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ABSTRACT

For vibro-acoustic applications, a turbulent wall pressure fluctuations model was derived. The model is based
on the resolution of the Poisson equation. The pressure is characterized in time and space through its spectrum in
the frequency wave-number domain. The developed model follows trends commonly observed using Corcos model
in a large frequency range but also shows new behaviours for low and high frequencies. The radiated noise due
to turbulent wall pressure fluctuations is then computed in accordance with the form of the turbulent wall pressure
spectrum. A specific computational methodology is proposed to perform the calculation without introducing limiting
hypothesis on the radiated impedance.

1 INTRODUCTION
The internal noise perceived in helicopter cockpits is caused by several sources. Among them, flow induced noise is becom-
ing a growing area of interest. For decades, it was considered negligible compared to noise sources generated by the engines
which were predominant. Thanks to the efforts made to reduce those sources of noises, the flow induced noise must now be
considered in order to improve passengers comfort in flight.
The unsteady turbulent wall pressure (TWP) due to boundary layers developing along external surfaces, generate a vibratory
motion of walls creating radiated noise that propagates inside aircraft. Modelling the whole scenario requires associating
turbulence and vibro-acoustic models, related to each other through the fluctuating wall pressure. The stochastic nature of
turbulence makes the TWP hardly expressible in the physical domain p(x, t). It is generally described with appropriate
functions such as inter-correlations in space and time Spp (r,τ), or similarly using Fourier transforms as spectra in the wave-
number and frequency domain Φpp (k,ω). In this context, modelling the turbulence fluctuations at the wall reduces down
to modelling the spectrum Φpp (k,ω). From this spectrum, vibro-acoustics tools are applied to compute the radiated noise.
From a theoretical point of view, these two tasks can be performed separately. But practically the form of Φpp (k,ω) greatly
affects the numerical implementation of the computation of the radiated noise. For this reason, it is interesting to have a
complete modelling accounting for both turbulence and vibro-acoustics issues available in a unified context. The goal of this
article is twofold. First, a more realistic model for the spectrum Φpp (k,ω), compared to those available in the literature,
is proposed. Second, standard vibro-acoustics tools are revisited to make them compatible with the proposed form of the
Φpp (k,ω) model. The whole set forms a methodological framework for computing the radiated noise due to turbulent
boundary layers.
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To model Φpp (k,ω) a commonly used approach is to split the spectrum Φpp (k,ω) ≈ φpp (ω)×ϕpp (k,ω) into a form
function ϕpp (k,ω) and an amplitude function φpp (ω) such that (2π)−2 ∫

ϕpp (k,ω)dk = 1. Concerning φpp (ω), models can
rely on experimental data since measurements only require single-point information. On the theoretical side, only asymptotic
behaviours were obtained as discussed by Panton[1], Blake [2] and Bradshaw[3] : φpp (ω) ∝

ω→0
ω2 and φpp (ω) ∝

ω→∞
ω−5 . As

discussed by [4] based on empirical data, different characteristic scales has to be used for high and low frequencies. The outer
variables suit low frequencies while wall variables suit high frequencies The overlapping region may be approximated using
φpp (ω)∝ ω−1 and both scaling can be used. Slopes in ω2 and ω−5 were observed experimentally by Farabee and Casarella[5]

but ω−1 matching remains questionable. Instead, slopes between ω−0.7 and ω−0.8 were observed by Mcgrath and Simpson[6],
Blake[7] and Goody and Simpson[8]. Even though asymptotic behaviours were found for φpp, there is no theoretical model
for φpp covering the whole spectral domain. Most of the models available in the literature are thus based on empirical
correlations. Their forms are chosen such that the asymptotic behaviours are recovered and reproduce experimental data.
These models rely on turbulent boundary layer (TBL) parameters such as free-stream velocity Ue, boundary layer thickness
δ, momentum thickness θ, friction velocity uτ or pressure gradient. Correlations for the zero pressure gradient boundary
layers were proposed by Efimstov[9, 10], Goody[11] and Catlett et al. [12] while Rozenberg[13], Hu and Herr[14], Hu[15]
and Kamruzzaman et al.[16] presented correlations for adverse pressure gradient cases. Zero pressure gradient models have
been compared by Hwang et al.[17] while adverse pressure gradient models have been compared by Lee et al.[18].
Models for the spatial part ϕpp (k,ω) also rely on empirical considerations and result in correlations made to reproduce
experimental data. Most of the models used in the literature are inspired by Corcos[19, 20] works. Based on experimental
observations, a model for the spatial correlation of the TWP was built with an oscillatory exponential decay in the longitudinal
direction x and an exponentially decaying form in the transverse direction z:

Spp (x,z,x+δx,z+δz,ω) = φpp (ω)exp
(
−α

∣∣∣∣ωδx
Uc

∣∣∣∣)exp
(
−β

∣∣∣∣ωδz
Uc

∣∣∣∣+ j
ωδx
Uc

)
Uc = 0.7Ue (x)

α = 0.116
β = 0.7

(1)

Corcos model only provides information on the spatial behaviour as the correlation Spp depends on an unknown function
φpp (ω) of the frequency ω. The spectrum Φpp (k,ω) associated to this correlation is then obtained through a Fourier trans-
form in space using the product of two Cauchy distributions in each direction:

Φpp (kx,kz,ω) = φpp (ω)
2πα

kc

[
α2 +(kx/kc +1)2

] 2πβ

kc

[
β2 +(kz/kc)

2
]

kc = ω/Uc

(2)

Corcos work was improved by several authors proposing new values for parameters α,β,Uc/Ue. For instance, Efimtsov
[9, 10] accounted for compressibility effects and the boundary layer thickness to compute values of α and β.
To avoid resorting to the splitting introduced above and to have a more realistic modelling of Φpp (k,ω), the Poisson equation
that governs the fluctuations of the turbulent pressure can be directly considered. The idea of solving Poisson’s equation with
Green’s functions dates back to Kraichnan[21] in 1956. However, the determination of Φpp requires the knowledge of the
mean profiles in the boundary layer and the spectra of the fluctuating velocities. As these quantities were not available for
Kraichnan, only the simplified case of a constant shear stress profile was considered and its study was limited to determine
orders of magnitude. Moreover, the model requires the computation of improper integrals that cannot be solved analytically.
About twenty years later, when these integrals could be numerically evaluated, Panton and Linebarger[1] computed spatial
and frequency spectra. The TBL profile was described through semi-analytical models. Most of the modern Φpp models rely
on RANS calculations to get the TBL profiles. Two types of approaches may be distinguished. On one side, works following
the spectral approach of Kraichnan, based on a wave-number-frequency resolution, may be gathered such as works by Lee
et al.[22, 23], Remmler et al.[24], Parchen[25] latterly extended by Bertagnolio et al.[26, 27]. All these models give only
the frequency spectrum φpp (ω) and not the complete Φpp (k,ω) spectrum. On the other side, works based on a space-time
resolution of Poisson’s equation such as Peltier et al. [28] and Slama et al.[29] result in an expression for the correlation
Spp (r,τ). The spectra φpp (ω) and Φpp (k,ω) are deduced through Fourier transforms but they must be performed numerically
as no analytical formulations are available in these studies.
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As complete vibro-acoustics modelling requires Φpp (k,ω) and not only φpp (ω), models based on the resolution of Poisson’s
equation available in the literature are not completely suitable in the present context. Using Spp (r,τ) is theoretically possible
but leads to delicate numerical issues and very large computational costs. Recently, Kraichnan’s approach was revisited by
Lysak[30] for pipe flows. Aupoix[31] extended the approach to any boundary layer flow computed using a RANS solver.
One of the objectives of the present work is to improve this approach to obtain the whole spectrum Φpp (k,ω) in the wave-
number and frequency domain from the resolution of Poisson’s equation. The resulting spectrum will then serve as an input
for vibro-acoustics computations in order to evaluate the radiated noise.

Several studies[32–36] have already address the question of computing the radiated noise caused by turbulent boundary
layers. The radiated noise is characterized by the acoustic intensity integrated over the whole vibrating surface. For that
purpose, the TWP spectrum is modelled using Corcos formulation (2) and is assumed to behave as a combination of planar
waves allowing to resort to Fourier transform for computations. This methodology was initiated in the 70’s[37] and further
extended by Hwang and Maidanik[38], Graham[33] and Maury et al.[39]. In the specific case of a rectangular plate simply
supported on its edges, analytical expressions were obtained by Hwang and Maidanik[38] for the acoustic intensity. Such
analytical solutions are no longer achievable when other structures are considered or when different forms for TWP spectra
Φpp (k,ω) are used.
In the present context, where the TWP spectrum is no longer described using Corcos model, the standard methodology for the
computation of the radiated noise must be revisited. Starting from the definition of the acoustic intensity, the main difficulty
lies in the calculation of the two-dimensional improper integrals over the wave-number domain. The retained approach for
the TWP computation does not permit to separate the longitudinal and transversal contributions. To compute the acoustic
intensity, a new methodology is proposed, based on a numerical evaluation of the improper integrals and a efficient procedure
of selection of the main contributions.
The paper is organized as follows: the first section is dedicated to the model of the TWP spectrum. The original model of
Aupoix[31] is recap and an extension is formulated to access the whole spectrum Φpp (k,ω). The model is then compared to
Corcos approach. The second section is devoted to the coupling with the vibrating structure. The methodology allowing the
evaluation of the radiated noise is detailed and a computational algorithm is presented.

2 Turbulence modelling
This section concentrates on the modelling of term Φpp (k,ω). In this study, this term relies on studies by Lysak[30] and
Aupoix[31]. The basis of these works is briefly summarized in the following sub-section.

2.1 Lysak and Aupoix’s model
The main idea of Lysak and Aupoix’s approach is to solve the following Poisson’s equation in order to access the TWP
spectrum Φpp (k,ω):

∇
2 p =−ρ

∂2

∂xi∂x j
(2Uiu j +uiu j−uiu j) (3)

The source terms correspond to:

� −2ρ
∂2

∂xi∂x j
Uiu j which reflects the interactions between the turbulence and the mean flow (TM),

� −ρ
∂2

∂xi∂x j
(uiu j−uiu j) which accounts for the turbulent-turbulent (TT) interactions.

First, Lysak and Aupoix only consider the linear term −2ρ
∂2

∂xi∂x j
Uiu j of Eq.(3) and more precisely only −2ρ

dU
dy

dv
dx is retained

in a two-dimensional boundary layer context. They neglect the TT interactions. This assumption is questionable under some
circumstances but there are no existing solutions to deal with the TT term when solving the Poisson equation in the spectral
domain. In the approach initiated by Peltier et al.[28] and recently extended by Slamma et al.[29] that solves the Poisson
equation in the physical space, both TM and TT terms are considered. As Spp is a second-order tensor, its computation
through Eq.(3) requires velocity tensors of order two for TM terms and three and four for TT terms. Assuming that the
fluctuating velocity fields satisfy the quasi-normality hypothesis, the third-order tensor is zero and the fourth-order tensor
can be expressed using the second-order tensor just as for the TM term.
Second, the Poisson equation is solved using Green’s functions. Then, the velocity fluctuations are modelled using an
isotropic and homogeneous von Kàrmàn spectrum for the spatial part and a Dirac distribution using Taylor’s frozen tur-
bulence hypothesis for the frequency part. These two choices are discussed in Lysak[40]. The spectrum Φvv (k,ω) reads
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:

Φvv (k,ω) = (2π)3 3
8π

〈
v2
〉

k3
e

(
k2

x + k2
z
)

k2
e

[
1+ |k|2/k2

e

]−17/6

×2πδ(ω+ kxU)〈
v2〉= E

(
v2)

ke wave number carrying the maximum of energy

(4)

With this model for Φvv, the final formulation of Lysak’s spectrum of the TWP reads :

Φpp (k,ω) = (2π)3 3ρ
2
∫

∞

0

(
dU
dy

)2 〈v2
〉

k3
e

(
kx

ke

)2 [
1+ |k|2/k2

e

]−17/6
exp(−2 |k|y)δ(ω+U (y)kx)dy

φpp (ω) = 2π3ρ
2
∫

∞

0

(
dU
dy

)2 〈
v2〉

ω
2U−3k−4

e I
(

ω

Uke
,key

)
dy

I (ξ,α) =
∫
R

exp
(
−2α

√
ξ2 +ζ2

)
×
(
1+ξ

2 +ζ
2)−17/6

dζ

(5)

Lysak’s original model is restricted to the very specific case of round pipe flows for which an analytic solution of the profiles
of U,

〈
v2
〉

and ke is known. An extension to an arbitrary boundary layer computed with a RANS solver was developed by
Aupoix[31], deducing ke and

〈
v2
〉

from the mean turbulent quantities :

ke = 1.8εk−3/2
t〈

v2〉=−1.3〈uv〉
(6)

with kt the turbulent kinetic energy and ε the dissipation rate. For the remainder of the paper, this model will be denoted as
the LA model.

2.2 Modification of the frequency part of the velocity spectrum
Considering Φpp (k,ω) given in eq. (5) only allows to compute the frequency dependency of the wall pressure spectrum
φpp (ω). As mentioned earlier, with this approach the spatial dependency has to be known to compute the radiated noise.
This drawback was identified by Lysak where it was shown that the longitudinal correlation length provided by its model is
zero, which is physically meaningless. This behaviour is caused by the Dirac distribution used to represent the frequency
part of the velocity spectrum and that relies on Taylor’s frozen turbulence hypothesis. For a given frequency and a given
height in the boundary layer, only the advective wave number−ω/U is taken into account. This selectivity is due to the zero
width of the Dirac distribution. To solve this issue, a wider distribution may be used. Cauchy distributions corresponding to
an exponential decay in time associated to a width, set through a characteristic time of decorrelation caused by turbulence,
are retained to this end.
Such an exponential decay in time was already used by Tam[41] in order to represent the decorrelation of the velocity
fluctuation in jet flows. It was also used by Ewert et al.[42–44] to mimic the evolution of the velocity fluctuations in a
boundary layer. In both works, the characteristic time of decorrelation τS is computed from RANS values. In particular
Ewert et al. use :

τS = 4.2/wt (7)

Where wt is the specific dissipation rate. This formulation will be used thereafter.
Finally, the Cauchy distribution in k centred around the advective wave-number and having a width of 1/Uτs reads:

ΦA (k,y,ω) =
τs/π

1+ τ2
s (ω+Ukx)

2 (8)
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The resulting Φpp model is reformulated as:

Φpp (k,ω) = (2π)3 3ρ
2
∫

∞

0

(
dU
dy

)2 〈v2
〉

k3
e

ΦT (k,y)ΦA (k,y,ω)ΦD (k,y)dy

ΦT (k,y) =
(

kx

ke

)2 [
1+ |k|2/k2

e

]−17/6

ΦD (k,y) = exp(−2 |k|y)

(9)

For the remainder of the paper, this model will be denoted as the LMA model. This model is now analysed and departures
from standard approaches such as Corcos model Eq.2 are evidenced to highlight the strengths and weaknesses of the models.

2.3 Wave-number dependency
For a given height y in the boundary layer, function k→ Φpp [y] (k,ω) is proportional to the product ΦT ΦAΦD. The three
functions ΦT (k,y) ,ΦA (k,y,ω) and ΦD (k,y) can be seen as filters in the wave-number domain. They will be referred to as
“Turbulence filter”, “Advection filter” and “Damping filter”. The significant contributions to Φpp [y] (k,ω) in the (kx,kz) plan
result from a balance between these three filters. First, filters are analysed separately. Each of these filters is represented by
its central wave-number k0 and its −3dB wave-number bandwidth ∆k0.

2.3.1 Turbulence filter
The turbulence filter is a pass-band filter in the wave-number domain such that its central wave-number k0 ∝ ke. Figure
1 shows two representations of the turbulent filter through functions kx → ΦT (kx,0) and kx →

∫
ΦT (kx,kz)dkz. Similar

behaviours are observed with a slight shift of the central wave-number k0. Their respective bandwidths ∆k0 are summarised
in table 1.

2.3.2 Advection filter
The advection filter is also a pass-band filter. It only depends on kx and is a Cauchy distribution. It has a central wave-number
k0 =−ω/U and has a bandwidth ∆k0 = 2

√√
2−1/(Uτs). Note that the bandwidth ∆k0 does not depend on the frequency

ω. A representation of the shape of the advection filter is given in figure 2.

2.3.3 Damping filter
The damping filter is an exponential low-pass filter using the local height inside the boundary layer y as a reference length.

2.3.4 Resulting filter
The wave-number selectivity of the LMA model depends on the competition between those three filters.The different regimes
of k→ Φpp (k,ω) when ω varies depend on the advection filter as it is the only one with a dependency toward ω. At least
three regimes can be found qualitatively. The advection filter has a narrower band-width than the turbulence filter. Thus
there is a range of ω such as Φpp (k,ω) is driven by the advection filter which corresponds to Corcos’ description. For low
frequencies, the advection filter is no longer a pass-band filter and becomes a low-pass filter. The turbulence filter is the
only remaining band-pass filter and therefore Φpp (k,ω) is therefore ruled by the turbulence filter. For high frequencies,
ω/U � 1/y and ω/U � ke the advection filter will be damped by the turbulence and damping filters. A more detailed
discussion on this competition is made in sub-section 2.5.
The bandwidths of the three filters are compared in figure 3 versus the height of the TBL. The advection bandwidth is about
one order of magnitude finer than the turbulence bandwidth. For a large of the TBL the advection bandwidth scales on the
height of the TBL.

2.4 Frequency analysis
Aupoix[31] showed that the LA model is able to correctly reproduce the spectrum φpp (ω) for a zero pressure gradient bound-
ary layer. As the LMA model derives from the LA model, similar results are expected. Figures 4 and 5 show comparisons
between several models for the configuration studied by Gravante[45]: a zero pressure gradient TBL flow over a flat plate
with Ue = 15.3m.s−1 and Rθ = 7076. Goody[11] and Rozenberg[13] models are depicted on this figure to serve as references
since they are standard correlations commonly used in the literature. For LA and LMA models, the spectra are computed as:
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φpp (ω) =
1

(2π)2

∫
Φpp (k,ω)dk (10)

Figures 4 and 5 show no major difference between LA and LMA models in the range ω =
[
2.103,2.105

]
s−1 . Rozenberg’s

model provides a similar trend for φpp (ω). For high frequencies, all models exhibit different asymptotic behaviours. How-
ever, in the present study aimed at computing the radiated noise I(ω), the low amplitudes encountered at high frequencies
will have a negligible contribution. In the present study, the observed differences are not relevant and will not be further
discussed. For low frequencies a significant difference appears. LA, Goody and Rozenberg models show a ω2 trend, co-
herent with asymptotic behaviours as reminded in the introduction. The LMA model acts differently. For ω→ 0, φpp (ω)
tends to a constant non-zero value. There is a priori no reason to have φpp (0) = 0, i.e.

∫
Spp (τ)dτ = 0. The power spectral

density function can be non-zero for ω = 0: as long as the amplitude of the pressure fluctuations are zero, there will be
no modification of the mean pressure value. Accurate measurements at such low frequencies are delicate. Few data are
available in the literature. Analysis of TBL for large Rθ values by Tsuji et al.[46] exhibit non zero φpp (ω) values for ω→ 0,
but no clear conclusion can be drawn so far on that specific point. One can note that if the advection filter bandwidth ∆k0
is reduced, the Cauchy distribution tends to a Dirac distribution and the ω2 behaviour of the LA model is recovered by the
LMA model. The loss of the ω2 behaviour with non-frozen turbulence has been reported by Hu et al.[47]. The theoretical ω2

behaviour is established under the assumption of Taylor’s hypothesis. The starting point is the Kraichnan-Phillips theorem
asserting Φpp (k,ω) ∼

k→0
k2. Then using Taylor’s hypothesis and integrating over k, it can then be shown that φpp (ω) ∼

ω→0
ω2

See Howe[48, 49] for more details. As this paper does not use Taylor’s hypothesis, this result can not be used anymore
LMA and LA models behave differently for high frequencies and τS is the key parameter that drives this modification. τS is
defined by A/ωt with A = 4.2. Tests have been performed for A ∈ [42;0.42]. The resulting compensated spectra (ωφpp (ω))
are presented in figure 6. For A < 4.2, the compensated spectrum shape is flattened and is shifted toward high frequencies.
For A > 4.2, the LMA model tend to the LA model. It has been shown that despite this change of shape the rms value
(2π)−1 ∫

φpp (ω)dω is almost independent of A as its relative variation is below 1%.

2.5 Three branches diagram
After briefly showing the capability of the LMA model to compute φpp (ω), the focus is now made on the full spectrum
Φpp (k,ω) given by this model.
In standard approaches, as Corcos’s model is only based on an advection mechanism, it is logical that for a given frequency
ω, function k→ Φpp (k,ω) has its maximum at k = (−kc,0,0). With the introduction of new characteristic lengths in the
LMA model, the maxima of the longitudinal spectrum kx→

∫
Φpp (k,ω)dkz will no longer depend solely on kc. Figure 7 is

a schematic representation of the location of the maxima for a TBL evolving along a flat plate without any pressure gradient.
This figure was built observing spectra Φpp (k,ω) of about a thousand zero pressure gradient TBL with Ue ∈ [20;50]m.s−1

and Rθ ∈
[
2.103;4.104

]
using the LMA model. A representation using a sketch was preferred since the axis can be scaled,

allowing to highlight different trends on a single figure.
The fundamental difference with Corcos’s model is that for a given frequency several maxima can be found. These maxima
are located on three separate branches:

� AFI2H line in red which is denoted as the “advection branch”,
� EI1C line in blue which is denoted as the “bifurcation branch”,
� BD line in green which is denoted as the “mirror branch”.

For a given frequency ω, the location of the maximum on each branch, if it exists, is denoted ka (ω) ,ku (ω) and km (ω).
These three branches can be described by nine characteristics points A through H and I1 and I2 and will be studied in details
thereafter. Each of these points is fully characterised by a frequency and a wave-number.
Two lines have been added for reference:

� The advection line in purple such that k+ kc = 0,
� The sonic line in magenta such that k+ k0 = 0.

2.5.1 Advection branch
The advection branch is similar to the one found using Corcos’s model between points F and H. The dispersion relation
linking ω and kx is ω = Aka (ω). For Corcos’s model, A =−Uc. It can be shown that the slope found using the LMA model
is very close to Uc = 0.7Ue. However the advection branch looks different for small frequencies as it does not reach the
origin since ka (0) 6= 0, as represented by point A in figure 7. This behaviour is more physical than a collapse to the origin.
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Such a situation shows that enormous structures, larger than the boundary layer thickness, would be the most representative.
The advection part and the small frequencies part of the advection branch can be separated easily because there is always a
frequency ω such as dka/dω(ω) = 0 which is represented by point F in figure 7.
The advection branch also behaves differently at high frequencies. For Corcos’s model, the maximum is always held at the
line −ω/Uc. Once again, this means that very small structures, possibly smaller than Kolmogorov’s scale, are carrying the
maximum of energy. For the present model, the advection branch ceases to exist above a given threshold frequency which is
represented by point H in figure 7.

2.5.2 Bifurcation branch
Above a given frequency ωE between ωF and ωH , kx →

∫
Φpp (k,ω)dkz has two maxima for kx < 0. This situation corre-

sponds to the emergence of the bifurcation branch and is represented by point E in figure 7. As above ωH , the advection
branch ceases to exist, it means that there is a frequency ωI such that

∫
Φpp (ka (ωI) ,kz,ωI)dkz =

∫
Φpp (ku (ωI) ,kz,ωI)dkz

and beyond ωI , the bifurcation branch dominates the advection branch. Finally, ku (ω) tends to a finite value kC for ω→ ∞.
kC 6= 0 for the same reason that kA 6= 0.

2.5.3 Mirror branch
The advection and bifurcation branches are located on the left part of the diagram, i.e. for kx < 0, in figure 7. For all
frequencies, a maximum can be found in the right part for kx > 0. It goes from the finite value kB for ω = 0 to the finite value
kD for ω→∞. It is found that kA +kB = kC +kD = 0 and therefore the mirror branch behaves similar to the advection branch
for low frequencies and the bifurcation branch for high frequencies.

2.5.4 Sonic line
The sonic line stands as a limit of validation for the LMA model since the incompressibility hypothesis was used to model
the turbulent fluctuations. Consequently, the locations of the sonic line and the different branches must be compared before
analysing results. At a given kx position, the advection line is always located below the sonic line for subsonic configurations.
However the section of the bifurcation line above the sonic line must be ignored since it relies on an inconsistent hypothesis.
The limiting case for which the bifurcation branch must not be considered entirely corresponds to point E, located on the
sonic line.

2.5.5 Scaled correlations
From a series of zero pressure gradient TBL computations, the localisation of points A,B,C,D,E,F, I1 and I2 can be expressed
using Rθ. The wave-numbers are made dimensionless by using Reynolds numbers such as R1/k =

U
kν

and RU/ω = U2

ων
for

frequencies. The correlations are summed up in table 2.
The most interesting fact about these correlations concerns points F and E. They can be seen as bounds for the validity of
Corcos’s model as according to the LMA model, the advection branch match the advection line for frequencies ωF <ω<ωE .
These correlations also provide the location of point E with respect to the sonic line. The limit case for which the bifurcation
branch must not be accounted for is reached when ωE = ckE i.e. RU/ω = MR1/k or M = 0.7191R−0.057

θ
.

3 VIBRO-ACOUSTICS MODELLING
The radiated noise is characterised through its acoustic intensity pv integrated over all the vibrating surface. In order to have
a frequency description of this quantity, the Fourier transform of the cross-correlation between the acoustic pressure and the
acoustic velocity is considered:

I (ω) =
∫

Ω

Fτ (Et [pa (r, t)× va (r, t + τ)])dr. (11)

The computational process is as follows. The acoustic quantities pa and va are described using Green’s functions and the
fluctuating pressure p as a source term. Therefore I (ω) Eq.(11) is expressed using the pressure spectrum Φpp and the Green’s
functions. In the present approach, the Green’s functions are computed using the harmonic framework classically used in
vibro-acoustics. Only two stochastic quantities will be manipulated : I and Φpp whereas it is common in the literature to use
intermediaries such as Φww, Φvava or Φpa pa .
The final formulation of I (ω) cannot be used directly to get a numerical evaluation because the associated CPU time would
be too large. A computational strategy is developed in order to get an accurate approximation of I (ω) with a computational
cost compatible with industrial constraints. All these steps are described hereinafter.
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3.1 Turbulence and Vibro-acoustic Coupling
As explained before, pa and va cannot be modelled as harmonic oscillating quantities because they are created by turbulence
and can therefore only be described from a stochastic point of view. The modelling of I (ω) is divided into two steps. First,
the stochastic part of Eq.(11) is extracted and isolated. Second, the remaining is computed using the harmonic oscillating
framework. This splitting is realized using Green’s functions gp and gv. As pa and va are caused by the TWP, and assuming
homogeneity in time, they are written as:

pa (r, t) =
∫∫

p(r− x1, t− τ1)gp (r,r− x1,τ1)dx1dτ1

va (r, t) =
∫∫

p(r− x2, t− τ2)gv (r,r− x2,τ2)dx2dτ2

(12)

Replacing these expressions in Eq.(11) and using the commutativity of the integrations with the expectation operator, I (ω)
reads:

I (ω) =
∫∫∫∫ ∫

Ω

Fτ (Et [p(r− x1, t− τ1) p(r− x2, t + τ− τ2)])gp (r,r− x1,τ1)gv (r,r− x2,τ2)drdx1dτ1dx2dτ2 (13)

Using the notation

Et [p(r, t) p(r+ x, t + τ)] = Spp [r] (x,τ) (14)

Eq.(13) reads

I (ω) =
∫∫∫∫ ∫

Ω

Fτ (Spp [r− x1] (x1− x2,τ+ τ1− τ2)

× [gp (r,r− x1,τ1)gv (r,r− x2,τ2)])×drdx1dτ1dx2dτ2

(15)

The Fourier transform relative to τ is computed, changing the integrations over τ1 and τ2 in Fourier transforms:

I (ω) =
∫∫ ∫

Ω

Φpp [r− x1] (x1− x2,ω)gp (r,r− x1,−ω)gv (r,r− x2,ω)drdx1dx2 (16)

with gp (r,r− x1,ω) = Fτ [gp (r,r− x1,τ)] and gv (r,r− x2,ω) = Fτ [gv (r,r− x2,τ)]. Then Φpp is expressed as an inverse
Fourier Transform in x2:

Φpp [r] (x,ω) =
∫

Φpp [r] (k,ω)
exp( jkx)

(2π)2 dk

I (ω) =
∫∫∫

Ω

∫
Φpp [r− x1] (k,ω)

exp( jk (x1− x2))

(2π)2 dkgp (r,r− x1,−ω)gv (r,r− x2,ω)drdx1dx2

(17)

Spatial homogeneity Φpp [r− x1] (k,ω) = Φpp (k,ω) is assumed meaning that the boundary layer is evolving slowly in the
longitudinal direction. Therefore, spatial Fourier transforms with respect to x1 and x2 can be computed as:

I (ω) =
∫ ∫

Ω

Φpp (k,ω)
1

(2π)2 gp (r,k,−ω)gv (r,−k,ω)drdk (18)

with gp (r,k,ω) = Fx [gp (r,x1,ω)] and gv (r,k,ω) = Fx [gv (r,x2,ω)]. Equation(18) is the product of three terms:
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� Φpp [r] (k,ω), the TWP spectrum computed in section 2,
� gp (r,k,−ω), the Green’s function between TWP and the acoustic pressure,
� gv (r,−k,ω), the Green’s function between TWP and the acoustic velocity.

The determination of these Green’s functions is done in the harmonic oscillating framework as is usual in vibro-acoustics.

3.2 Vibro-acoustics Tools
The determination of the Green’s functions gp and gv may be decomposed in several steps assuming a unitary exciting TWP.
First, pa is related to va through the resolution of Helmholtz’s equation also known as Rayleigh’s integral:

pa (r,ω) =
ρ jω

(2π)2

∫ va (k,ω)exp( jrk)√(
ω

c

)2− k2
dk (19)

The existence of a modal in vaccuo decomposition of the displacement w is assumed. As the vibrating structure is a bidi-
mensional plate, the modal decomposition is indexed by a couple of integers (m,n). This decomposition is assumed to be
orthonormal for the scalar product 〈 f ,g〉=

∫
Ω

f (r)g(r)dr. The natural frequency of the mode (m,n) is denoted ωmn. Using
this modal formalism, pa and va read:

va (r, t) =
∂w
∂t

(r, t)

w(r,ω) = ∑
mn

amn (ω)wmn (r)

va (r,ω) = ∑
mn

jωamn (ω)wmn (r)

pa (r,ω) = ∑
mn

bmn (ω)wmn (r)

(20)

The dynamical equilibrium in r of the plate excited in r′ reads:

Elasticity+Damping+ Inertia = Turbulent Excitation+Acoustical retroaction (21)

which can be expressed using the modal formalism as:

∑
mn

amn (ω)ρph
[
ω

2
mn (1+ jη)−ω

2]wmn (r) = δ
(
r− r′

)
+2∑

mn
bmn (ω)wmn (r) (22)

where η is a damping loss factor, ρp is the density of the plate and h is the thickness of the plate.
Eq.(19) and Eq.(22) are projected on a given mode wrs and integrated over Ω. Using the orthogonality property of the
decomposition basis

∫
Ω

wmn (r)wrs (r)dr = δmrδns, and the uncoupling modes approximation, meaning that the acoustical
retroaction of the mode(r,s) only impacts itself, Eq.(19) and Eq.(22) reduce to:

brs (ω) =
jρω2

(2π)2 ∑
mn

amn (ω)
∫ ∫ wmn (k)exp( jkr)wrs (r)√(

ω

c

)2− k2
dkdr

=
jρω2

(2π)2 ∑
mn

amn (ω)
∫ wmn (k)wrs (−k)√(

ω

c

)2− k2
dk

ars (ω)ρh
[
ω

2
rs (1+ jη)−ω

2]= wrs
(
r′
)
+2brs (ω)

(23)

The summation in Eq.(23) vanishes and the equation ruling ars then reads:
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ars (ω)ρh
[
ω

2
rs (1+ jη)−ω

2]= wrs
(
r′
)
+2

jρω2

(2π)2 ars (ω)
∫ wrs (k)wrs (−k)√(

ω

c

)2− k2
dk

= wrs
(
r′
)
+2 jωars (ω)Zrs (ω)

⇔ ars (ω)Ars (ω) = wrs
(
r′
) (24)

with Zrs (ω)=
ρω

(2π)2

∫
|wrs (k)|2

[(
ω

c

)2− k2
]−1/2

dk the radiation impedance and Ars (ω)= ρh
[
ω2

rs (1+ jη)−ω2
]
−2 jωZrs (ω)

the structural impedance.
Finally, the Green’s functions are computed from ars:

gp
(
r,r′,ω

)
= ∑

mn
bmn (ω)wmn (r) = ∑

mn
jωwmn

(
r′
)
[1/Amn (ω)]Zmn (ω)wmn (r)

gv
(
r,r′,ω

)
= jω∑

mn
amn (ω)wmn (r) = jω∑

mn
wmn

(
r′
)
[1/Amn (ω)]wmn (r)

(25)

Applying a Fourier transform towards r′, the Green’s functions appearing in Eq.(18) are computed through:

gp (r,k,−ω) = ∑
mn
− jωwmn (k) [1/Amn (ω)]Zmn (−ω)wmn (r)

gv (r,−k,ω) = jω∑
mn

wmn (−k) [1/Amn (ω)]wmn (r)
(26)

Since Amn (ω) and wmn (k) are Fourier transforms of real quantities, we have Amn (ω)Amn (−ω)= |Amn (ω)|2 and wmn (k)wmn (−k)=
|wmn (k)|2. Using the orthogonality of the modal decomposition, the acoustic intensity finally reads:

I (ω) =
ω2

(2π)2 ∑
mn

[∫
Φpp (k,ω) |wmn (k)|2 dk

]
Zmn (−ω)

|Amn (ω)|2

=
ω2

(2π)2 ∑
mn

[Kmn (ω)]Zmn (−ω) |Amn (ω)|−2
(27)

3.3 Computational Strategy
The numerical evaluation of the radiated noise from Eq. (27) is practically unachievable due to the large number of operations
required for computation. Three terms are to be computed: Amn,Zmn and Kmn. The first two depend only on the mechanical
characteristic of the exited structure and can be computed for a small computational cost and tabulated for later use. However,
Kmn depends on both flow characteristics and the geometry of the structure, requiring updates as flow conditions change.
The evaluation of this term is the reason why I (ω) cannot be directly computed from Eq. (27). To justify this statement
quantitatively, let’s consider the special case of a rectangular plate Lx×Lz simply supported on its edges. The displacement
modes are :

wmn (r) = wm (rx)wn (rz)

wm (rx) =

√
Lx

2
sin
(

mπ
rx

Lx

)
=

√
Lx

2
sin(kmrx)

wmn (k) = wm (kx)wn (kz)

wm (kx) =
mπ

Lx

√
2/Lx

(
(−1)m e− jLxkx −1

)(
k2

x −m2π2L−2
x
)

= km
√

2/Lx

(
(−1)n e− jLxkx −1

)
(k2

x − k2
m)

(28)
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Eq.(28) and figure 8 indicate that wm (kx) and consequently |wmn (k)|2 are oscillating functions. Therefore the computation of
Kmn which is an integration over the unbounded domain R2 reveals itself to be delicate. It is easier to perform the integration
over each lobe of |wmn (k)|2and to sum all the contributions. The domain R2 is meshed with rectangles. Each rectangle
corresponds to one lobe of |wmn (k)|2 and is indexed by the two integers M and N. The boundaries of the lobes are defined
by :

(−1)n e− jLxkx −1 = 0

(−1)m e− jLzkz −1 = 0
(29)

and can easily be found depending on the parity of m and n.
Numerical integrations on each lobe are computed using Shampine[50] adaptive quadrature which is able to compute in-
definite integrals on unbounded and bidimensional supports. In reality, only a finite number of lobes is considered. The
contributions of high values of M or N are negligible. Two bounded values ML and NL can be defined such that only lobes
satisfying M < ML and N < NL are computed. ML and NL are found by comparing the wavelengths of the lobe Mπ/Lx
and Nπ/Lz and a characteristic wavelength of the TWP max(0.7ω/Ue,ke (y = δ/2)). It has been shown that by taking
ML = NL = 100, the relative error resulting from the computation of Kmn is below 1.10−6.
From these considerations, a naive way to compute I (ω) can be elaborate using four loops. The associated computational
process is summarized in algorithm 1.
Table 3 gives typical orders of magnitudes of the number of operations for each loop. The total number of operations for
the naive algorithm is about 3.1014. In an industrial context, it is obviously impossible to rely on such a process to compute
I (ω). A good approximation of I (ω) is however achievable, with a reasonable computational cost, because it can be shown
that most of the contributions involved in the computation of terms I1, I2 and I3 in algorithm 1 are negligible.
Table 3 also provides the number of operations required if only the major contributions are computed with a relative error on
I (ω) below 10−3. The number of operations has been drastically reduced since only 1010 are required. The main difficulty
is that the location in the different space domains of these major contributions is a priori unknown. An exploratory process
is used to locate these contributions. For three of the loops involved in algorithm 1, the number of operations is reduced.

3.3.1 Boundary layer integration loop
The first loop is the integration along the boundary layer thickness. According to Eq. (9) Φpp (y,k,ω) is proportional to(

dU
dy

)2 〈v2〉
k3

e
. As

〈
v2
〉
(y = 0) =

〈
v2
〉
(y = δ) = 0, the contributions of the near wall and frontier regions of the boundary

layer can be neglected. The maximum of the function y→
(

dU
dy

)2 〈v2〉
k3

e
is roughly located near δ/2 and the function is

monotonically decreasing in both directions. The idea is to begin the exploration at y = δ/2 and progress towards the wall
until I1 does not contribute significantly to I2 and to repeat the process towards the frontier of the boundary layer. With a
relative threshold fixed at εY = I1/I2 = 1.10−5 the number of heights to be considered in the boundary layer is reduced by a
factor of 3 in subsonic boundary layer configurations with unitary Reynolds number in

[
106,107

]
which is characteristic of

flows around helicopters.

3.3.2 Wave number integration loop
The second loop is the summation over M,N. It is quite difficult to know which of the I2 terms contribute most to I3.
One can presume that I2 (M,N,m,n,ω) for (M,N) = (m,n) has a significant contribution. However it can be shown that
(M,N) = (m,n) is not always the global maximum as other local maxima can exist. The search of all these maxima may be
a complex process and is very time-consuming.
The idea followed in this study is to compute I2 (M,N,m,n,ω) for all couples (M,N)∈ [1 : ML]× [1 : NL] with a less accurate
but cheaper method of integration. This method does not need to be precise as its purpose is only to find the couples (M,N)

giving a significant I2. The I1 integrals are evaluated using a Gauss quadrature using |wmn (k)|2 as the weight function. Only
Φpp (k,ω) needs to be evaluated. The number of evaluations depends on the order of the quadrature. It has been shown
that the zero-order, which requires only one evaluation per lobe, is sufficient to sort the (M,N) couples and find the major
contributors to I2 (M,N,m,n,ω). Once sorted, the main contributions are accurately computed using Shampine’s quadrature.
With a relative threshold fixed at εMN = I2/I3 = 1.10−5 only one percent of the initial amount of operations is required.

3.3.3 Modal loop
The last loop is the modal summation over (m,n). From a vibro-acoustic point of view, two families of modes need to be
considered: the resonant and the radiative modes. For a given frequency ω, the radiative modes are such that there is a good
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coupling between the acoustic pressure and velocity which is obtained when Zmn (ω) is maximised. The resonant modes
have their natural frequency satisfying ωmn = ω and therefore |Amn (ω)|−2 will be maximal. The modes of these two families
are expected to be significant contributors to I (ω) and the others significant contributors are supposed to be located in their
neighbourhoods in the (m,n) plan.
In the special case of a rectangular plate Lx × Lz simply supported on its edges, these families are localised on ellipses
(mπ/Lx)

2+(nπ/Lz)
2 =C2. For resonant modes C = kmn

√
ω/ωmn and for radiation modes C =ω/c. There exists a frequency

ω such that these two ellipses are superposed and therefore resonant and radiative modes are identical. I (ω) is expected to
achieve a particularly high value in such cases.
Noticing that Φpp (k,ω) is maximised when kz = 0, the longitudinal modes located on lines n =±1 are also expected to be
significant contributors.
Due to these considerations, there is no need to compute all the contributions of all the (m,n) modes, only the most significant
ones must be considered. Once again, their locations are a priori unknown but they are hypothesized to be located near the
two ellipses and the two lines described above. The strategy is as follows:

1. Compute the contributions of the radiative, resonant and longitudinal modes.
2. Sort these contributions.
3. Explore the neighbourhood of these modes in order to find new significant contributors.

The threshold is fixed at εmn = I3/I = 1.10−5. This allows a reduction of the number of computations of a factor 100.
Following the rules explained above, the light algorithm 2 can be written.
The associated computational cost depends on the threshold values εY ,εMN ,εmn,ML and NL. Since computing I (ω) through
the naive algorithm is not possible, the exact error of the light algorithm is not directly accessible. Therefore the threshold
values cannot be directly related to that error. Nevertheless, an estimate of the error may be obtained as follows. The three
summations of the algorithm are expressed with unknown errors e1,e2 and e3.

I2 = ∑ I1 + e1; I3 = ∑ I2 + e2; I = ∑ I3 + e3 (30)

Assuming the existence of constants A1,A2 and A3 such that ei < min(Ii)Ai, the errors are expressed using the threshold
values e1 < εY I2A1, e2 < εMNI3A2 and e3 < εmnIA3.
Thus Eq.(30) yields:

I2 <
(
∑ I1

)
/(1− εY A1)

I3 <
(
∑ I2

)
/(1− εMNA2)

I <
(
∑ I3

)
/(1− εmnA3)

(31)

Finally an upper bound on the error on I is expressed as:

I−∑∑∑ I1 < [(1− εY A1)(1− εMNA2)(1− εmnA3)]
−1−1

EM = [(1− εY A1)(1− εMNA2)(1− εmnA3)]
−1−1

≈ (1+ εY A1)(1+ εMNA2)(1+ εmnA3)−1
≈ εY A1 + εMNA2 + εmnA3

(32)

Considering a set of random values of ω,m,n,M and N, tests show that εY = 1.10−5 implies εY A1 < 1.10−3. Using this
value and considering a set of random values for ω,m and n, it has been shown that εMN = 1.10−5 implies εMNA2 < 1.10−3.
Similarly, considering a set of random values of ω, tests conducted with εmn = 1.10−5 lead to εmnA3 < 1.10−3. As a
consequence, using εY = εMN = εmn = 1.10−5, the relative error for the computation of I (ω) is estimated at 10−3.

3.4 Application
The purpose of the application case is to demonstrate the importance of the difference in the longitudinal dependency between
the Corcos and LMA models highlighted in section 2 in the prediction of the radiated noise. Two cases will be compared.
Both of them consist in a 0,25m× 0,17m aluminium plate, simply supported on its edges and exited by a turbulent flow
characterised by Ue = 50ms−1 and Rθ = 3540. The difference between Case 1 and Case 2 rely on the thickness of the plates
as h1 = 0.2mm and h2 = 5mm. Therefore, the modal function wmn (k) and the radiation impedances are the same for both
cases while the natural frequencies of the modes and Amn (ω) are different.
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In figure 7, symbols ∆ (case 1) and � (case 2) show where the two cases are located in the (kx,ω) plan. As it is only a sketch,
figure 9 presents the actual numerical values for cases 1 and two. In addition, figure 9 presents the advection branch of the
flow and the natural frequencies of mode (1,1) of cases 1 and 2. Below 200Hz, the maxima location of kx → Φpp (k,ω)
tends to be near −80m−1 for the LMA model whereas it linearly decreases for Corcos’s model. Taking a mode with a
natural longitudinal wave-number below 80m−1, two situations arise. First, if its natural frequency is below 200Hz (or
located below point F in figure 7), the radiated noise due to this mode predicted using the LMA model will be much smaller
than the one predicted by Corcos’s model. Second, if its natural frequency is above 200Hz (or located above point F in
figure 7) and below the very high frequencies range, the radiated noise predicted by both models will have the same order of
magnitude because the maxima are located at the same places. The results will not be exactly the same because of differences
in the spectral width in the longitudinal and the transversal directions.
If the mode (1,1) is used, its natural longitudinal wave-number is 12.56m−1 and the associated natural frequencies are
respectively 25Hz and 633Hz. The radiation frequency which correspond to the maximum of Z11 is 1209Hz. The radiated
noise due to the mode (1,1) is plotted versus the frequency for both Corcos and LMA models on figure 10. For each case,
the radiated noise is scaled by max [ILMA (ω)].
As predicted, the behaviour is completely different if the natural frequency is above or below 200Hz. For case 2, near the
natural frequency, both models give the same radiated noise. One may notice that small differences begin to appears for
frequencies far from the natural frequency of the mode (1,1). But for such frequencies, the radiated noise is negligible in
comparison with that is found for the natural frequency. For case 1, the behaviour is different as the shape is quite similar
but the maxima differ from almost two orders in magnitude. This demonstrates that using Corcos’s model for all frequencies
can lead to large differences in the prediction of the radiated noise.
What has been shown on figure 10 can be refined to find precisely the transition between both regimes. Considering a serie
of plates with a variable thickness such as their natural frequencies lies in [20Hz;1kHz], for each of these, the radiated noise
at the natural frequency of both models will compared. Results are depicted on figure 11 where the ratio of the radiated noise
versus the natural frequency of the plates.
The plate with the natural frequency fmn ≈ 200Hz is drawn to separate both regimes. One can notice that the radiated noise is
maximal at natural frequencies due to high vibration level and the radiation frequency is far above and therefore not involve
here.
The ratio between both radiated noises reaches values up to 60 which corresponds to≈ 18dB. This value is not negligible for
acoustics and shows that improved models must be developed to overcome Corcos’s model limitations outside of its range
of utilisation.

4 Conclusion
An analytical model of the fluctuations of the turbulent wall pressure was developed in order to improve the prediction of
noise radiated by a vibrating structure excited by a turbulent boundary layer. Most of the models available in the literature
are based on empirical descriptions of the TWP. In the LMA model, the TWP fluctuations are computed from the modelled
turbulent velocity fluctuations, leading to a more general model as the empiricism is not used directly on the final quantity
of interest.
The TWP fluctuations are described in time and space through the LMA model. Both aspects are required for vibro-acoustics
applications whereas many studies focus only on the temporal aspects. The TWP is characterized by its spectrum in the
frequency/wave number domain which is more convenient for vibro-acoustics applications rather than the cross-correlation
in space and time.
This new model has similarities with the empirical models available in the literature such as Corcos model, mostly when
advection is the main mechanism involved. However, strong differences arise for high and low frequencies where the influ-
ence of turbulence scales cannot be neglected. One of the main interest of this finding is to provide frequencies boundaries
for models based only on the advection mechanism which are commonly used without any boundaries. Outside of these
boundaries, using Corcos or LMA model to compute the radiated noise will lead to completely different results as their
behaviours in the frequency wave-number domain are different.
The LMA model was coupled with classic vibro-acoustics models in order to compute the radiated noise emitted by a
structure excited by a turbulent flow. Considering the use of the final model in an industrial context, a simplified version was
developed. The computational cost was significantly reduced while the resulting error remains small and controlled.
The predicted new features found for the TWP spectrum must be confirmed experimentally. As the rare existing experimental
data available in the literature are not documented enough to be reproduced with the present approach, the next step would
be to design a new experimental apparatus in order to validate the different steps of the modelling. In particular, the TWP
and the turbulent velocity fluctuations spectra should be measured simultaneously in the frequency/wave-number domain
allowing the verification of the validity of the proposed model.
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Nomenclature
amn modal amplitude of displacement
Amn structure impedance
bmn modal amplitude of pressure
c speed of sound
dp/dx pressure gradient
gp Green function between TWP and the acoustic pressure
gv Green function between TWP and the acoustic velocity
h thickness of the vibrating plate
I acoustical intensity
I1, I2, I3 partial summation of the acoustical intensity
j Re( j) = 0, Im( j) = 1
k wave-number
kc = ω/U advection wave-number
ke wave number carrying the maximum of energy
kx longitudinal wave-number
ky normal wave-number
kz transversal wave-number
Kmn turbulence impedance
Lx length of the vibrating plate
Lz width of the vibrating plate
m,n modal indexes
M,N lobe indexes
ML,NL boundaries of lobe indexes
p turbulent wall pressure
pa acoustical wall pressure
Spp pressure inter-correlation
t,τ time
ui = (u,v,w) fluctuating fluid velocity
uτ friction velocity
Ue free-stream velocity
Ui = (U,V,W ) mean fluid velocity
va velocity of the plate〈
v2
〉
= E

(
v2
)

w displacement of the plate
wmn (k) modal wave-number distribution
x,r position
x longitudinal coordinate
y normal coordinate
z transversal coordinate
Zmn radiation impedance
α,β Corcos’s constants
δ boundary layer thickness
δ() Dirac distribution
ε turbulent dissipation
εmn modal threshold
εMN lobe threshold
εY altitude threshold
θ momentum thickness
ρ fluid density
ρP density of the vibrating plate
τS characteristic time of decorrelation
ΦA advection filter
ΦD damping filter
φpp pressure power spectral density
ΦT turbulence filter
ω pulsation
ωt turbulent specific dissipation rate
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Ω surface of the vibrating plate
Ft ( f ) =

∫
f (t)exp( jωτ)dτ, Fourier Transform

F −1
t ( f ) = (2π)−1 ∫ f (t)exp(− jωτ)dτ, inverse Fourier Transform
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[48] Howe, M. (1992). A note on the kraichnanâĂŤphillips theorem. Journal of Fluid Mechanics 234, 443–448.
[49] Howe, M. S. and M. S. Howe (1998). Acoustics of fluid-structure interactions. Cambridge university press.
[50] Shampine, L. F. (2008). Vectorized adaptive quadrature in matlab. Journal of Computational and Applied Mathemat-

ics 211(2), 131–140.

16



10−2 10−1 100 101 102
0

0.5

1

kx/ke

Φ
/

m
ax

(Φ
)

ΦT (kx,0)∫
ΦT (kx,kz)dz

Fig. 1. Turbulence filters evolutions with respect to kx in a semilogarithmic plot

0

0.1

0.2

0.3

−∆k0
2

0 ∆k0
2

kx− k0

Φ
A

Fig. 2. Advection filter evolution with respect to kx

17



10−1 100 101 102 103 104 10510−3

10−2

10−1

100

wave number

y/
δ

keδ

δ/(UτS)

δ/y
y+ = 10

Fig. 3. Comparison of the bandwidths of the filters

101 102 103 104 105 106 10710−8

10−7

10−6

10−5

10−4

10−3

10−2

ω

φ
pp
(ω

)

LMA
LA
Rozenberg
Goody
Gravante

Fig. 4. Frequency dependency of φpp in a logarithmic representation

kx→ΦT (kx,0) kx→
∫

ΦT (kx,kz)dkz

k0 ≈ 0.74ke ≈ 0.87ke

Low cut-off
≈ 0.42ke ≈ 0.49ke

−3dB

High cut-off
≈ 1.22ke ≈ 1.50ke

−3dB

Bandwidth
≈ 0.80ke ≈ 1.01ke

−3dB

Table 1. Band-widths of the turbulence filter
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A,B C,D E

R1/k = βkRαk
θ

αk 1.1056 1.0487 1.0547

βk 5.6485 3.2060 1.7399

RU/ω = βωRαω

θ

αω 0.9977

βω 1.2511

F I1 I2

R1/k = βkRαk
θ

αk 1.1283 0.8184 1.0643

βk 5.1988 1.1987 2.5771

RU/ω = βωRαω

θ

αω 1.0759 0.8103

βω 21.3876 2.1006

Table 2. Correlations for characteristic points of the three branches diagram

Exact Approximate

Frequency loop ω 20000 20000

Modal loop m,n 100×100 ≈ 100

Wave-number
100×100 ≈ 100

integration loop M,N

Boundary layer
150 ≈ 50

integration loop Y

Product 3.1014 1010

Ratio 1 1/30000

Table 3. Number of operations

Algorithm 1 Naive algorithm
for ω ∈ Iω do

for m,n ∈ Im× In do
for M < ML,N < NL do

for Y ∈ IY do
I1 (M,N,m,n,Y,ω) =

∫ M+1
M

[∫ N+1
N Φpp (Y,k,ω) |wmn (k)|2 dky

]
dkx

I2 (M,N,m,n,ω) = I2 (M,N,m,n,ω)+ I1 (M,N,m,n,Y,ω)dY
end for
I3 (m,n,ω) = I3 (m,n,ω)+ I2 (M,N,m,n,ω)

end for
I (ω) = I (ω)+ I3 (m,n,ω)

end for
end for
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Algorithm 2 Light algorithm
for ω ∈ Iω do

for m,n in radiative, resonant and longitudinal modes do
for M,N ∈ [1 : MNL]× [1 : MNL] do

Compute integrals using Gauss quadrature
Y = δ/2
while I1/I2 > εY do

Compute I1
I2 = I2 + I1
increase Y

end while
Y = δ/2
Redo Y-loop for decreasing Y
Sort I2/max [I2]> εMN and find M,N major contributions
Redo Y-loop using Shampine quadrature on major contributors
I3 (m,n,ω) = I3 (m,n,ω)+ I2 (M,N,m,n,ω)

end for
I (ω) = I (ω)+ I3 (m,n,ω)

end for
while I3/I > εmn do

explore neighborhood of radiative, resonant and longitudinal modes
end while

end for
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