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ABSTRACT
We present constraints on Horndeski gravity from a combined analysis of cosmic shear,
galaxy–galaxy lensing and galaxy clustering from 450 deg2 of the Kilo-Degree Survey and
the Galaxy And Mass Assembly survey.The Horndeski class of dark energy/modified gravity
models includes the majority of universally coupled extensions to �CDM with one scalar
field in addition to the metric. We study the functions of time that fully describe the evolution
of linear perturbations in Horndeski gravity. Our results are compatible throughout with a
�CDM model. By imposing gravitational wave constraints, we fix the tensor speed excess to
zero and consider a subset of models including, e.g. quintessence and f(R) theories. Assuming
proportionality of the Horndeski functions αB and αM (kinetic braiding and the Planck mass
run rate, respectively) to the dark energy density fraction �DE(a) = 1 − �m(a), we find
for the proportionality coefficients α̂B = 0.20+0.20

−0.33 and α̂M = 0.25+0.19
−0.29. Our value of S8 ≡

σ8
√

�m/0.3 is in better agreement with the Planck estimate when measured in the enlarged
Horndeski parameter space than in a pure �CDM scenario. In our joint three-probe analysis,
we report a downward shift of the S8 best-fitting value from the Planck measurement of
�S8 = 0.016+0.048

−0.046 in Horndeski gravity, compared to �S8 = 0.059+0.040
−0.039 in �CDM. Our

constraints are robust to the modelling uncertainty of the non-linear matter power spectrum in
Horndeski gravity. Our likelihood code for multiprobe analysis in both �CDM and Horndeski
gravity is publicly available at https://github.com/alessiospuriomancini/KiDSHorndeski.

Key words: gravitation – gravitational lensing: weak – methods: data analysis – methods: sta-
tistical – dark energy – large-scale structure of Universe.

1 IN T RO D U C T I O N

The investigation of the accelerated expansion of the Universe
is one of the main areas of active research in cosmology. A
cosmological constant � is an excellent fit to most observations and
can be considered responsible for cosmic acceleration. However,

� E-mail: as2848@cam.ac.uk

while representing a key component of the concordance �CDM
model, the cosmological constant still lacks of a solid theoretical
understanding in terms of naturalness and interpretation as the
energy density of the vacuum (see e.g. Martin 2012, for a review).
As an alternative to the cosmological constant, a dark energy
component has been invoked, as a fluid with sufficiently negative
pressure to drive the accelerated expansion of the Universe. Another
possible interpretation of the observed acceleration may be as the
consequence of a modification of the laws of gravity on large,
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2156 A. Spurio Mancini et al.

cosmological scales, marking deviations from General Relativity
(see e.g. Clifton et al. 2012, for a review).

A large fraction of models for dark energy and modified gravity
is characterized by the presence of a scalar field in the Lagrange
density, as an additional gravitational degree of freedom parallel
to the metric. The mathematical formulation of the most general
expression for the Lagrange density of such a scalar–tensor theory,
with derivatives in the equations of motion not higher than second
order, was first discussed in Horndeski (1974) and subsequently
rediscovered in Nicolis, Rattazzi & Trincherini (2009) and Deffayet
et al. (2011). This so-called Horndeski Lagrangian encompasses
a remarkably large number of dark energy and modified gravity
models (see Section 2 for a list of some of them); the condition
on the highest order of the derivatives guarantees the stability of all
these theories against ghost-like degrees of freedom (Ostrogradsky’s
instabilities; see Woodard 2015).

Current and future surveys aim at using different cosmological
probes to investigate the true nature of the accelerated expansion
(see Weinberg et al. 2013, for a review), with weak gravitational
lensing and galaxy clustering at the forefront of these studies.

The weak gravitational lensing effect is particularly sensitive
to the growth of cosmic structure, encoding therefore precious
information on the acceleration as a dynamical effect in redshift, or
equivalently time. Particularly rich in information on dark energy
and modified gravity is the weak lensing effect produced by the
large-scale structure (LSS) of the Universe, or cosmic shear. This
is observed in the form of correlations of galaxy shapes due to
the distortion of the cross-sectional shape of light bundles coming
from background sources, caused by the gravitational tidal fields of
the LSS in the foreground (see e.g. Bartelmann & Schneider 2001;
Hoekstra & Jain 2008; Kilbinger 2015, for reviews on the topic).

Besides considering correlations of galaxy shapes, information
on the weak lensing effect can be extracted correlating the positions
of foreground galaxies, which trace the LSS, with the shapes of
background galaxies. This galaxy-matter cross-correlation is often
referred to as galaxy–galaxy lensing.

The shape distortions produced by weak gravitational lensing are
difficult to measure, since the induced source galaxy ellipticities
are at the per cent level, and a number of systematic effects can
mimic this signal (Mandelbaum 2018). Despite these difficulties,
cosmological results have already been derived by numerous cosmic
shear surveys (Heymans et al. 2013; Jee et al. 2013; Hildebrandt
et al. 2017; Hikage et al. 2018; Troxel et al. 2018a). Interestingly,
the fiducial cosmic shear analyses of the Canada–France–Hawaii
Lensing Survey1 (CFHTLenS; Heymans et al. 2013; Joudaki et al.
2017) and the Kilo-Degree Survey2 (KiDS; Hildebrandt et al. 2017;
Köhlinger et al. 2017), both prefer a cosmological model that is in
mild tension with the best-fitting parameters obtained from cosmic
microwave background (CMB) measurements of the Planck3 satel-
lite (Planck Collaboration XIII 2016a, Planck Collaboration XIV
2016b, Planck Collaboration VI 2018).

Galaxy–galaxy lensing measurements have also matured in
recent years and can help constrain dark energy (see e.g. Kwan
et al. 2017), in particular when combined with studies of galaxy
clustering (see e.g. the recent analysis of Singh et al. 2018): the
statistic describing at lowest order the galaxy spatial distribution
is the two-point correlation function, which in the past provided

1http://www.cfhtlens.org/
2http://kids.strw.leidenuniv.nl/
3http://sci.esa.int/planck/

early evidence for the �CDM model (Baugh 1996; Saunders et al.
2000; Eisenstein & Zaldarriaga 2001; Huterer, Knox & Nichol
2001; Hamilton & Tegmark 2002; Cole et al. 2005; Tegmark et al.
2006). Today, studying the spatial distribution of galaxies and its
evolution in time is crucial to analyse possible extensions to the
cosmological concordance model. The evolution of the clustering
of galaxies with redshift can put direct constraints on models for
the evolution of density perturbations, which is key to discriminate
between different dark energy/modified gravity theories. However,
the interpretation of galaxy clustering is complicated by galaxy bias
(Kaiser 1984), the relation between the galaxy spatial distribution
and the theoretically predicted matter distribution.

Modern optical imaging surveys measure the positions and ellip-
ticities of millions of galaxies; from them, the galaxy overdensity
field as well as the gravitational lensing shear field can be derived.
The two-point auto and cross-correlations of these two fields
are the two-point correlation functions of cosmic shear, galaxy–
galaxy lensing and galaxy clustering. A joint analysis of these
correlation functions can break degeneracies between cosmological
and nuisance parameters, leading to tighter cosmological constraints
(Joachimi & Bridle 2010). Several earlier studies have indeed
considered such joint analyses (Cacciato et al. 2013; Mandelbaum
et al. 2013; More et al. 2015; Kwan et al. 2017; Nicola, Refregier &
Amara 2017), albeit very few in a modified gravity context. Among
the latter, Joudaki et al. (2018) recently performed a combined
analysis of cosmic shear tomography, galaxy–galaxy lensing to-
mography, and redshift space multipole power spectra using data
from KiDS-450 (∼450 deg2 of cosmic shear data from the KiDS
survey) and two overlapping spectroscopic surveys, the 2-degree
Field Lensing Survey4 (2dFLenS; Blake et al. 2016) and the Baryon
Oscillation Spectroscopic Survey5 (BOSS; Dawson et al. 2013).
They found that none of the extended cosmologies considered
were simultaneously favoured in a model selection sense and able
to resolve the discordance with Planck, except for an evolving
dark energy component with a time-dependent w0 − wa equation
of state. Amon et al. (2018) presented a measurement of EG, a
statistic combining measurements of weak gravitational lensing,
galaxy clustering, and redshift space distortions, proposed as a
consistency test of General Relativity (Zhang et al. 2007). They
determined the value of EG using data from the KiDS, 2dFLenS,
BOSS, and Galaxy And Mass Assembly6 (GAMA; Driver et al.
2009, 2011; Liske et al. 2015) surveys; their results show that
measurements of the EG statistic cannot be conducted as consistency
checks of General Relativity until the aforementioned tension in
cosmological parameters is resolved, and their EG measurements
favour a lower matter density cosmology than the CMB. Recently,
DES Collaboration (2019) presented a combined analysis of galaxy
clustering and weak gravitational lensing from the first-year data
of the Dark Energy Survey, targeting modifications of the metric
potentials that would be a signal of modified gravity. They found
that their constraints are compatible with a cosmological constant
scenario.

For a flat �CDM model, van Uitert et al. (2018, hereafter vU18)
exploited the overlap of the KiDS and GAMA surveys to pro-
duce constraints on cosmological parameters by cross-correlating
cosmic shear measurements from KiDS-450, the galaxy-matter
cross-correlation from KiDS-450 around two foreground samples

4http://2dflens.swin.edu.au/
5http://www.sdss3.org/surveys/boss.php
6http://www.gama-survey.org/
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of GAMA galaxies, and the angular correlation function of the
same foreground galaxies. Their results are consistent with both
the KiDS-450 (Hildebrandt et al. 2017; Köhlinger et al. 2017)
and Planck analyses (Planck Collaboration XIII 2016a, Planck
Collaboration XIV 2016b, Planck Collaboration VI 2018) when
considering the cross-correlation of all three probes; with cosmic
shear alone, their results are fully consistent with the KiDS analysis,
while showing a similar tension with the Planck results.

In this work, we extend the analysis of vU18 to the Horndeski
class of dark energy and modified gravity models. The evolution
of linear cosmological perturbations in Horndeski gravity can be
fully described by four functions of time only (Gleyzes et al. 2013;
Bellini & Sawicki 2014). Assuming a time parametrization for
these functions, it is possible to set constraints on the parameters
describing their time evolution: this is the main goal of our study.
We consider two parametrizations and concentrate in particular on
a parametrization that sets these functions proportional to the dark
energy density fraction �DE(a) = 1 − �m(a); this choice allows the
Horndeski functions to reproduce the late-time cosmic acceleration.
One of these functions is largely unconstrained by LSS probes,
and uncorrelated with all other cosmological parameters, therefore
we fix its value. We fix also the Horndeski function describing
deviations of the gravitational wave speed from that of light, as it has
been recently constrained by gravitational wave detections. We set
constraints on the remaining two Horndeski functions, describing
how the scalar and metric kinetic terms mix and how the effective
gravitational constant evolves over time, respectively.

This paper is structured as follows. In Section 2, we review
the Horndeski class of dark energy/modified gravity models and
introduce the description of linear perturbations underlying our
constraints. In Section 3, we present expressions for the power
spectra of the three probes considered, assuming a generic modified
gravity scenario. In Section 4, after briefly describing the data
used in our analysis and the surveys from which they were
obtained, we detail our methodology for cosmological inference,
in particular how we modelled the theoretical power spectra for
comparison with our data vector. In Section 5, we present our
Horndeski gravity constraints, while the agreement of our �CDM
results with the ones obtained by vU18 is shown in Appendix D.
We also describe how our results compare with the Planck re-
sults, and present constraints obtained from a combined analysis
with CMB measurements. Finally, we draw our conclusions in
Section 6.

2 H O R N D E S K I TH E O R I E S

The most general scalar–tensor theory of gravity that is 4D, Lorentz-
invariant, local, energy–momentum conserving and has equations
of motion with derivatives not higher than second order, can be
written as (Horndeski 1974):

S[gμν, φ] =
∫

d4x
√−g

[
5∑

i=2

1

8πGN

Li [gμν, φ] + Lm[gμν, ψm]

]
,

L2 = G2(φ,X),

L3 = −G3(φ,X)�φ,

L4 = G4(φ,X)R + G4X(φ,X)
[
(�φ)2 − φ;μνφ

;μν
]
,

L5 = G5(φ,X)Gμνφ
;μν − 1

6
G5X(φ,X)

× [
(�φ)3 + 2φ;μ

νφ;ν
αφ;α

μ − 3φ;μνφ
;μν�φ

]
. (1)

where g = det gμν , R is the Ricci scalar, and the integration in
d4x is carried out over the whole 4D spacetime. The Gi(φ, X)
are arbitrary functions of the additional scalar field φ and its
kinetic term X = − 1

2 ∇μφ∇μφ. The choice of the Gi(φ, X) functions
specifies the single modified gravity model considered within the
Horndeski class. The four contributionsLi to the gravitational sector
depend on the Gi(φ, X) functions and on their partial derivatives,
denoted with subscripts φ, X, e.g. GiX = ∂Gi/∂X. The Horndeski
Lagrangian only considers universal coupling between the metric
and the matter fields (collectively described by ψm and contained
in the matter Lagrangian Lm), which are therefore uncoupled to
the scalar field. Most of the universally coupled models with
one additional scalar degree of freedom belong to the Horndeski
class. These include for example quintessence (Ratra & Peebles
1988; Wetterich 1988), Brans-Dicke models (Brans & Dicke
1961), k-essence (Armendáriz-Picón, Damour & Mukhanov 1999;
Armendariz-Picon, Mukhanov & Steinhardt 2001), kinetic gravity
braiding (Deffayet et al. 2010; Kobayashi, Yamaguchi & Yokoyama
2010; Pujolàs, Sawicki & Vikman 2011), covariant galileons
(Deffayet, Esposito-Farèse & Vikman 2009; Nicolis et al. 2009),
disformal and Dirac-Born-Infeld gravity (de Rham & Gabadadze
2010; Bettoni & Liberati 2013; Zumalacárregui, Koivisto & Mota
2013), chameleons (Khoury & Weltman 2004a; Khoury & Weltman
2004b), symmetrons (Hinterbichler & Khoury 2010; Hinterbichler
et al. 2011), Gauss–Bonnet couplings (Ezquiaga, Garcı́a-Bellido &
Zumalacárregui 2016) and models screening the cosmological
constant (Charmousis et al. 2012; Martı́n-Moruno, Nunes & Lobo
2015), all variants of f(R) (Carroll et al. 2004) and f(G) (Carroll
et al. 2005) theories.

We now turn to the description of linear cosmological perturba-
tions in Horndeski gravity. Considering linear scalar perturbations
on a Friedmann–Robertson–Walker metric, assuming spatial flat-
ness on large scales one can write the line element in Newtonian
gauge, using cosmic time t and comoving coordinates x, as

ds2 = −
(

1 + 2


c2

)
c2dt2 + a2 (t)

(
1 − 2

�

c2

)
dx2, (2)

with the Bardeen potentials  and � satisfying the condition  = �

in General Relativity in absence of anisotropic stress; for a modified
gravity theory, this equality in general does not hold.

We fix the background expansion to �CDM and study the
evolution of linear cosmological perturbations in Horndeski gravity.
It has been shown that linear perturbations in Horndeski theories
can be parametrized by means of four functions of (conformal)
time τ only (Gleyzes et al. 2013; Bellini & Sawicki 2014), which
purely affect structure formation leaving the background expansion
unchanged. A possible choice for these four functions is particularly
informative on the physical meaning associated to each of them. We
will collectively denote these four specific functions as α(τ ) and
briefly comment on their physical interpretation here, referring to
Bellini & Sawicki (2014) and references therein for a more complete
description:

(i) αK is the kineticity term, i.e. the kinetic energy of the scalar
perturbations arising directly from the action. In the quasi-static
approximation where time derivatives are negligible compared to
space derivatives, αK does not enter the equations of motion and
is therefore largely unconstrained by cosmic shear and other LSS
probes (Bellini et al. 2016; Alonso et al. 2017; Spurio Mancini et al.
2018; Reischke et al. 2019). In our analysis, we will fix αK to zero,
i.e. its General Relativity value. This does not affect the constraints
on the other α functions, since αK is largely uncorrelated with
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2158 A. Spurio Mancini et al.

all other parameters (Spurio Mancini et al. 2018; Reischke et al.
2019)7;

(ii) αB is the braiding term, which describes mixing of the scalar
field with the metric kinetic term, leading to what is typically
interpreted as a fifth force between massive particles influencing the
structure formation rate. As shown by Bellini & Sawicki (2014), αB

introduces a new scale dependence of the theory beyond the Jeans
length. The dark energy component clusters at small scales only if
there is braiding, αB �= 0 (Bellini et al. 2016);

(iii) αM is the Planck-mass run rate, defined by

αM ≡ d lnM2
∗

d ln a
. (3)

αM describes the rate of evolution of the effective Planck mass M2
∗ ,

defined as the dimensionless product of the normalization of the
kinetic term for gravitons and 8πGN measured on the Earth, i.e.
it describes a time evolution of the effective gravitational constant
that modifies the growth of perturbations when there is non-zero
braiding. A mere fixed redefinition of the Planck mass would
not produce detectable effects on structure formation, as it could
always be reabsorbed by an appropriate rescaling of the action.
Theories with αM �= 0 are non-minimally coupled. As shown in
Saltas et al. (2014), αM generates anisotropic stress and modifies
the propagation of gravitational waves;

(iv) αT is the tensor speed excess, indicating deviations of the
propagation speed of gravitational waves from the speed of light.
Recently, very strong constraints have been placed on αT by
the measurement of the gravitational wave speed derived by the
detection of the binary neutron star merger GW170817 and the
associated gamma-ray burst GRB170817A (Abbott et al. 2017a,
b; Baker et al. 2017; Bettoni et al. 2017; Creminelli & Vernizzi
2017; Ezquiaga & Zumalacárregui 2017; Lombriser & Lima 2017;
Sakstein & Jain 2017). Since the tensor speed has been found
to be very close to that of light, the value of αT at present time
has been constrained to be very close to zero. While in principle
this constraint may not apply to αT’s value at all times (see e.g.
Amendola et al. 2018; Battye, Pace & Trinh 2018; de Rham &
Melville 2018), setting αT to vanish across all cosmic history is
the simplest choice and in this work we will stick to this option,
following a common choice in recent literature (Kreisch & Komatsu
2017; Denissenya & Linder 2018; Spurio Mancini et al. 2018;
Reischke et al. 2019). We also notice that, since we will be mainly
interested in a parametrization of the α functions that make them
vary linearly with the dark energy density fraction (as discussed
later in this Section), for our purposes having constraints that make
αT vanish in our local Universe also imply that αT vanishes across
all cosmic history.

We remark that the other three α functions are still free to vary,
although again, we fix αK in our analysis because it is unconstrained
by LSS probes and uncorrelated with all other parameters. This
leaves us with two Horndeski functions to constrain, αB and αM.

7In practice, when running our MCMC chains we fix αK to a very small
value; for example, when using the parametrization αK(τ ) = α̂K�DE(τ ) (see
the end of Section 2), we set α̂K = 0.01. Observationally, the difference
between predicted matter power spectra (which enter the expression for the
power spectra of the cosmological probes in our analysis) for α̂K = 0.01
and α̂K = 0 would not be distinguishable, while setting α̂K = 0 produces
numerical instabilities in HICLASS. For this reason, we fix α̂K to 0.01; we
also notice that any other value for α̂K would be equally acceptable, as αK

is in any case unconstrained by LSS probes, and largely uncorrelated with
all other parameters.

For details on the status of studies of Horndeski theories after the
constraints on αT from gravitational waves, we refer the reader to
Ezquiaga & Zumalacárregui (2017), who identify the models within
the Horndeski classes that are still viable after GW170817 (see also
Kase & Tsujikawa 2018), and Peirone et al. (2018), who show that
even the strict bound on the present-day gravitational wave speed
does not exclude at all non-trivial signatures of modified gravity
that can be measured in linear cosmic perturbations. Excluding
modifications to αT (as we assume throughout our analysis, as well
as fixing αK and the expansion history) effectively reduces the
large class of Horndeski models to a more limited set of theories;
this includes prototypical examples of dark energy and modified
gravity theories, such as quintessence, f(R), Brans-Dicke, kinetic
gravity braiding models, while more complicated theories such as
Galileon models (Ezquiaga & Zumalacárregui 2017; Ezquiaga &
Zumalacárregui 2018) are excluded.

These α(τ ) functions are all identically vanishing in �CDM: any
clear detection of values different from zero for these functions
would mark a deviation from the concordance cosmological model.
In this paper, we aim at setting constraints on the α(τ ) functions.
To achieve this goal, we first need to choose a parametrization
for their time evolution. Our first choice is to consider their time
evolution to trace that of the dark energy component, to which they
are proportional. We set then

αi(τ ) = α̂i �DE(τ ). (4)

The first constraints we present in Section 5 will be on the propor-
tionality coefficients α̂i . This parametrization is the simplest and
most common in the literature (as used, e.g. in Planck Collaboration
XIV 2016b) and can already provide comprehensive information on
Horndeski gravity, as remarked by Gleyzes (2017).

The second parametrization we consider, also studied in Planck
Collaboration VI (2016b), represents a subclass of models, specifi-
cally k-essence conformally coupled to gravity. In this parametriza-
tion, the four α(τ ) functions can be specified through a single
function of time �(τ ) affecting three of the α(τ ) functions:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

αK = 3(ρDE+pDE)
H 2 + 3�(ρm+pm)

H 2(1+�)
− �′′−2aH�′

a2H 2(1+�)

αM = �′
aH (1+�)

αB = −αM

αT = 0 ,

(5)

where a prime denotes derivative with respect to conformal time.
The parametrization for �(τ ) is given by �0 a(τ ): the only free
modified gravity parameter becomes then �0.

3 THEORETI CAL POWER SPECTRA

In this section, we summarize the mathematical expressions for the
projected power spectra of the three cosmological probes considered
in our analysis. Our data vector, which we share with vU18, is
composed of estimates of these power spectra, as functions of the
tomographic bin and the angular multipole �. There are multiple
advantages in using estimators of power spectra, acting in Fourier
space, over real-space correlation functions, although the latter may
be easier to measure (Köhlinger et al. 2016): We mention here in
particular the fact that the covariance matrix of the power spectra is
more diagonal than its real-space counterpart, which contributes
to a cleaner separation of scales; furthermore, power spectrum
estimators can be used to extract the B-mode part of the signal,
which in cosmic shear studies serves as a systematic check because,
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KiDS + GAMA: constraints on Horndeski gravity 2159

in absence of systematics, it should be consistent with zero at lowest
order.

For estimation of the power spectra, the authors of vU18 followed
the formalism originally developed for cosmic shear by Schneider
et al. (2002) (and extended by vU18 to galaxy–galaxy lensing
and galaxy clustering) based on simple integrals with appropriate
weighting functions over the real-space correlation functions, which
can be measured with existing public code such as TREECORR8

(Jarvis, Bernstein & Jain 2004), employed by vU18; we refer the
reader to vU18 for details.

We conform to vU18 in referring to the power spectra associated
to cosmic shear, galaxy–galaxy lensing, and galaxy clustering as
PE, Pgm, and Pgg, respectively. In the cosmic shear case, the label
stands for E-mode. vU18 also measured the B-mode power spectra
and found a tentative signal; however, based on the assumption
that a potential systematic affects E- and B-modes in the same
way, they created a new data vector where they substracted the
B-modes from the E-modes, and found that this correction shifted
their main cosmological inference result by less than 0.5σ . Since
PE does not vary rapidly with �, vU18 only needed a few �-bins
to capture most of the cosmological information. They used five
logarithmically spaced bins, whose logarithmic means range from
� = 200 to � = 1500. Pgm and Pgg were estimated adopting the same
� ranges. Our data vector is unchanged with respect to the one used
by vU18 and as such shares all the aforementioned properties. On
the theoretical side, however, differently from vU18 we are working
on constraints on Horndeski gravity: therefore, we need to present
theoretical predictions for the power spectra in a modified gravity
context, to be compared with the estimated power spectra in the
cosmological inference process.

3.1 Modifications of Poisson equation and ratio of Bardeen
potentials

In order to provide equations for the power spectra of the three
probes in a general modified gravity scenario, we need to introduce
the modifications to the Poisson equation and the ratio of the
Bardeen potentials that distinguish a modified gravity theory from
General Relativity in absence of anisotropic stress. In Newtonian
gauge, the linear perturbation equations in Fourier space in a
general modified gravity scenario are given by (Zhang et al. 2007;
Amendola, Kunz & Sapone 2008; Saltas et al. 2014)

 = −3

2

�mH 2
0

k2

δ

a
μ(k, χ ) ; (6)

�


= η(k, χ ) , (7)

where μ and η are in general the functions of both time and scale, and
equal to unity in General Relativity in absence of anisotropic stress.
In the quasi-static limit, where one neglects time derivatives in the
Einstein equations for the perturbations (Sawicki & Bellini 2015),
an explicit formula can be found, connecting the α(τ ) functions
directly to the μ and η functions (see e.g., Appendix A in Alonso
et al. 2017). However, the validity of the quasi-static approximation
depends on the specific modified gravity model considered and the
range of scales probed by the cosmological survey considered in
the analysis (Baker & Bull 2015). We stress here that we do not use
the quasi-static approximation: as described in Section 4, we source

8https://github.com/rmjarvis/TreeCorr

the potential and density statistics directly from the Boltzmann code
HICLASS, which does not assume the quasi-static regime. The values
of the α(τ ) functions at different times is a direct output of the code,
while the values of μ and η can be easily derived from the evolved
potential and density statistics (as done, e.g. in Spurio Mancini et al.
2018; Reischke et al. 2019).

The equations presented next are for this general modified gravity
scenario, and the ones used in vU18 for �CDM can be deduced
from ours by setting μ = η = 1 identically, which is equivalent
to setting all α(τ ) functions to zero. For all our power spectrum
estimators, we assume the extended Limber approximation, in the
form given by Loverde & Afshordi (2008), which uses � + 1/2
in the argument of the matter power spectrum but no additional
pre-factors. Many recent papers have demonstrated that for cosmic
shear these approximations are excellent on the scales that we
consider (Kilbinger et al. 2017; Kitching et al. 2017; Lemos,
Challinor & Efstathiou 2017), and this is also true for galaxy–galaxy
lensing and galaxy clustering power spectra (see vU18). A detailed
derivation of the expression for the cosmic shear power spectrum
is reported in Appendix A; expressions for galaxy–galaxy lensing
and galaxy clustering power spectra can be derived following the
same approach.

3.2 Cosmic shear

The weak lensing convergence power spectrum can be obtained
from the 3D matter power spectrum Pδ via

P E
ij (�) =

(
3H 2

0 �m

2c2

)2 ∫ χH

0
dχ

gi(χ )gj (χ )

a(χ )2
Pδ

(
� + 1/2

χ
; χ

)

×μ

(
� + 1/2

χ
, χ

)2
⎛
⎝1 + η

(
�+1/2

χ
, χ

)
2

⎞
⎠

2

, (8)

where indices i, j label the tomographic bins, H0 is the Hubble
constant, �m the present-day matter density parameter, c the speed
of light, χ the comoving distance (we assume spatial flatness here
and throughout the paper), a(χ ) the scale-factor, χH the Hubble
radius today, and gi(χ ) a geometric weight factor, which depends
on the source redshift distribution ni(z) for tomographic bin i,
ni(z) dz = ni(χ ) dχ :

gi(χ ) =
∫ χH

χ

dχ ′ ni(χ
′)

χ ′ − χ

χ ′ . (9)

The ni(χ ) distributions are normalized such that
∫

dχ ni(χ ) = 1 ∀i.

3.3 Galaxy–galaxy lensing

The cross-correlation spectrum between lensing convergence and
matter density has the following form:

P
gm
ij (�) = bi

(
3H 2

0 �m

2c2

)∫ χH

0
dχ

nFi (χ)gj (χ)

a(χ)χ
Pδ

(
� + 1/2

χ
; χ

)

× μ

(
� + 1/2

χ
, χ

)2
⎛
⎝1 + η

(
�+1/2

χ
, χ

)
2

⎞
⎠ , (10)

with nFi (χ ) the redshift distribution of the foreground sample
labelled by index i (here indices i and j run over foreground samples
and cosmic shear tomographic bins, respectively). Similar to vU18,
we use an effective linear bias bi for each foreground sample (see
Section 4.5 for details).
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3.4 Galaxy clustering

The angular power spectrum can be determined from the matter
power spectrum via

P
gg
ii (�) = bibi

∫ χH

0
dχ

nFi(χ )nFi(χ )

χ2
Pδ

(
� + 1/2

χ
; χ

)

×μ

(
� + 1/2

χ
, χ

)2

, (11)

where, as above, bi corresponds to the effective bias of the
sample and, as in vU18, we consider only autocorrelations of the
tomographic bin power spectra. Our data set consists of two GAMA
foreground samples (see Section 4.2), one at lower and the other at
higher redshift. Following Loverde & Afshordi (2008), for our two
foreground samples we obtain threshold scales for the validity of
the Limber approximation of �� 15 and �� 25, respectively. Since
the minimum � scale entering the analysis is 150, the Limber
approximation is valid for both our samples at sub per cent level
(see also Kilbinger et al. 2017).

4 DATA A NA LY SIS

In order to obtain constraints on both standard cosmological param-
eters and those that describe the evolution of linear perturbations
in Horndeski gravity (introduced in Section 2), we carry out
cosmological inference in a Bayesian framework, sampling the
likelihood

− 2 lnL(θ ) =
∑
α, β

dα(θ)(C−1)αβ dβ (θ ) , (12)

where the indices α, β run over the probes considered, as well as
the tomographic bins and the angular multipole �. The analytical
covariance matrix C is calculated as outlined below in Section 4.1.
Equation (12) assumes that the estimated power spectra are Gaus-
sian distributed around their mean; it must be noted that this is an
approximation, rigorously valid only at high � as a consequence
of the Central Limit theorem. For the multipole range considered
here, this approximation is safe. The components of the vector
multiplying the covariance matrix are calculated as

dα(θ ) = Pα − 〈Pα(θ)〉model , (13)

where the dependence on cosmological parameters enters only in
the calculation of the predicted power spectra, 〈Pα(θ)〉model, which
is carried out according to equations 8, 10, and 11, while Pα

denotes the measured power spectrum, with index α running over
the cosmological probe and pair of tomographic bins considered.

To constrain the cosmological parameters, we use the sampler
MONTEPYTHON (Audren et al. 2013)9 and build a likelihood module
to analyse the three probes considered. The likelihood module is
based on the one developed in Köhlinger et al. (2017) for the KiDS-
450 quadratic estimator analysis. Our module has been developed
considering as high priority the flexibility to choose different
combinations of cosmological probes as well as the possibility
to perform the analysis in either a standard �CDM cosmological
scenario or an extended modified gravity scenario within the
Horndeski framework. These two options are possible as a result
of interfacing MONTEPYTHON with HICLASS (Zumalacárregui et al.
2017),10 a Boltzmann solver extending CLASS (Blas, Lesgourgues &

9Version 2.2.2 from https://github.com/baudren/montepython public
10https://github.com/miguelzuma/hi class public

Tram 2011)11 to Horndeski models, and thus allowing the user to
source the matter power spectrum in either a �CDM or a Horndeski
cosmological model, respectively (see Section 5.1 for details). As
a sanity check, we verified that we obtain the same �CDM results
when running with HICLASS (with Horndeski corrections switched
off) as when running directly with CLASS. Our code implementation
is publicly accessible.12

In contrast, the analysis of vU18 was carried out only in �CDM
with a likelihood module built for the sampler COSMOMC (Lewis &
Bridle 2002) for cosmological parameter estimation. The likelihood
code of vU18 was based on the one used in Joudaki et al. (2017)
for the fiducial KiDS cosmic shear analysis.

For an efficient evaluation of the likelihood, we use two sampling
methods, namely MULTINEST (Feroz, Hobson & Bridges 2009), a
multimodal Nested Sampling (Skilling 2006) algorithm included
with a PYTHON wrapper (PYMULTINEST; Buchner et al. 2014) in
MONTEPYTHON, and highly parallelized affine invariant sampling
through the COSMOHAMMER suite (Akeret et al. 2013), embedded in
MONTEPYTHON. COSMOHAMMER embeds in turn EMCEE, an imple-
mentation by Foreman-Mackey et al. (2013) of the affine invariant
ensemble sampler by Goodman & Weare (2010). We verified
that both MULTINEST and COSMOHAMMER sampling methods yield
inference results consistent between each other.

4.1 Covariance

As can be seen from equation (12), errors on cosmological pa-
rameters are determined by the parameter covariance matrix C, or
more precisely its inverse, the precision matrix C−1. Developing
methods for efficient computation of precision matrices is an area
of active research (see e.g. Taylor & Joachimi 2014; Schäfer &
Reischke 2016; Sellentin & Heavens 2016; Heavens et al. 2017;
Reischke, Kiessling & Schäfer 2017; Jeffrey & Abdalla 2018). Our
covariance matrix is unchanged with respect to the one used by
vU18, i.e. is determined analytically, following a similar formalism
as in Hildebrandt et al. (2017). Here, we briefly review the main
terms of the calculation, referring to vU18 for further details.

The analytical covariance matrix consists of three terms: (i) a
Gaussian term accounting for the Gaussian contribution to sample
variance, shape noise, and a mixed noise-sample variance term,
estimated following Joachimi, Schneider & Eifler (2008), (ii) an in-
survey non-Gaussian term from the connected matter trispectrum,
and (iii) a supersample covariance term. The latter accounts for
cosmic variance modes larger than the survey window and coupling
to smaller modes within. One of the main advantages of the
analytical approach to covariance estimation lies indeed in its
ability to better account for supersample covariance. To compute
(ii) and (iii), vU18 followed Takada & Hu (2013) and the extension
to galaxy–galaxy lensing and galaxy clustering presented, e.g. in
Krause & Eifler (2017).

The publicly available covariance that we employ makes ide-
alistic assumptions about the shot noise contribution that leads to
an underprediction of variance on large scales where the survey
geometry becomes relevant. This was recently shown to be the
reason behind the relatively large χ2 values found for previous KiDS
and DES analyses (Troxel et al. 2018b). As the posterior was largely
unaffected, we can proceed with the available covariance matrix but

11Version 2.4.5 from https://github.com/lesgourg/class public
12Our likelihood module will be made publicly available after acceptance
of this paper by the Journal.
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have to keep the above limitations in mind when interpreting the
goodness of fit.

We also notice that, similar to vU18, we do not consider any
parameter dependence for the covariance matrix. vU18 checked
that this choice was safe for their analysis. Here, the covariance
matrix is calculated at the same fiducial model chosen by vU18.
This is motivated by the fact that we choose a fiducial model for our
priors that is given by the same �CDM model chosen by vU18.

4.2 Data

The KiDS (de Jong et al. 2013) is an ongoing optical imaging
survey that, once completed, will have spanned 1350 deg2 of the
sky in four optical bands, u, g, r, and i. Our cosmic shear power
spectra ,13 which we have in common with vU18, are estimated
from the KiDS-450 shape measurement catalogues (de Jong et al.
2017; Hildebrandt et al. 2017), containing shape measurements and
photometric redshifts of 450 deg2 of data, with galaxies situated
in regions of the sky overlapping with the observational window
of GAMA. We use the samples associated with the same four
KiDS tomographic source redshift bins adopted in Hildebrandt et al.
(2017) and vU18, spanning in redshift zB the intervals 0.1 <zB ≤
0.3, 0.3 <zB ≤ 0.5, 0.5 <zB ≤ 0.7, and 0.7 <zB ≤ 0.9. The main
properties of the source samples, such as their average redshift,
number density, and ellipticity dispersion, can be found in table 1
of Hildebrandt et al. (2017). Importantly, we use the same redshift
distributions used in vU18 and Hildebrandt et al. (2017).

The GAMA survey (Driver et al. 2009, 2011; Liske et al. 2015) is
a spectroscopic survey of ∼ 240 000 galaxies. vU18 used a subset
of ∼ 180 000 galaxies fully overlapping with KiDS. vU18 selected
two GAMA samples, a low-redshift sample with zspec < 0.2, and a
high-redshift sample with 0.2 < zspec < 0.5. These two foreground
samples are used to determine the galaxy-matter cross-correlation
as well as the clustering power spectra; we adopt both from vU18.

4.3 Non-linear structure formation and baryonic feedback
model

A proper inclusion of a series of astrophysical systematics and an
appropriate modelling of the matter power spectrum on non-linear
scales is important to derive accurate cosmological constraints.
Here, we will describe our choice for the non-linear power spectrum
and in particular for the description of baryonic feedback, which
modifies the matter power spectrum on small, non-linear scales (e.g.
Semboloni, Hoekstra & Schaye 2013).

The effect of non-linear structure formation and baryonic feed-
back can now be modelled in CLASS using a module called
HMCODE (Archidiacono, Brieden & Lesgourgues, in preparation),
based on the results of Mead et al. (2015), who account for baryonic
effects [in particular, active galactic nuclei (AGN) feedback] by
modifying parameters that describe the shape of dark matter haloes.
This reflects, for example, what happens with AGN and supernova
feedback, which make haloes less concentrated by pushing material
out of them. In HMCODE, this is modelled by choosing a functional
form for the mass–concentration relation of the type

c(M, z) = cmin
1 + zf

1 + z
, (14)

13Measured power spectra and covariance matrices used in this analysis and
in vU18 are publicly available at http://kids.strw.leidenuniv.nl/sciencedata.
php.

where zf is the formation redshift of a halo, which depends on
the halo mass. The free parameter in the fit, cmin, modulates the
amplitude of this mass–concentration relation. It also sets the
amplitude of a ‘halo bloating’ parameter η0, which changes the
halo profile in a mass-dependent way (see equation 26 of Mead et al.
2015). vU18 followed the recommendation of Mead et al. (2015)
by fixing η0 = 1.03 − 0.11cmin; we follow the same choice. Setting
cmin = 3.13 corresponds to a dark-matter-only model. Marginalizing
over cmin allows us to account for the uncertainty on this parameter.
This will be done in Section 5 every time we show contour plots
for pairs of parameters (the ones not including cmin), as these are
marginalized over all other parameters except the two considered
in each contour plot.

The problem of non-linear contributions in this modified gravity
context is even more exacerbated than in �CDM, since clear
prescriptions for modified gravity models on non-linear scales are
highly model dependent and currently not available at the required
precision. We decided to produce our non-linear corrections using
also in this modified gravity case HMCODE, which takes into account
baryonic effects. The main obstacle in this sense has been the
absence of an implementation of HMCODE in HICLASS. To solve this
problem, we developed our own version of HMCODE for HICLASS,
modifying the one provided to us for CLASS. We remark here that
the use of HMCODE is not the most rigorous approach to non-linear
corrections in modified gravity because HMCODE is a refined version
of HALOFIT (Smith et al. 2003), which has been developed for a
�CDM model. However, while prescriptions for single modified
gravity models exist (see e.g. Winther et al. 2015), there is no general
one for the non-linear power spectrum for the whole Horndeski
class of dark energy and modified gravity models. By choosing
to deal with non-linearities using HMCODE, we hope to give a
flavour of the increased constraining power that comes from non-
linear scales (as done, e.g. in Alonso et al. 2017; Spurio Mancini
et al. 2018; Reischke et al. 2019, for future Stage IV surveys),
however, we warn of the necessity of developing proper formalisms
for the non-linear matter power spectrum in Horndeski gravity
for the purpose of constraining these gravity models with future
surveys.

Having said that, we notice that given the size of the error bars
obtained in our analysis, and the fact that we already marginalize
over the baryon feedback parameter, we are not sensitive to
small modifications in the non-linear model. To substantiate this
statement, in Appendix C we studied in detail the effect of non-
linear corrections on our cosmological constraints, by introducing
an additional phenomenological nuisance parameter that mimics
the effect of different modified gravity models on the non-linear
matter power spectrum. Our main finding is that our cosmological
constraints are largely insensitive to this additional parameter,
corroborating the strength of our analysis against different possible
choices for the non-linear matter power spectrum. This will certainly
need to be reassessed in future work, where the same analysis could
be repeated with larger data sets, more sensitive to varying non-
linear prescriptions for different modified gravity models.

4.4 Screening mechanisms

A screening mechanism is an important ingredient of modified
gravity theories. Acting as a non-linear effect, it screens modifi-
cations of gravity at small scales to provide agreement with tests
of General Relativity in short scales or high-density environments
such as the Solar system (see e.g. Koyama 2016). We model
screening mechanisms in a phenomenological way, by applying
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Table 1. Priors on the fit parameters. Rows 1–5 contain the priors on
cosmological parameters, rows 6–9 the priors on astrophysical ‘nuisance’
parameters, and rows 10–13 the priors on modified gravity parameters. All
prior distributions are uniform within their ranges.

Parameter Description Prior range

ωcdm Cold dark matter density [0.01, 0.99]
ωb Baryon density [0.019, 0.026]
ln (1010As) Scalar spectrum amplitude [1.7, 5.0]
ns Scalar spectral index [0.7, 1.3]
h Dimensionless Hubble parameter [0.64, 0.82]

AIA Intrinsic alignment amplitude [−6, 6]
cmin Baryonic feedback amplitude [2, 4]
biasz1 Galaxy bias of low-z lens sample [0.1, 5]
biasz2 Galaxy bias of high-z lens sample [0.1, 5]

α̂B Prop. coeff. αB(τ ) = α̂B�DE(τ ) [−2, 2]
α̂M Prop. coeff. αM(τ ) = α̂M�DE(τ ) [−2, 2]
�0 Prop. coeff. �(τ ) = �0a(τ ) [0, 1]
log ks screening scale [−1, 1]

a scale-dependent filter to the effective Newtonian coupling, the
gravitational slip, and the linear growth factor:

μ(k, a) → 1 + μMG(k, a) exp(−(k/ks)
2)

η(k, a) → 1 + ηMG(k, a) exp(−(k/ks)
2)

D+(k, a) → D+GR(a) + D+MG(k, a) exp(−(k/ks)
2). (15)

This achieves the recovery of General Relativity predictions on
scales k > ks. A (conservative) value for ks is 0.1 h Mpc−1 (Alonso
et al. 2017; Spurio Mancini et al. 2018; Reischke et al. 2019); we
vary over this scale taking a uniform prior on the logarithm of ks

over the interval [ − 1, 1], thus spanning three orders of magnitude
for the screening scale.

4.5 Intrinsic alignment model

Intrinsic alignments affect both the cosmic shear power spectrum
and the galaxy-matter power spectrum. For the cosmic shear power
spectrum, there are two contributions, the intrinsic–intrinsic (II)
and the shear–intrinsic (GI) terms, while the galaxy–matter power
spectrum has a galaxy–intrinsic (gI) contribution (e.g. Joachimi &
Bridle 2010). We model the intrinsic alignment power spectrum
following the non-linear modification of the linear alignment
model (Catelan, Kamionkowski & Blandford 2001; Hirata &
Seljak 2004; Bridle & King 2007; Hirata & Seljak 2010; Blazek
et al. 2017):

PδI(k, z) = −AIAC1ρcrit
�m

D+(k, z)
Pδ(k, z) ≡ F (k, z)Pδ(k, z) , (16)

with Pδ(k, z) the full non-linear matter power spectrum, D+(k,
z) the linear growth factor, normalized to unity at z = 0 and in
general dependent on scale and redshift in modified gravity, ρcrit

the critical density, C1 = 5 × 10−14h−2M−1
� Mpc3 a normalization

constant chosen such that C1 ρcrit ≈ 0.0134 (Hirata & Seljak 2004;
Bridle & King 2007; Joachimi et al. 2011), and AIA the overall
amplitude, which is a free parameter in our model.

As already mentioned in Sections 3.3 and 3.4, to model Pgm

and Pgg, we assume that the galaxy bias is constant and scale
independent, to be interpreted as an effective bias since we also
consider non-linear scales. This effective bias is fitted separately for
the low-redshift and high-redshift foreground sample. Motivation

for not using a scale dependence for the bias comes from combined
observations of galaxy–galaxy lensing and galaxy clustering, which
found the scale dependence to be small (e.g. Hoekstra et al. 2002;
Simon et al. 2007; Cacciato et al. 2012; Jullo et al. 2012). We refer
to vU18 for details on how this approximation of scale-independent
bias is benign in their analysis as well as in ours. For cosmic shear,
in a modified gravity context the intrinsic alignments contributions
are given by (i↔j stands for the symmetric term obtained swapping
indices i and j)

P GI
ij (�) =

(
3H 2

0 �m

2c2

)∫ χH

0
dχ

gi(χ )nj (χ )Fj

(
�+1/2

χ
, χ

)
a(χ ) χ

×Pδ

(
� + 1/2

χ
; χ

)
μ

(
� + 1/2

χ
, χ

)2

×
⎛
⎝1 + η

(
�+1/2

χ
, χ

)
2

⎞
⎠ + i ↔ j (17)

P II
ij (�) =

∫ χH

0
dχ

ni(χ )nj (χ )Fi

(
�+1/2

χ
, χ

)
Fj

(
�+1/2

χ
, χ

)
χ2

×Pδ

(
� + 1/2

χ
; χ

)
μ

(
� + 1/2

χ
, χ

)2

, (18)

while for galaxy–galaxy lensing, the intrinsic alignments contribu-
tion is given by

P
gI

ij (�) =
∫ χH

0
dχ nj (χ )nFi(χ )Fj

(
� + 1/2

χ
, χ

)
bj (χ )

χ2

×Pδ

(
� + 1/2

χ
; χ

)
μ

(
� + 1/2

χ
, χ

)2

. (19)

We note that modifications to the linear growth factor D+ and the
modified gravity functions μ and η are included for completeness,
but their constraining power is limited due to the intrinsic alignment
amplitude AIA left free to vary.

4.6 Priors

The cosmological parameters in our parameter space are the cold
dark matter density wcdm = �cdmh2, the baryon density wb =
�bh2, the amplitude of the primordial power spectrum As (we
vary over ln1010As), the value h of the Hubble parameter today
divided by 100 km s−1 Mpc−1 and the exponent of the primordial
power spectrum ns. The parameters �m, σ 8, and S8 = σ8

√
�m/0.3,

shown in the plots in the following sections, are derived parameters
in our analysis. When constraining Horndeski gravity, we vary
additionally over either the proportionality coefficients α̂B and α̂M ,
for αB (τ ) = α̂B �DE(τ ) and αM (τ ) = α̂M �DE(τ ), or �0, for the
parametrization given by equation (5), where the only free function
is �(τ ) = �0 a(τ ).

The astrophysical nuisance parameters (discussed earlier in
Sections 4.3 and 4.5) considered in our parameter space are the
intrinsic alignment amplitude AIA, the HMCODE parameter cmin

and the effective bias values for the low-z and high-z foreground
samples, denoted with biasz1 and biasz2, respectively. We also vary
over a cut-off scale for the screening mechanism, as described in
Section 4.4.

We adopt top-hat priors, with ranges specified in Table 1, on
all cosmological and physical nuisance parameters. We fix kpivot,
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Table 2. Mean and marginalized 68 per cent credibility interval on the parameters listed obtained in Horndeski gravity with all different combinations of
probes. The parametrization for the α functions is given by proportionality to �DE so that the free parameters become the proportionality coefficients (in this
case α̂B and α̂M, since we fix αT = αK = 0). The nuisance parameters (discussed in Sections 4.3, 4.4, and 4.5) are the HMCODE parameter cmin, the effective
bias values biasz1 and biasz2 for the low-z and high-z foreground samples, respectively, the intrinsic alignment amplitude AIA, and the screening scale ks. See
Section 5.2 for a discussion of the χ2 and number of degrees of freedom (d.o.f.) when Planck data are considered in the analysis.

Parameter PE PE + Pgm + Pgg PE + Pgm PE + Pgg Pgm + Pgg Planck PE + Pgm + Pgg + Planck

ωcdm 0.119+0.015
−0.025 0.121+0.016

−0.018 0.118+0.015
−0.020 0.119+0.013

−0.017 0.131+0.017
−0.022 0.1170.002

−0.002 0.117+0.002
−0.002

ln1010As 3.01+0.30
−0.25 3.02+0.24

−0.19 3.10+0.24
−0.26 3.01+0.29

−0.18 3.06+0.25
−0.24 3.120.01

−0.01 3.12+0.01
−0.01

ωb 0.0225+0.0035
−0.0037 0.0224+0.0038

−0.0037 0.0221+0.0034
−0.0033 0.0223+0.0038

−0.0036 0.0226+0.0037
−0.0038 0.02250.0003

0.0003 0.0225+0.0002
−0.0002

ns 1.07+0.23
−0.10 1.13+0.17

−0.05 1.13+0.17
−0.07 1.14+0.16

−0.05 1.08+0.22
−0.09 0.97+0.01

−0.01 0.97+0.01
−0.01

h 0.73+0.09
−0.09 0.75+0.07

−0.03 0.77+0.05
−0.03 0.77+0.05

−0.02 0.75+0.07
−0.03 0.69+0.01

−0.01 0.69+0.01
−0.01

cmin 3.20+0.80
−0.46 3.34+0.66

−0.37 3.28+0.72
−0.31 3.27+0.73

−0.29 3.16+0.84
−0.48 – 3.69+0.31

−0.08

AIA 0.44+1.16
−0.68 1.37+0.48

−0.44 1.39+0.51
−0.46 0.84+0.88

−0.61 1.51+0.51
−0.54 – 1.40+0.38

−0.35

biasz1 – 1.01+0.06
−0.08 0.99+0.09

−0.09 1.01+0.05
−0.08 1.01+0.06

−0.09 – 1.02+0.04
−0.06

biasz2 – 1.05+0.05
−0.09 1.06+0.06

−0.09 1.06+0.05
−0.10 1.05+0.06

−0.09 – 1.05+0.03
−0.06

σ 8 0.86+0.07
−0.08 0.90+0.06

−0.05 0.93+0.07
−0.06 0.90+0.06

−0.05 0.95+0.07
−0.07 0.87+0.01

−0.02 0.86+0.01
−0.01

�m 0.27+0.03
−0.04 0.26+0.02

−0.02 0.24+0.02
−0.03 0.24+0.02

−0.03 0.28+0.02
−0.03 0.29+0.01

−0.01 0.29+0.01
−0.01

S8 0.803+0.054
−0.051 0.835+0.041

−0.039 0.830+0.053
−0.042 0.806+0.047

−0.044 0.905+0.057
−0.060 0.859+0.029

−0.032 0.843+0.021
−0.024

α̂B 0.05+0.30
−0.36 0.20+0.20

−0.33 0.26+0.33
−0.44 0.23+0.20

−0.33 0.28+0.22
−0.45 0.79+0.42

−0.71 0.36+0.18
−0.22

α̂M 0.46+0.25
−0.61 0.25+0.19

−0.29 0.31+0.26
−0.44 0.23+0.20

−0.30 0.36+0.24
−0.44 0.18+0.35

−0.52 0.15+0.13
−0.31

log ks 0.00+1.00
−1.00 −0.02+0.74

−0.98 −0.01+1.01
−0.99 0.01+0.99

−1.01 0.07+0.87
−1.06 – 0.11+0.89

−1.11

χ2 63.2 115.7 100.1 67.9 42.8 10697 10821

d.o.f. 40 88 78 48 38

the pivot scale where the scalar spectrum has an amplitude of As,
to 0.05 Mpc−1. While massive neutrinos may suppress structure
formation in a way that is degenerate with modifications of gravity
(Baldi et al. 2014; Peel et al. 2018; Spurio Mancini et al. 2018;
Reischke et al. 2019), here we fix the sum of the neutrino mass to
zero as done in Hildebrandt et al. (2017) and vU18, and adopt their
same prior range. All other prior ranges are also set to reproduce
the ones used in vU18.

For the Horndeski parameters, when we consider the propor-
tionality to the dark energy density fraction as time dependence
for the α(τ ) functions, we vary both α̂B and α̂M over the uniform
range [−2, +2]. This is a symmetric range around the �CDM zero
value, chosen such that on one edge, it reaches a point of theoretical
singularity for the α(τ ) functions: α̂B = 2 (Noller & Nicola 2019).

When we consider the parametrization for the α(τ ) functions
described by equation (5), the only free modified gravity parameter
becomes �0, which parametrizes �(τ ) = �0 a(τ ). For this param-
eter, we consider the same prior range �0 ∈ [0, 1] used in Planck
Collaboration VI (2016b).

5 R ESULTS

In this section, we present our cosmological constraints. All of
them have been obtained using our new likelihood module for
MONTEPYTHON, which we tested thoroughly against the results
obtained by vU18 in a �CDM context. A detailed comparison is
described in Appendix D. Here, we only comment on the excellent
agreement in the parameter S8 = σ8

√
�m/0.3, derived from �m and

σ 8, i.e. the two parameters whose degenerate combination cosmic
shear is most sensitive to (Hildebrandt et al. 2017): for example,
the value for S8 that we measure considering only cosmic shear is
0.760+0.039

−0.038, to be compared with 0.761+0.040
−0.038 obtained by vU18. We

find excellent agreement with the results of vU18 on all parameters

and considering all possible combinations of probes. The fact that
our implementation is completely independent from the one in
vU18 strengthens both analyses and allows for the use of our
likelihood module to obtain constraints on modified gravity, after
properly modifying the module so that the mathematical expressions
implemented there for the power spectra of the three probes match
those for modified gravity introduced in Section 3.

5.1 Modified gravity constraints

We investigate the constraining power of our likelihood on dark en-
ergy/modified gravity by studying two time parametrizations for the
α(τ ) functions, namely the proportionality to the dark energy den-
sity fraction described by equation (4) and the planck linear
parametrization introduced in equation (5). Our numerical results
for all probe combinations are always compatible with �CDM
and are summarized for both parametrizations in Tables 2 and
3, respectively, showing mean values and 68 per cent credibility
intervals.

We start with the proportionality to �DE(τ ), and set constraints
on the α̂ coefficients. Specifically, we consider α̂B and α̂M on top
of our usual cosmological parameters, while we fix αK and αT to
zero as explained in Section 2. In Figs 1, 2, and 3, we overplot
the theoretical predictions for the cosmic shear, galaxy–galaxy
lensing and galaxy clustering power spectra, respectively, obtained
with the best-fitting parameters from our combined analysis, in
�CDM and in Horndeski gravity; we compare these predictions
with the measured power spectra for each probe. We notice how the
power spectra produced in Horndeski gravity are characterized by a
suppression of the signal towards smaller angular scales, compared
to the �CDM spectra. This suggests that our analysis was successful
in modelling efficiently the bias factors; if our model had been
incorrect (e.g. if the assumption of linear bias had turned out to be
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2164 A. Spurio Mancini et al.

Table 3. Mean and marginalized 68 credibility interval on the parameters listed obtained in Horndeski gravity with all different
combinations of probes. The parametrization for the α functions is the planck linear parametrization implemented in HICLASS,
where the α functions depend on only one function of time �(τ ) (see equations 5), which is assumed to be proportional to the scale
factor, �(τ ) = �0a(τ ). The only free parameter as far as the α functions are concerned becomes then �0. The nuisance parameters
are the same as in Table 2.

Parameter PE PE + Pgm + Pgg PE + Pgm PE + Pgg Pgm + Pgg

ωcdm 0.163+0.037
−0.052 0.138+0.017

−0.026 0.135+0.021
−0.030 0.136+0.021

−0.026 0.151+0.023
−0.033

ln1010As 3.00+0.56
−0.60 3.06+0.34

−0.33 3.21+0.36
−0.43 3.06+0.35

−0.41 2.93+0.42
−0.32

ωb 0.0225+0.0038
−0.0037 0.0225+0.0038

−0.0035 0.0224+0.0038
−0.0036 0.0223+0.0035

−0.0036 0.0224+0.0038
−0.0037

ns 1.03+0.27
−0.08 1.10+0.20

−0.05 1.05+0.25
−0.10 1.09+0.21

−0.06 1.05+0.25
−0.10

h 0.73+0.08
−0.09 0.76+0.07

−0.02 0.76+0.06
−0.02 0.77+0.05

−0.02 0.76+0.06
−0.02

cmin 3.07+0.93
−0.35 3.10+0.89

−0.38 3.21+0.79
−0.26 3.12+0.88

−0.47 3.21+0.79
−0.26

AIA 0.631.03
−0.60 1.31+0.43

−0.39 1.35+0.45
−0.41 0.70+0.90

−0.61 1.35+0.43
−0.49

biasz1 - 1.03+0.07
−0.11 0.97+0.14

−0.15 1.04+0.07
−0.11 1.07+0.09

−0.16

biasz2 - 1.10+0.07
−0.13 1.15+0.09

−0.17 1.13+0.08
−0.15 1.10+0.10

−0.16

σ 8 0.87+0.11
−0.14 0.93+0.08

−0.09 0.93+0.08
−0.10 0.92+0.08

−0.10 0.85+0.09
−0.07

�m 0.35+0.07
−0.09 0.28+0.02

−0.03 0.27+0.03
−0.04 0.27+0.03

−0.04 0.31+0.03
−0.05

S8 0.917+0.096
−0.106 0.895+0.048

−0.074 0.879+0.047
−0.066 0.866+0.051

−0.077 0.863+0.047
−0.043

�0 0.54+0.46
−0.29 0.21+0.04

−0.21 0.31+0.07
−0.31 0.23+0.04

−0.23 0.44+0.56
−0.44

log ks 0.18+0.48
−0.37 0.05+0.57

−1.05 −0.24+0.28
−0.76 0.01+0.52

−1.01 0.06+0.86
−1.07

χ2 62.1 116.2 99.3 68.8 43.5

d.o.f. 41 89 79 49 39

insufficient), we would have noticed a steep increase of the power
spectra towards higher angular multipoles. As reported in Table 2,
the level of agreement between theoretical predictions and observed
data does not vary significantly going from �CDM to Horndeski
gravity. While the χ2 is large in both cosmological scenarios given
the relatively high number of degrees of freedom, indicating a bad
fit, this is fully explained by a known underprediction of shot noise
contributions to the covariance at large scales (see Section 4.1 for
details).

Fig. 4 shows 68 per cent and 95 per cent marginalized contours on
the cosmological parameters that our LSS analysis is most sensitive
to, again for the parametrization of the α(τ ) functions that sets them
proportional to �DE(τ ). We overplot results obtained considering
either cosmic shear alone or all the three probes together. As we
can see from the sharp cut-off in the α̂B-α̂M plane, HICLASS applies
some stability checks that prevent the Markov Chain Monte Carlo
(MCMC) from ending up in regions of parameter space where
both of these Horndeski parameters are simultaneously negative
(see also Fig. 7). The investigation of these stability conditions
is of the highest priority for future similar analyses (see also
Denissenya & Linder 2018; Noller & Nicola 2018). We notice
that constraints with a multiprobe approach are tighter, as expected;
in particular, the value of S8 shrinks from S8 = 0.8030.054

−0.051 when
measured with cosmic shear alone to S8 = 0.835+0.041

−0.039 considering
the three probes combined. In both the single and joint analyses, the
contours for the Horndeski parameters α̂B and α̂B are consistent
with �CDM values. Specifically, we find α̂B = 0.05+0.30

−0.36 and
α̂M = 0.46+0.25

−0.61 when considering cosmic shear alone; we retrieve
α̂B = 0.20+0.20

−0.33 and α̂M = 0.25+0.19
−0.29 in our joint analysis of the

three probes. Using cosmic shear alone, we find a 68 per cent
marginalized contour in the α̂B-α̂M plane that covers 11 per cent
of the parameter space that is allowed to be explored by the stability
conditions applied by HICLASS. The same contour obtained with

the joint three-probe analysis shrinks down to 6 per cent. Similar to
vU18, we confirm that the increased constraining power with the
multiprobe approach comes from the tighter constraints achievable
on nuisance parameters. The inclusion of the cross-correlation
with the other probes tightens the constraints in particular on the
intrinsic alignment amplitude, mostly constrained by the inclusion
of galaxy–galaxy lensing in the analysis, which shrinks the error
on AIA from 0.44+1.16

−0.68 for cosmic shear alone, to 1.37+0.48
−0.44 with

the multiprobe approach. This decrease in the error for AIA is very
similar to the one found by vU18 in their �CDM analysis; in both
�CDM and Horndeski scenarios, the cross-correlation of the three
probes shrinks the error on the intrinsic alignment amplitude to
approximately half its cosmic shear-only value. At the same time,
the best-fitting value for AIA doubles in the multiprobe approach
with respect to the cosmic shear analysis, making the measurement
four times more significant. Our combined fit in Horndeski gravity
constrains very well the bias parameters for the two foreground
samples, similar to what found in vU18; interestingly, however,
our errors in Horndeski gravity are half of those reported by
vU18 in �CDM. Constraints on σ 8 and �m become tighter
in the combined analysis, and consequently the same happens
for S8.

The second parametrization for the α(τ ) functions that we
consider is the one called planck linear in HICLASS, which
we already introduced in Section 2. In this parametrization, the
four α functions can be specified through a single function of time
�(τ ) affecting three of the α functions (see equation 5). In this
case, we do not observe tighter constraints on the modified gravity
parameter �0 from the inclusion of the multiprobe cross-correlation,
while we do find stronger constraints on �m, σ 8, and S8, similar to
the case of Horndeski functions proportional to �DE(τ ). For both
parametrizations considered for the α(τ ) functions, we find that the
screening scale ks is largely unconstrained.
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KiDS + GAMA: constraints on Horndeski gravity 2165

Figure 1. Theoretical predictions for the cosmic shear power spectra, given the parameter values corresponding to the best fit for the combined cosmic shear –
galaxy–galaxy lensing – galaxy clustering analysis, assuming �CDM (blue) and Horndeski gravity (red), overplotted with the measured values for the power
spectra from the KiDS survey (blue). The error bars are computed analytically from the covariance matrix. The numbers in each panel indicate which shape
(S) samples are correlated.

5.2 Comparison and combination with Planck

We investigated the relevance of our analysis in the context of
the tension between cosmological parameters estimated with weak
gravitational lensing analyses and CMB measurements. Fiducial
analyses of the CFHTLenS (Heymans et al. 2013; Joudaki et al.
2017) and KiDS (Hildebrandt et al. 2017; Köhlinger et al. 2017)
collaborations have reported values for �m and σ 8 that are in mild
tension with those measured by Planck Collaboration XIII (2016a).
Here and throughout our analysis, we will refer to the 2015 Planck
results because in that case the likelihood modules, to be run with
MONTEPYTHON, are publicly available, thus allowing for re-running
of the MCMC. We notice, however, that the latest Planck results
(Planck Collaboration VI 2018) do not differ significantly from the
earlier release.

For comparison with Planck, we choose the combination of
two likelihoods from the Planck 2015 release: the Plik lite
likelihood for the temperature-only power spectrum in the range
� = 30 − 2508, and the lowTEB likelihood for temperature and
LFI polarization information in the range � = 2 − 29. We choose

this likelihood as it is the same used in vU18. For the high-�
temperature likelihood, we run the Plik lite likelihood, which
is pre-marginalized over all nuisance parameters except for the
Planck absolute calibration. Noller & Nicola (2019) demonstrated
that running the full high-� temperature likelihood or its pre-
marginalized version produces equivalent constraints on Horn-
deski parameters. However, the Plik lite version produces a
remarkable speed up in the analysis, as the number of nuisance
parameters for the Planck part is reduced to only one. We have in
common with the analysis of Noller & Nicola (2019) a pure �CDM
background that, as the authors of that paper suggest, is one of the
reasons behind the excellent agreement between the Plik lite
and full Planck likelihood, since the Plik lite likelihood is
pre-marginalized assuming a �CDM cosmology. However, as also
reported in Noller & Nicola (2019), we remark that extensions
of our analysis considering background cosmologies different from
�CDM should arguably run the Planck likelihood in its full version.

We compare the results of our LSS analysis, which considers
cross-correlations of our three probes, with Planck results. This
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2166 A. Spurio Mancini et al.

Figure 2. Same as in Fig. 1, but for galaxy–galaxy lensing power spectra. The numbers in each panel indicate which foreground (F) and shape (S) samples
are correlated.

Figure 3. Same as in Fig. 1, but for galaxy clustering power spectra. The
numbers in each panel indicate which foreground (F) samples are correlated.

comparison can be summarized as in Fig. 5, where the two subplots
show results for different choices of cosmological model in this
comparison. Inference results are presented for �m and σ 8, the
two cosmological parameters that are best constrained by cosmic
shear. In our analysis, these two parameters are derived from
the cold dark matter density wcdm = �cdmh2 and the rescaled
amplitude of the primordial power spectrum ln (1010As). In the
left-hand panel, we show the results of running our LSS probes
in �CDM and overplotting the constraints in the �m − σ 8 plane
with those obtained by Planck Collaboration XIII (2016a) also in
�CDM. This plot essentially reproduces Fig. 7 in vU18, but the
LSS contours are obtained with our own, independently developed
likelihood: We recognize the familiar mild ‘tension’ between LSS
and CMB measurements. In the right-hand panel of Fig. 5, we
analyse the LSS probes in a Horndeski scenario, and also re-run
the Planck likelihood in Horndeski gravity. The agreement between
LSS and CMB contours is excellent. For comparison, in the same
�m − σ 8 plane we overplot the same �CDM contours for Planck
presented in the left subplot, corresponding to the results published
in Planck Collaboration XIII (2016a). We notice that there is already

Figure 4. Comparison of the marginalized 68 per cent and 95 per cent
credibility contours obtained with cosmic shear alone (PE, grey) and the
three probes combined (PE + Pgm + Pgg, green) on �m, σ 8, S8 and the
Horndeski parameters α̂B and α̂M. Note that due to the smoothing applied,
the contour in the α̂B-α̂M plane marginally overlaps with the region forbidden
by HICLASS stability conditions (cf. Fig. 7).

a mitigation of the tension between LSS and CMB results when one
considers the LSS constraints in Horndeski gravity, and the CMB
ones in �CDM. The alleviation of the tension, compared to the
�CDM results, originates from the combined effect of the larger
Horndeski parameter space, which widens the LSS contours in the
�m − σ 8 plane so that they better match with the �CDM contours
from Planck, as well as a shift in the best-fitting value for the
parameters.

To measure the agreement between the S8 parameter retrieved by
our Horndeski and �CDM gravity analyses, in comparison to the
Planck values, we calculate the shift �S8 between this parameter
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KiDS + GAMA: constraints on Horndeski gravity 2167

Figure 5. 68 per cent and 95 per cent credibility intervals on the �m − σ 8 plane obtained with LSS and CMB experiments. In both plots, the grey contours
are obtained with cosmic shear alone, the green contours with the cross-correlation of cosmic shear – galaxy–galaxy lensing and galaxy clustering. In the
left-hand panel, LSS and CMB probes are all analysed assuming �CDM model (the Planck contours in magenta are the ones obtained in Planck Collaboration
XIII 2016a). In the right-hand panel the LSS constraints are obtained in Horndeski gravity; in brown we plot the Planck contours, obtained running the Planck
likelihood in Horndeski gravity. The �CDM contours of Planck Collaboration XIII (2016a) (the same as in the left-hand panel) are reproduced for comparison,
with the magenta lines.

measured by the CMB and LSS probes. Considering cosmic
shear alone, we report a value �S8 = 0.048+0.059

−0.056 in Horndeski,
compared to �S8 = 0.091+0.046

−0.045 in �CDM. In the joint three-
probe analysis, we find �S8 = 0.016+0.048

−0.046 in Horndeski gravity
and �S8 = 0.059+0.040

−0.039 in �CDM.
As a last step in the comparison of our LSS analysis with the

Planck CMB results, we combine the LSS and CMB likelihoods.
When doing this, we initially extended the Planck chains to the
inclusion of CMB lensing; while this could in principle induce
correlations between Planck and KiDS, we found that CMB lensing
had no impact on the results presented; therefore we decided to
report results obtained without the addition of CMB lensing, as
they do not differ significantly from the ones obtained with CMB
lensing. Crucially, we remark here that we are allowed to combine
the LSS and CMB likelihoods because, contrary to what happened
when analysing LSS and CMB probes in �CDM (as in Hildebrandt
et al. 2017 and vU18), our Horndeski analysis produces constraints
on the cosmological parameters, for LSS and CMB, that are not in
tension between them, as shown in Fig. 5.

The two panels of Fig. 6 show the increase in sensitivity of the
combined LSS + CMB analysis to key cosmological parameters
(left-hand panel) including the Horndeski parameters α̂B and α̂M,
and astrophysical nuisance parameters (right-hand panel) such as
the bias coefficients, the intrinsic alignment amplitude and the
HMCODE parameter cmin, resulting from running our LSS chains in
combination with the Planck CMB ones. We find that, as expected,
combining LSS and CMB data sets reduces uncertainties on all
cosmological parameters. In particular, Planck measurements allow
for better constraints on parameters that are weakly constrained
by LSS probes, such as ns and h (see Table 2). The Horndeski
parameters α̂B and α̂M are also better constrained in the combined

analysis, although we notice that most of the constraining power
on these two parameters comes from the LSS probes. This can
be seen better in Fig. 7, where we plot the region of parameter
space in the α̂B − α̂M plane that is allowed to be explored by
the stability conditions applied by HICLASS (which ensure that the
choice of the Horndeski parameters corresponds to a theoretical
model that is safe from ghost, gradient, and tachyon instabilities; for
details, see Zumalacárregui et al. 2017), as well as the marginalized
68 per cent and 95 per cent contours that can be obtained on these
parameters using either our joint LSS analysis, re-running the
Planck likelihood in Horndeski gravity or running together the
Planck and LSS likelihoods. The combination of LSS and CMB
likelihoods increases the sensitivity to the Horndeski parameters,
with the 68 per cent contour covering 5 per cent of the allowed
parameter space in the α̂B - α̂M plane, although the contours obtained
with the combined LSS + CMB analysis are comparable in size with
the ones obtained from the LSS probes alone. We remark that the
contours appear to be centered away from the �CDM point {0, 0}
(while still being consistent with this value) due to the skewness in
the marginal distributions of the parameters; this is due to stability
conditions applied by HICLASS, which artificially cut out a part of
parameter space. A plot comparing the contours on all cosmological
and nuisance parameters obtained with our LSS analysis and those
produced running the LSS and Planck likelihood together can be
found in Appendix B. The numerical values for the mean and
68 per cent credibility intervals for all cosmological and nuisance
parameters in the combined LSS + CMB analysis are reported in
Table 2, to be compared with the LSS-only and Planck-only results,
also reported in Table 2. The exact number of degrees of freedom
for the Planck likelihood is not readily available in the literature (see
e.g. Planck Collaboration XIII 2016a) and its non-trivial calculation
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2168 A. Spurio Mancini et al.

Figure 6. Increase in sensitivity to key cosmological parameters (left-hand panel) and astrophysical nuisance parameters (right-hand panel) that results from
running the MCMC of the joint cosmic shear – galaxy–galaxy lensing – galaxy clustering (green) in combination with CMB Planck likelihood (blue). The
nuisance parameters (discussed in Sections 4.3 and 4.5) are the HMCODE parameter cmin, the effective bias values biasz1 and biasz2 for the low-z and high-z
foreground samples, respectively, and the intrinsic alignment amplitude AIA.

Figure 7. Region of parameter space (in white) in the plane α̂B − α̂M that
is allowed to be explored by the MCMC, and 68 per cent and 95 per cent
marginalized contours in the same plane, for different experiments. We plot
in green the LSS constraints from our joint cosmic shear, galaxy–galaxy
lensing and galaxy clustering; in brown, we represent the same contours for
the Planck CMB likelihood. The blue contours are those obtained running
together the LSS and CMB likelihoods. The stability conditions applied
by HICLASS do not allow the MCMC to end up in the grey region (the
marginal overlap of the contours with the excluded region is only due to
smoothing). The fact that contours are centered slightly away from the cross-
marked �CDM point {0, 0} (while still being consistent with the �CDM
prediction) is due to the skewness of the marginal distributions of these
parameters, a consequence of HICLASS stability conditions.

is beyond the scope of this work. We reproduced the value of χ2

obtained by the official Planck analysis in �CDM, which we found
to be very similar to the one we obtained in Horndeski gravity.
In the combined LSS and CMB analysis, we notice that the LSS

probes add a negligible contribution to the total number of degrees
of freedom compared to Planck; since we find that the χ2 for the
combined LSS and CMB analysis increases by ∼ 1 per cent from
the CMB-only value, we conclude that there is no indication that
the goodness-of-fit degrades in the combined analysis with respect
to considering Planck alone.

6 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper, we analysed data from the KiDS and GAMA surveys,
in a joint framework for tomographic cosmic shear, galaxy–galaxy
lensing, and angular clustering power spectra. Our numerical imple-
mentation reproduces the �CDM results of vU18 and extends their
analysis to a Horndeski scenario: we set constraints on both standard
cosmological parameters as well as functions that fully describe
the evolution of linear perturbations in Horndeski gravity. We
considered two different time parametrizations for these functions:
one where they are proportional to the dark energy density fraction
and another one where there is effectively only one free function
that we set proportional to the scale factor; the latter represents a
subset of models within the Horndeski class.

For all the combinations of probes considered, we found that
our constraints are compatible with �CDM values: specifically, all
Horndeski parameters are compatible with zero (their GR value)
within their 68 per cent marginalized errors. We notice that while
the inclusion of cross-correlations of the three probes tightens
the constraints on both cosmological and nuisance parameters,
as expected our constraints are rather large per se, for multiple
reasons. Our parameter space is very large because we do not fix
any background values for the standard cosmological parameters;
we vary over them as well. Additionally, while the KiDS data that
we used represent state-of-the-art imaging data that are currently
available from a cosmic shear survey, the survey volume considered
is still relatively small; we do expect increased constraining power
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from larger data releases. We remark that, while the constraining
power of the data sets considered in our analysis is not sufficient to
produce very strong constraints on the values of the Horndeski α(τ )
functions (or more precisely, on the parameters that describe one
of the possible time parametrizations for these functions), there are
some important conclusions that we can draw from the constraints
we found.

In particular, assuming the commonly studied relation of propor-
tionality with �DE for the α(τ ) functions, we found that the values
of both proportionality coefficients α̂B and α̂M are close to zero
and smaller than unity. Following the line of reasoning presented
in Bellini et al. (2016), if one assumes the time parametrization
of proportionality to �DE(τ ), one would expect the coefficients
α̂ to be O(1) because in this parametrization the α(τ ) functions
are driven by the same functions of the scalar field as the energy
density and its derivatives. The fact that we found values for the
proportionality coefficients α̂ significantly smaller than unity can,
in this sense, be regarded as a substantial observational constraint
on dark energy/modified gravity derived from this analysis.

We compared and combined our LSS constraints on Horndeski
gravity with the Planck analysis of the CMB. Running our LSS and
the Planck CMB likelihood separately, we found that the enlarged
Horndeski parameter space for the LSS probes helps reduce the
tension in cosmological parameters with the CMB measurements
obtained in �CDM; the agreement becomes excellent if we compare
our LSS Horndeski results with the Planck chains re-run in Horn-
deski gravity. Since separately these LSS and Planck constraints in
Horndeski gravity are not in tension, we are allowed to combine
the LSS and CMB likelihoods. The constraints obtained by this
combined analysis are tighter as expected, although we notice that
most of the constraining power on the Horndeski parameters comes
from the LSS likelihood; the Planck likelihood helps constrain much
better other standard cosmological parameters, such as ns and h,
that are weakly constrained by the LSS probes. When combining
LSS and CMB likelihoods, we keep the assumption of flatness
that we also imposed on our LSS-only analysis. While flatness is
predicted by inflation, future analyses should allow for the possi-
bility of non-vanishing curvature when combining LSS and Planck
likelihoods.

For the non-linear matter power spectrum, we followed the
official KiDS prescription, using the Mead et al. (2015) correction
implemented in HMCODE, which in turn is based on HALOFIT. A
bespoke, accurate prescription for the non-linear matter power
spectrum in the full model space covered by Horndeski gravity
is not yet available. However, note that we are exploring constraints
around the �CDM values, where HALOFIT is fully calibrated,
and that we apply the non-linear correction to the linear power
spectrum rigorously calculated by HICLASS in a modified gravity
scenario. We argue that the physical mechanism implemented in
HALOFIT produces a reasonable degree of predictive power on
the extended cosmological models considered, appropriate for the
currently still fairly low constraining power of the data. This
statement is corroborated by the analysis in Appendix C, which
shows quantitatively the fairly low sensitivity of our data to the
modelling uncertainty of the non-linear matter power spectrum in
Horndeski gravity. Similarly, the screening mechanism has been
implemented in a phenomenological way due to a lack of an evolved
screening mechanism in the linear formalism of the α(τ ) functions.
We remark that future work in these directions is needed (see
e.g. Cataneo et al. 2019) to provide tighter constraints with either
larger data releases of the current survey generation or future data

from Stage IV surveys such as Euclid (Laureijs et al. 2011)14 and
the Large Synoptic Survey Telescope (LSST Science Collaboration
2009).15

One point to highlight is the difficult interpretation of parameter
space as far as the Horndeski functions are concerned. Assuming
proportionality to �DE, in our analysis these parameters were let
free to vary over negative values as well. However, we found a very
distinctive cut-off in the α̂B-α̂M plane, which prevents the chains
to end up in regions of parameter space where both proportionality
coefficients are significantly negative. This is due to some stability
checks (in particular those concerning the positivity of the speed of
sound) that reject points ending up in those regions of parameter
space. Those regions are, however, interesting because they may
refer to models of relevance, such as some f(R) models for which
the relation αB = −αM holds. While we are aware that some of
these stability conditions may in some cases be harmlessly bypassed
because they reject points in parameter space even when they
produce a negative speed of sound only at very early times, the
exploration of these stability conditions is an area of active research.
The recent analysis of Denissenya & Linder (2018), for example
(but see also a discussion on this in Kreisch & Komatsu 2017),
has investigated the relation between parametrization and stability
in Horndeski gravity, showing that the relation is not trivial. In
particular, they have shown how stability evolves with redshift,
picking out different regions of parameter space that can have
complex structure. These end up forming disconnected ‘islands’
in parameter space, which are significantly sensitive to the time
evolution assumed for the α(τ ) functions.

The very recent analysis of Noller & Nicola (2018) suggests
that radiative stability places strong constraints on the Horndeski
parameter space; they used this condition to obtain tight constraints
from the analysis of data from the Planck, SDSS/BOSS, and 6dF
surveys. Noller & Nicola (2019) also presented cosmological con-
straints on Horndeski gravity using CMB, redshift space distortions,
matter power spectrum, and BAO measurements from the Planck,
SDSS/BOSS, and 6dF surveys. While our results are obtained
considering different cosmological probes with respect to theirs,
interestingly our constraints compare well with those presented in
their analysis; this is true in particular in the α̂B − α̂M plane, when
considering the time dependence for the Horndeski parameters that
makes them proportional to the dark energy density fraction. We
remark that the investigation of the theoretical stability conditions
for the α(τ ) functions seems a high priority issue to be addressed in
future extensions of our analysis.

To conclude, we stress that, in view of future work, the importance
of our KiDS+GAMA analysis lies in two main aspects. On the one
hand, we have developed a first likelihood module for Horndeski
gravity that can analyse all possible cross-combinations of cosmic
shear, galaxy–galaxy lensing, and galaxy clustering power spectra
data, as can be produced by current and future surveys. On the other
hand, our likelihood module can also be run in a standard �CDM
scenario and in this regard our results are in excellent agreement
with those from the fully independent analysis pipeline of vU18,
representing a benchmark for our implementation as well as a further
cross-check of their fiducial KiDS + GAMA analysis. In the future,
it will be interesting to carry out a similar analysis with larger
data releases from the KiDS survey and/or with data from Stage

14https://www.euclid-ec.org/
15https://www.lsst.org/
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IV surveys such as Euclid; we expect that the work presented in
this paper and its publicly available implementation will represent
a useful tool for these or similar analyses.
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APPENDI X A : D ERI VATI ON O F MODI FIED
GRAV I TY POWER SPECTRU M FOR COSMIC
SHEAR

Here, we present a detailed derivation of equation (8), i.e. the
cosmic shear power spectrum for a generic modified gravity theory
parametrized by the functions μ and η introduced in equations (6)
and (7). Expressions for galaxy–galaxy lensing and galaxy cluster-
ing (corresponding to equations 10 and 11) can be derived following
a similar procedure.

Cosmic shear power spectra can be most elegantly derived from
expressions for the lensing potential power spectra, since the shear is
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linearly defined in terms of the lensing potential, through its second
derivatives. Moreover, to avoid complications arising from the spin-
2 tensorial nature of the shear field, we can compute power spectra
for the convergence, which is a scalar field similarly related in a
linear way to the lensing potential. Convergence and shear power
spectra are equal in the flat sky approximation and differ only as
a result of a different multipole-dependent pre-factor (Kilbinger
et al. 2017), which for � > 45 represents a difference of less than
0.1 per cent between the two power spectra; given our multipole
range, we can safely ignore this difference.

As remarked in Section 3, a generic modified gravity scenario
is characterized by Bardeen potentials  and � in equation (2),
which can differ from each other. Thus, the lensing potential φi in
tomographic bin i can be defined as

φi = 1

c2

∫
dχ ( + �) gi(χ ), (A1)

where gi is the geometric weight factor for bin i introduced in
equation (9), and the integration is carried out along the line of sight
in Born approximation. The correlation of the lensing potential in
tomographic bins i and j is thus

〈
φiφj

〉
(�) = 1

c4

∫
dχ

χ2
gi(χ )gj (χ )P+�

(
� + 1/2

χ
; χ

)
, (A2)

where we used the extended Limber approximation, and P + � is
the power spectrum of the sum of the Bardeen potentials. Since the
convergence κ is related to the Laplacian of the lensing potential

�φ = 2κ , (A3)

rewriting equation (A2) in terms of the convergence gives us

〈
κiκj

〉
(�) = 1

4c4

∫
dχ

χ2
gi(χ )gj (χ )

P+�

k4
, (A4)

where the k−4 factor comes from equation (A3) expressed in Fourier
space. Note that this is a 2D Fourier vector on the flat sky. It can
be augmented by a third dimension in the thin lens approximation
(Bartelmann & Schneider 2001). Using now the (modified) Poisson
equation (6), to link the gravitational potential to the overdensity

field, and recalling that the two Bardeen potentials  and � are
related through η (equation 7), we find that

P+�

(
�+1/2

χ

)
k4

=
(

3

2

�mH 2
0

c2

)2

Pδ

(
� + 1/2

χ

)

× [
1 + 2η + η2

]
μ2, (A5)

with Pδ the matter power spectrum. Thus,

〈
κiκj

〉
(�) =

(
3�mH 2

0

2c2

)2
1

4

∫
dχ

χ2

gi(χ )

a

gj (χ )

a
μ2

× [
1 + 2η + η2

]
Pδ

(
� + 1/2

χ

)
, (A6)

which leads to equation (8).

APPENDI X B: FULL POSTERI OR
DI STRI BU TI ON

Fig. B1 shows the 68 per cent and 95 per cent marginalized contours
for all the cosmological and nuisance parameters listed in Table 1.
We show the constraints that we obtain from our joint cosmic shear,
galaxy–galaxy lensing, and galaxy clustering analysis in Horndeski
gravity with parametrization α(τ ) = α̂�DE(τ ), as well as the con-
tours produced from running the same LSS joint analysis together
with Planck likelihoods, as discussed in Section 5.2. For parameters
such as ns that are not well constrained by the LSS probes considered
here, the combination of the LSS likelihood with the Planck CMB
one essentially does not add much more information with respect
to the one already contained in the CMB-only analysis. Conversely,
for parameters such as the intrinsic alignment amplitude that are
constrained only by LSS probes, the constraints do not benefit
substantially from running the LSS and CMB likelihoods together.
The biggest improvement that is determined by this joint LSS–
CMB analysis is on parameters that are well constrained singularly
by LSS and CMB data sets, such as �m and σ 8. Importantly for the
analysis of this paper, this improvement also affects the Horndeski
α̂ parameters.
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Figure B1. Marginalized 68 per cent and 95 per cent contours obtained from the combination of cosmic shear, galaxy–galaxy lensing, and angular clustering
in Horndeski gravity (green), and those obtained from running the same joint LSS analysis together with the Planck CMB likelihood (blue).

APPENDIX C : EFFECT OF NON-LINEARITI ES
O N C O S M O L O G I C A L C O N S T R A I N T S

As remarked in the main text, currently there is no general prescrip-
tion for the treatment of non-linear scales in cosmologies alternative
to �CDM. Some of our data are, however, at scales affected by such
non-linearities. In our analysis, we decided to employ a non-linear
prescription for the matter power spectrum, which is the same as
the one followed by the KiDS collaboration, i.e. based on the Mead
et al. (2015) prescription implemented in HMCODE, which is in turn
a modification of HALOFIT (Smith et al. 2003). We already warned
the reader that this should be interpreted as a first-order correction,

meant to give an idea of the constraining power of the data, while
being formally incorrect as it lacks of generality for the class of dark
energy and modified gravity models considered in this analysis. To
support the statement that the Mead et al. (2015) prescription is a
sensitive correction to apply as a first-order approach, we carried
out a phenomenological study of the effect of modifications of the
non-linear matter power spectrum. The idea is to parametrize our
ignorance by introducing an additional nuisance parameter ζ NL that
quantifies the uncertainty on the non-linear matter power spectrum.
This parameter only becomes ‘active’ when the Boltzmann code
HICLASS switches to HMCODE to source the non-linear matter power
spectrum; this happens at a certain redshift-dependent scale value
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2174 A. Spurio Mancini et al.

Figure C1. Marginalized 68 per cent and 95 per cent contours obtained in our joint analysis of cosmic shear, galaxy–galaxy lensing, and galaxy clustering:
in red we show the contours obtained considering the additional nuisance parameter ζNL, while the blue contours are obtained without including ζNL. The
contours in the two cases do not differ significantly, suggesting that our data are not deeply affected by the specific prescription used to model the non-linear
power spectrum.

kσ (z). When this happens, a phenomenological function of scale
and redshift, β(k, z), defined as

β(k, z) = log
[
1 + k/kσ (z)

] × ζNL, (C1)

modifies the non-linear matter power spectrum P(k, z) sourced from
HMCODE into its ‘corrected’ version PCORR(k, z)

PCORR(k, z) = P (k, z) × [
1 + β(k, z)

]
, (C2)

to account for possible deviations from �CDM. We vary ζ NL

uniformly in the range [−5, 5], and marginalize over ζ NL when

presenting constraints on cosmological parameters. We also studied
what happened when we varied the logarithm of ζ NL uniformly
in the range [−5, 0], and found similar results. Fig. C1 shows a
comparison between the cosmological constraints obtained with
our joint three-probe analysis, with and without the implementation
of the additional parameter ζ NL. We notice that the constraints
on all other parameters do not change significantly, suggesting
that our data are only marginally affected by different non-linear
prescriptions for the matter power spectrum. Hence, our choice of
using HMCODE appears sensible and major modifications will only
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be required with future data at even more non-linear scales, as
coming from future releases of the KiDS survey or from Stage IV
surveys such as Euclid and LSST.

APPENDIX D : C OMPARISON W ITH VU18

In Figs D1 and D2, we select two plots of comparison with
the constraints obtained by vU18, which we overplot to ours.
Specifically, in the two figures we show marginalized 68 per cent
and 95 per cent contours considering cosmic shear alone and the
combination of all three probes, respectively. We find excellent

agreement with the results of vU18 not only with these two choices
of probes combination, but for all the possible combinations.
Table D1 summarizes this comparison: it shows the mean and 68
credibility intervals obtained from our analysis and those obtained
from vU18. We notice in particular the excellent agreement in the
parameter S8 = σ8

√
�m/0.3, derived from �m and σ 8, i.e. the two

parameters whose degenerate combination cosmic shear is most
sensitive to (Hildebrandt et al. 2017). Our results are obtained with a
completely likelihood different implementation, which strengthens
both the validity of the fiducial KiDS + GAMA analysis and the
consistency of our likelihood.

Figure D1. Comparison of the marginalized 68 per cent and 95 per cent contours obtained in �CDM with our new likelihood module for the KiDS + GAMA
analysis (red) and the results by vU18 blue. Here, the probe considered is cosmic shear alone (PE).
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2176 A. Spurio Mancini et al.

Figure D2. Same as in Fig. D1, but here the combination of probes considered is given by all three probes in this analysis, i.e. cosmic shear, galaxy–galaxy
lensing, and angular clustering (PE + PGM + PGG).
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Table D1. Mean and marginalized 68 per cent credibility interval on the parameters listed, obtained with our new likelihood in a �CDM scenario with the
priors specified in Table 1.

Param PE PE + Pgm + Pgg PE + Pgm PE + Pgg Pgm + Pgg

This work vU18 This work vU18 This work vU18 This work vU18 This work vU18

ωcdm 0.139+0.051
−0.041 0.134+0.044

−0.046 0.165+0.033
−0.045 0.153+0.030

−0.040 0.142+0.032
−0.043 0.132+0.032

−0.044 0.177+0.035
−0.038 0.169+0.034

−0.039 0.175+0.034
−0.051 0.159+0.035

−0.041

ln1010As 2.65+0.21
−0.92 2.76+0.30

−1.06 2.47+0.44
−0.48 2.63+0.36

−0.44 2.63+0.43
−0.72 2.81+0.52

−0.78 2.22+0.14
−0.49 2.30+0.21

−0.53 2.53+0.41
−0.48 2.67+0.37

−0.45

ωb 0.0225+0.0030
−0.0033 0.0224+0.0036

−0.0034 0.0225+0.0030
−0.0033 0.0225+0.0035

−0.0035 0.0225+0.0036
−0.0031 0.0224+0.0036

−0.0034 0.0225+0.0034
−0.0029 0.0225+0.0034

−0.0035 0.0226+0.0035
−0.0029 0.0225+0.0034

−0.0033

ns 1.09+0.21
−0.08 1.11+0.19

−0.05 0.95+0.10
−0.21 0.97+0.15

−0.19 1.03+0.20
−0.15 1.08+0.22

−0.07 0.93+0.11
−0.19 0.97+0.14

−0.18 0.89+0.09
−0.18 0.93+0.08

−0.22

h 0.74+0.07
−0.06 0.74+0.08

−0.04 0.73+0.08
−0.07 0.73+0.09

−0.06 0.74+0.08
−0.04 0.74+0.08

−0.03 0.73+0.07
−0.07 0.73+0.04

−0.08 0.74+0.08
−0.05 0.73+0.09

−0.08

cmin 3.24+0.74
−0.54 3.27+0.73

−0.23 2.87+0.34
−0.79 2.97+0.56

−0.71 3.19+0.79
−0.36 3.28+0.72

−0.22 2.98+0.69
−0.66 3.08+0.81

−0.39 2.66+0.25
−0.65 2.86+0.30

−0.84

AIA 0.91+0.75
−0.57 0.92+0.78

−0.59 1.24+0.37
−0.36 1.27+0.39

−0.40 1.36+0.36
−0.37 1.46+0.41

−0.42 0.88+0.65
−0.47 0.88+0.70

−0.50 1.38+0.42
−0.43 1.38+0.46

−0.49

biasz1 – – 1.17+0.16
−0.18 1.12+0.14

−0.15 0.84+0.15
−0.21 0.78+0.14

−0.19 1.25+0.16
−0.17 1.21+0.14

−0.15 1.18+0.18
−0.19 1.13+0.15

−0.16

biasz2 – – 1.29+0.18
−0.19 1.25+0.16

−0.17 1.55+0.28
−0.33 1.45+0.27

−0.33 1.49+0.20
−0.19 1.45+0.18

−0.18 1.27+0.19
−0.20 1.23+0.16

−0.17

�m 0.30+0.08
−0.08 0.29+0.07

−0.10 0.35+0.06
−0.06 0.33+0.05

−0.06 0.30+0.06
−0.07 0.29+0.06

−0.08 0.38+0.06
−0.07 0.36+0.06

−0.06 0.36+0.06
−0.08 0.34+0.05

−0.06

σ 8 0.77+0.07
−0.16 0.80+0.09

−0.18 0.74+0.06
−0.09 0.78+0.06

−0.08 0.77+0.08
−0.12 0.81+0.09

−0.14 0.68+0.05
−0.08 0.70+0.05

−0.08 0.77+0.07
−0.10 0.80+0.07

−0.09

S8 0.760+0.039
−0.038 0.761+0.040

−0.038 0.792+0.032
−0.031 0.800+0.030

−0.026 0.756+0.039
−0.035 0.769+0.037

−0.032 0.752+0.036
−0.036 0.759+0.036

−0.032 0.840+0.045
−0.040 0.835+0.038

−0.037

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 490, 2155–2177 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/490/2/2155/5573827 by C
N

R
S - ISTO

 user on 05 July 2023


