (CAR): the VI-NES is stably ac-
tive and the amplitude of the primary mass displacement re-
mains constant.

The VI-NES seems to accomplish its task as a vibration absorber 
well, since the response amplitude is reduced near the resonance of 
the primary system. This is the proof that a Targeted Energy Transfer 
occurs from the LO towards the VI-NES and that the energy is dis-
sipated by the impacts. It is important to emphasize that this goal 
has been achieved, despite a proper sizing process not having been 
carried out and with a significantly small mass ratio ε = 0.84%. This 
result proves that the VI-NES is able to automatically tune itself to 
the primary system. This is a relevant general feature of nonlinear 
absorbers caused by the absence of a natural frequency for these 
devices.

By looking at the spectrum in Figure 19, one can draw the conclu-
sion that a criterion exists on the primary mass displacement to acti-
vate the VI-NES. In fact, an amplitude/energy threshold is observed, 
beyond which the VI-NES is active.

The schematic diagram of the model is presented in Figure 17 (right). 
We define the variables u, v and xe as the displacements of the pri-
mary mass M, of the NES mass m and of the base, respectively. 
We model the shocks as instantaneous impacts by using the basic 
concepts of Newtonian mechanics:

	
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

j j j j

j j j j

u t v t r u t v t

Mu t mv t Mu t mv t

+ + − −

+ + − −

− = − −

+ = +

   

   

	 [24]

Where jt+ and jt− are the time instants after and before the j th impact, 
respectively. The first equation provides a relation for the relative 
velocity of the two colliding masses after and before the impact, by 
using the restitution coefficient 0<r<1. This allows the impact to be 
characterized from completely elastic r=1 to completely plastic r=0. 

The second equation expresses the momentum conservation through-
out the impact. Then, the motion equations are: 

( )

( )

2 2
0 0 0 0

1
2 2

1
0

j e e
j

j
j

m r
u u u w x x

m M

m r
v w

M m

ω ξ ω δ ω ω ξ

ε δ

− −

− −

 +
+ + + = + +


+ − = +

∑

∑

  

 

	 [25]

where 2
0

K
M

ω =  and 02 Mω ξ λ= .

The previous system [25] can be studied by means of the Multiple 
Scales method [26], which allows us to separate the various dynamic 
behaviors of the problem, happening at different time scales. 

For the sake of conciseness, all mathematical steps are not detailed 
like in the previous section; they are given in [19]. We directly go to 
the important result that the analytic study provides us with: the Slow 
Invariant Manifold (SIM) of the problem, a mathematical tool that gath-
ers all of the possible solutions that the system may exhibit. Under the 
condition of two impacts per oscillation, the SIM, shown in Figure 20, 
can be expressed by the following equation, where AΩ and α are two 
variables that are strictly related to the displacements X and w.

	
2 2 2

2

1
 

1
min

L A Aσ
α

σ
Ω Ω± + −

=
+

	 [26]
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Figure 20 – Slow Invariant Manifold - r = 0.65, L = 15 mm
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Figure 21 – Spectra of the primary mass displacement with and without VI-NES for F = 0.2g (left) and F = 0.4g (right).
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with 
( )
( )

2 1
1

r
r

σ
π

−
=

+
 and where 

21min

LA σ
σ

Ω =
+

 is a minimum value of 

amplitude AΩ for solutions to exist.

Some important information that the SIM contains is that a minimum 
AΩ must exist for solutions to appear. This point mathematically rep-
resents a saddle-node bifurcation. Starting from this bifurcation point, 
two solution branches appear: one stable and one unstable. 

Once the SIM has been obtained, we can take our analysis further and 
study the previous system of dynamical equations at the next order. 
Similarly, we reach an expression relating A and α (not reported here 
for the sake of conciseness), which represents the fixed points of 
the problem. The intersections between the SIM and the fixed points 
represent the solutions of the problem. 

Figure  21 shows the experimental spectra of the primary mass 
displacement with and without the VI-NES attached. The two dif-
ferent kinds of regime, constant amplitude and strongly modulated 
responses (CAR and SMR), have been highlighted. We can see that 
for F=0.2g, i.e., for a low level of external force, the only type of 
response observed is the strongly modulated response, whereas 
when the external forcing increases, the constant amplitude response 
appears and the transition from one type of regime to another is a 
function of the forcing frequency.

Figure 22 shows the SIMs for two different cases of external force 
amplitude and frequency. For the lower level (Figure 22 left), the 
only fixed points attainable are unstable points for any frequency Ω. 
The only type of possible response is then the strongly modulated 
response. This result is in perfect agreement with the experimental 
observations.

For the higher level of the external force (Figure 22 right) the behavior 
of the SIMs is different. As Ω grows, the system goes from a state of 
no solution (no impacts) to a state where two fixed points exist: one 
stable and one unstable. The stable one is reached and the system 
presents a CAR. When Ω increases further, just before the disappear-
ing of solutions, the two intersections of the SIMs are both unstable 
points. Thus, the system exhibits a SMR. This behavior is also in 
perfect agreement with the experimental observations in Figure 21.

Conclusion

In this work, the vibration mitigation based on nonlinear absorbers 
has been explored. The links and differences between linear and non-
linear absorbers have been discussed. Two experimental cases of 
NES have been carried out. For each NES, approximated solutions of 
the nonlinear dynamical equation system were obtained by a com-
bination of the Complexification-Averaging method and the Multiple 
Scales method. Fixed points of the approximated system were com-
puted and, consequently, the invariant manifold was computed with 
its stability matrix. It was shown that different regimes could occur, 
depending on the LO response amplitude. When an amplitude thresh-
old is reached, very energetic solutions appear and the NES is active 
because it dissipates a significant amount of energy. In conclusion, 
a NES is able to significantly reduce the level of vibrations, and even 
to suppress the resonance peak phenomenon, for a very small mass 
ratio below 1%. Furthermore, it can be active over a wide frequency 
range, since its behavior mainly depends on the amplitude level of 
the LO. It is believed by the authors that the NES can be an effec-
tive solution for vibration mitigation, especially for aircraft embedded 
equipment. In the future, several technologies could be explored and 
adapted to industrial applications  
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Nomenclature and Acronyms

x	 Displacement at one location of a structure
x	 Velocity at one location of the structure
x	 Acceleration at one location of a structure
NES	 (Nonlinear Energy Sink)
LO	 (Linear Oscillator)
TMD	 (Tuned Mass Damper)
DVA	 (Dynamical Vibration Absorber)
FRF	 (Frequency Response Function)
SMR	 (Strongly Modulated Response)
CAR	 (Constant Amplitude Response)
SIM	 (Slow Invariant Manifold)
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