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ABSTRACT
Clusteringwith accurate results have become a topic of high interest.
Dirichlet Process Mixture (DPM) is a model used for clustering with
the advantage of discovering the number of clusters automatically
and offering nice properties like, e.g., its potential convergence to
the actual clusters in the data. These advantages come at the price
of prohibitive response times, which impairs its adoption andmakes
centralized DPM approaches inefficient. We propose DC-DPM, a
parallel clustering solution that gracefully scales to millions of data
points while remaining DPM compliant, which is the challenge of
distributing this process. Our experiments, on both synthetic and
real world data, illustrate the high performance of our approach on
millions of data points. The centralized algorithm does not scale and
has its limit on 100K data points, where it needs more than 7 hours.
In this case, our approach needs less than 30 seconds.
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1 INTRODUCTION
Clustering, or cluster analysis, is the task of grouping similar data
into the same cluster and separating dissimilar data in different clus-
ters. It is a data mining technique and is intensively used for data
analytics, with applications to marketing [2], security [13], or sci-
ences like astronomy [21], and many more. Clustering may be used
for identification in the new challenge of high throughput plant phe-
notyping [17], a researchfieldwith the purpose of crop improvement
in response to present and future demographic and climate scenarios.
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Figure 1: Durum in an experimental field. RGB image.

In this case, data to be considered include data on plants and crop im-
ages, like the one illustrated by Figure 1, showing a view of a Durum
crop. Automatic identification, from such images, of leaves, soil, and
distinguishing plants from foreground, are of high value for experts
since they provide the fundamental information used for popular su-
pervisedmethods in the domain [17]. One of themain difficulties, for
clustering, is the fact that we don’t know, in advance, the number of
clusters to bediscovered. Tohelpperforming cluster analysis, despite
the unknown tackled number of clusters, statistics advocate for:

(1) Setting a number of clustering runs, with varying value ofK ,
and selecting the one that minimizes a goodness of fit crite-
ria. It may be a quadratic risk or the Residual Mean Squared
Error of Prediction (RMSEP) [14]. This approach needs the
implementation of a cross-validation algorithm [14]. The clus-
tering approach in this case, may be a mixture model with an
Expectation-Maximization (EM) algorithm [6], or K-means
[14], for instance.

(2) Making a hierarchical clustering and then cut off the tree
at a given depth, usually decided by the end-user. Different
approaches for pruningwith advantages and drawbacks exist,
see [14].

(3) Using aDirichlet ProcessMixture (DPM)which automatically
detects the number of clusters [8].

In this work, we focus on the DPM approach since it allows estimat-
ing the number of clusters and assigning observations to clusters, in
the same process. Furthermore, its implementation is quite straight-
forward in a Bayesian framework. Such properties of DPMmake it a
very appealing solution for many use-cases. Unfortunately, DPM is
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highly time consuming. Consequently, several attempts have been
done to make it distributed [16, 25, 26]. However, while being effec-
tively distributed, these approaches usually suffer from convergence
issues (imbalanceddata distributionon computingnodes) [10, 16, 26]
or do not fully benefit from DPM properties [25] (see our discussion
in Section 3). Furthermore, making DPM parallel is not straightfor-
ward since it must compare each record to the set of existing clusters,
a highly repeated number of times. That impairs the global perfor-
mances of the approach in parallel, since comparing all the records
to all the clusters would call for a high number of communications
andmake the process impracticable. Our goal is to propose a parallel
DPM approach that fully exploits parallel architectures for better
performances and offers meaningful results. Our main contribution
is to keep consistency of clusters amongworker nodes, and between
the worker and the master nodes with regards to DPM properties.
Our motivating example comes from the biology use-case described
above, where the processing time on one imagemay go up to several
days in a centralized environment. These performances in response
time are the main reason why DPM is not used in the domain. The
results are very informative for experts, but the processing times
are prohibitive. In this case, parallelization is an appealing solution
but it has to guarantee that results remain as informative as the ones
targeted by a centralized run. We propose DC-DPM (Distributed
Clustering by Dirichlet Process Mixture), a distributed DPM algo-
rithm that allows each node to have a view on the local results of
all the other nodes, while avoiding exhaustive data exchanges. The
main novelty of our work is to propose a model and its estimation
at the master level by exploiting the sufficient statistics from the
workers, in a DPM compliant approach. Our solution takes advan-
tage of the computing power of distributed systems by using parallel
frameworks such as MapReduce or Spark [27]. Our DC-DPM solu-
tion distributes the Dirichlet Process by identifying local clusters on
the workers and synchronizing these clusters on the master. These
clusters are then communicated as a basis among workers for local
clustering consistency.Wemodified theDirichlet Process to consider
this basis in each worker. By iterating this process we seek global
consistency of DPM in a distributed environment. Our experiments,
using real and synthetic datasets, illustrate both the high efficiency
and linear scalability of our approach. We report significant gains
in response time, compared to centralized DPM approaches, with
processing times of a fewminutes, compared to several days in the
centralized case. The paper is organized as follows. In Section 2 we
state the problem and give the necessary background on Dirichlet
ProcessMixture. InSection3wediscuss relatedworkand inSection4,
we describe the details of our distributed solution for clutering by
means of Dirichlet Process Mixture. Section 5 reports the results of
our experimental evaluation to verify the efficiency and effectiveness
of our approach, and Section 6 concludes.

2 PROBLEMDEFINITIONANDBACKGROUND
2.1 Dirichlet ProcessMixtureModels
ADirichlet Process (DP) is a probability distribution over distribu-
tions. In our use-case, a distribution over the image pixels could be
"plant" with probability p1, and "not plant" with probability p2, with
the property that p1+p2=1. A DP generates a probability distribu-
tionG. We observe a sample θ1,...,θN fromG. In our use-case, each

θi is the vector of possible pixel color values.

θn |G
iid
∼ G,n=1,...,N

G ∼ DP(α,G0)

G θn

N

WhereG is by construction a discrete probability distribution [22] .

G=
∞∑
i=1

πi (v)δϕi

Therefore, observed variables θn have a non null probability of hav-
ing the same value ϕi and this allows for clustering. In our use-case,
"plant" pixels will have the same color vectorϕ expressing the green
value. Clustering is very sensitive to the DP parameters given by
the end user.G0 is a continuous probability distribution fromwhich
the (ϕi )i ∈N are initially drawn. In our use-case,G0 gives the color
probability of all possible clusters in the image.

ϕ1,...,ϕi ,...∼G0

α is a scale parameter (α > 0) which tunes the probability weights
πi (v).

V1,...,Vi ,...∼Beta(1,α) πi (v)=vi
i−1∏
j=1

(1−vj )

α tunes indirectly the probability mass function for kN , the num-
ber of unique values (namely ϕi ) in a sample of size N [3].

p(kN )=
��SN ,kN

��N !αkN
Γ(α)

Γ(α+N )
(1)

where
��SN ,kN

�� is the unsigned Stirling number of the first kind.

With a Dirichlet ProcessMixture we observe the sampley1,...,yN
from a mixture of distributions F (θn ). In our use-case, we assume
that colors are observed with a noise distributed according to F . The
mixture is controlled by a DP on the parameters θn .

yn ∼ F (θn ),n=1,...,N
θn ∼ G

G ∼ DP(α0,G0)

In a Bayesian framework, the estimation of θn is done on the pos-
terior: P(θ1,...,θN |y1,...,yN ). Instead of this representation, another
parameterization is used to speed up computation of the posterior:

P(ϕc1 ,...,ϕcN |y1,...,yN )

Where θn =ϕcn , cn is the cluster label of observation n, and ϕcn is
the unique value of the θn belonging to the same cluster. The Gibbs
algorithm [11] samples the cluster labels c1,...,cN and next the clus-
ter parameters (here ϕc , for all c ∈ {1, ...,K} where K designs the
number of cluster label values) instead of θ1,...,θN .

α π cn

G0 ϕk

yn

N

KN
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Several versions of a Gibbs sampling are proposed by Neal in [19]
to simulate values from the posterior. The principle is to repeat the
following loops at least until convergence to the posterior:

(1) Cluster assignment, for n=1,...,N
• Remove observation n from its cluster. Check if the cluster
is empty, if yes then remove the cluster and ϕcn from the
list {ϕ} of all possible values.

• Draw cn from

P (cn =c | {c j }j,n,yn,{ϕ})∝{
#(c)

N−1+α F (yn |ϕc ) existing cluster
α

N−1+α
∫
F (yn |ϕ)dG0(ϕ) new cluster

Where #(c) designs the number of observations affected to
cluster c (after removing observation n from the sample).

• If c designs a new cluster, need to draw ϕc from P(ϕ |yn )∝
F (yn |ϕ)G0(ϕ)

• End loops
(2) Update of {ϕ},

• draw ϕc from the posterior distribution of cluster c , P(ϕ |
{y}c ) (which is proportional to the product of the priorG0
and the likelihood of all observations affected to cluster c).

When distribution F andG0 are conjugates, ϕ can be integrated
out from the Gibbs sampling which becomes time-efficient (no need
to update {ϕ}). Then

P (cn =c | {c j }j,n,yn,{ϕ})∝{
#(c)

N−1+α
∫
F (yn |ϕ)dP(ϕ | {y}c ) existing cluster

α
N−1+α

∫
F (yn |ϕ)dG0(ϕ) new cluster

2.2 Massive Distribution and Spark
Clustering via Dirichlet Process Mixture based on Gibbs Sampling
is unable to scale to large datasets due to its high computational
costs associated with Bayesian inference. For this reason, we aim to
implement a parallel algorithm forDPMclustering in amassively dis-
tributed environment called Spark which is a parallel programming
framework aiming to efficiently process large datasets. This pro-
grammingmodel can perform analytics with in-memory techniques
to overcome disk bottlenecks. Similar to MapReduce [4], Spark can
be deployed on the Hadoop Distributed File System (HDFS) [23].
Unlike traditional in-memory systems, the main feature of Spark
is its distributed memory abstraction, called resilient distributed
datasets (RDD), that is an efficient and fault-tolerant abstraction for
distributing data in a cluster. With RDD, the data can be easily per-
sisted inmainmemory aswell as on the hard drive. Spark is designed
to support the execution of iterative algorithms.

To execute a Spark job, we need a master node to coordinate job
execution, and some worker nodes to execute a parallel operation.
These parallel operations are summarized to two types: (i) Trans-
formations: to create a new RDD from an existing one (e.g., Map,
MapToPair, MapPartition, FlatMap); and (ii) Actions: to return a final
value to the user (e.g., Reduce, Aggregate or Count).

2.3 ProblemDefinition
Theproblemweaddress is as follows.Givena (potentiallybig)dataset
of records find, bymeans of process performed in parallel, a partition
of the dataset into disjoint subsets called clusters, such that:

• Similar records are assigned to the same cluster.
• Dissimilar records are assigned to different clusters.
• The union of the clusters is the original dataset.

3 RELATEDWORK
We set our work in the context of parallel clustering. Previous works
for distributed algorithms of unsupervised clustering already ex-
ist. Ene et al. [7] gave a MapReduce algorithm for the k-center and
k-median problems. Both algorithms use Iterative-Sample as a sub-
procedure to get a substantially smaller subset of points that repre-
sents all of the points well. To achieve this, they perform an iterative-
Sample. However these algorithms require the number of clusters k
to be specified in advance, which is considered as one of the most di-
ficult problems to solve in data clustering. Debatty et al. [5] proposed
a MapReduce implementation of G-means which is an iterative al-
gorithm that uses Anderson Darling test to verify if a subset of data
follows a Gaussian distribution. However this algorithm overesti-
mates the number of clusters, and then requires a post-processing
step to merge clusters.

In our work, we focused on algorithms inspired by the DPM.
Lovell et al. [16] andWilliamson et al. [26] has suggested an alter-
native parametrisation for the Dirichlet process in order to derive
non-approximate parallel MCMC inference for it, these approaches
are criticized by Gal and Ghahramani in [10], these latter showed
that the approaches suggested are impractical due to an extremely
imbalanced distribution of the data, and gave directions for future
research like the development of better approximate parallel infer-
ence. The main idea when data is distributed is to perform a DPM
in each worker. The issues are then to share information between
workers, and to synchronize and update clusters arising fromwork-
ers at the master level. For synchronization, the main challenge is
a problem of identification and of label switching of clusters. In this
context we can use a relabelling algorithm like for example the one
proposed by Stephens [15] for mixture models. For parallel Latent
Dirichlet Allocation (LDA) andHierarchical Dirichlet Process (HDP),
Newman et al. [20] suggested to measure distance between clusters
and then proposed a greedy matching. Wang and Lin [25] gave a
detailed review of literature and recent advanced in this topic before
giving a new proposal. They proposed to use a stepwise hierarchical
classification at the master level with half chance for split or merge
at each step. They began with a full model considering all clusters
from all workers as different components of the model. Their algo-
rithm uses the standard Bayes Factor to compare nested models and
choose the best split or merge. In conclusion, at the master level, the
proposed algorithms diverge from a DPM-classifier and are not a
scalable estimations of a DPM. Moreover, Wang and Lin [25] used
a fixed value for the scale parameter (α ) in their implementation of
the DPM at the workers level. The number of final clusters is related
to this value (see equation 1). Authors like Miller and Harrison [18]
have demonstrated the inconsistency for the number of components
of a DPMmodel with fixed α value. If the number of components
identified at the worker level is underestimated, then the number
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of clusters at the master level might be underestimated. The reverse
will increase considerably the running time at the master level.

In our approach, we suggest to keep to a DPM algorithm as much
as possible, even at the master level, to be close to the good proper-
ties of a DPM-classifier, despite the fact that data is distributed. We
also suggest a modification of the DPMmodel to share information
among workers. In this way we expect to improve our clustering
(better estimation) and suppress label switching. Finally, we do not
fix a value to α but allow a different estimation in each worker to
add flexibility to our model.

Furthermore [25] is restricted to specific cases where noise in the
observations follows the conjugate distribution of the cluster cen-
ters distribution. For example, a Gaussian noise imposes a Gaussian
distribution of the centers. Therefore, this method is not suited for
centers having positive values only.

Our goal is to work on any data, even with exclusively positive
centers.

4 DC-DPM:
DISTRIBUTEDCLUSTERINGVIADPM

In this section, we present a novel parallel clustering approach called
DC-DPM, adapted for independent data. Parallelization calls for
particular attention to two main issues. The first one is the load
balance between computing nodes. In our approach we distribute
data evenly across the different nodes, and there is no data exchange
between nodes during the processing. The second issue is the cost of
communications. In order to be efficient, nodes send and receive as
few information as possible by performing many iterations of Gibbs
Sampling independently in each worker before synchronizing the
global state at the master level and only communicating sufficient
statistics between workers and master. The challenge of using suf-
ficient statistics, in a distributed environment, is to remain in the
DPM approach at all steps, including the synchronization between
the worker and master nodes. The novelty of our approach is to
approximate the DPM model even at the master level when local
data is replaced by sufficient statistics between iterations.

4.1 Architecture and Distributed Algorithm
Data Distribution

Data is evenly distributed on the computing nodes when the pro-
cess starts. This is a mere, sequential, distribution, that splits the
dataset into equal sized partitions.

Worker

This level handles the innovation parts of DPM (detection of
new clusters) and the individual cluster assignment in each worker.
The updates of the cluster labels in worker j depend on sample size
proportions of the distributed data:

P(cn, j =c |c,n, j ,yn, j ,{ϕ})∝{ #(c)j
Nj−1+α F (yn, j ,ϕc ),c=1,...,K

α
Nj−1+α

∫
F (yn, j ,ϕ)dG0(ϕ) new

As the clusters are not known at the beginning, we cannot ensure
that the sample size proportions of each cluster will be respected

in each worker. If the data were uniformly distributed, each clus-
ter would have only, in average, the same weight/proportion in all
workers. Therefore we added a modification of the update, as can
be seen in Algorithm 1.

Algorithm 1DPM at worker level

for each datayn do
Draw cn, j from P(cn, j =c | {cl , j }l,n,yn, j ,{ϕ},{w},α j )∝{ #(c)+α jwc

Nj−1+α j F (yn, j ,ϕc ),c=1,...,K
α jwu

Nj−1+α j

∫
F (yn, j ,ϕ)dG0(ϕ) new

Update of α j
Draw ϕc for new clusters

where the weightwc is the proportion of observations from clus-
ter c evaluated on the whole dataset andwu the proportion of non
affected observations (awaiting the creation, innovation, discover of
their real clusters). Therefore, these parameters are updated at the
master level during the synchronization. Now, the scale parameter
α j can be viewed as a tuning parameter between local (worker) and
global (master) proportions. Following [9] we use an inverse gamma
prior to infer this parameter.

This modification of the update implies a slightly modified DPM
in each worker j :

yn, j ∼ F (θn, j )

θn, j ∼ G j

G j ∼ DP(α j ,G)

α j ∼ IG(a,b)

G =

K∑
c=1

wcδϕc +wuG0,

withwu+

K∑
c=1

wc =1

Master

This level handles the final individual assignment in the master
node and therefore the final common number of clusters K . The
master gets from each worker the following input: sample size of
cluster k in worker j (nj ,k ), cluster parameter values-sufficient sta-
tistics, individual predictive value (traditionally/usually the cluster
mean value in the worker: ŷn, j =ȳj ,cn, j=k ). At the master level, the
observations are assigned by clusters. A cluster corresponds to a set
of individuals belonging to the same cluster of the sameworker. Each
cluster has a representative or individual predictive value which is
used to perform the end of the Gibbs sampling at the master level:

P(cn, j =c |c,n, j )∝

{ #(c)
N−1+γ F (ŷn, j ,ϕc ),c=1,...,K

γ
N−1+γ

∫
F (ŷn, j ,ϕ)dG0(ϕ) new

Working at an individual level implies a slow Gibbs sampling with
poor mixing [12]. So, we suggest an update by clusters. In this view,
we denote zj ,k the master label of the cluster k in worker j. To take
into account the worker information ({ϕworkerjk }), we replace the
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prior predictive distribution (
∫
F (yn, j ,ϕ)dG0(ϕ)) by a posterior pre-

dictive distribution. Eventually, we use the cluster mean value (ȳj ,k )
as an individual predictive value:

P(zj ,k =c |z,j ,k )∝

{ #(c)
N−1+γ F (ȳj ,k ,ϕc ),c=1,...,K

γ
N−1+γ

∫
F (ȳj ,k ,ϕ)dG(ϕ |ϕ

workerj
k )

The labels {cn, j } of all the observations in the cluster k of worker
j are then assigned to the master label zj ,k . Next, the cluster pa-
rameters ({ϕc }c=1, ...,K ) are updated from the posterior computed
on the whole dataset. We assume that we don’t need all the data
but only sufficient statistics from all clusters from all workers to
compute the posterior. This assumption is straightforward for many
distributions, as the exponential family [1]. Last, the synchroniza-
tion of the workers is done through the definition of G using the
updated parameters ({ϕc }c=1, ...,K ) and with weights drawn from
a Dirichlet distribution Dir (n1,...,nK ,γ ). The end user parameters
of this Dirichlet distribution are updated at the master level from
the whole dataset. The size nk is the sum of all observations having
label k at the end of the master Gibbs sampling.

(w1,...,wK ,wu ) ∼ Dir (n1,...,nK ,γ )

γ ∼ IG(c,d)

By doing so, we do not have to consider label switching. Clusters are
explicitly defined at the master level and parameter values are not
updated in theworker. At theworker level, only innovation (creation
of new clusters) is implemented. This is summarized byAlgorithm2.

Algorithm 2DPM at master level

for each (j,k) do
Draw zj ,k from P(zj ,k =c | {c},j ,k ,ȳj ,k ,{ϕ},γ )∝{ #(c)

N−1+γ F (ȳj ,k ,ϕc ),c=1,...,K
γ

N−1+γ
∫
F (ȳj ,k ,ϕ)dG(ϕ |ϕ

workerj
k )

Update of ϕ and (w1,...,wK ,wu )

The workflow of our DC-DPM approach is illustrated by Figure 2.
It consists in 4 steps:

(1) Identify local new clusters in the workers
(2) Compute and send sufficient statistics and cluster sizes from

each worker to the master
(3) Synchronize and estimate cluster labels from sufficient sta-

tistics
(4) Sendupdated clusterparameters andcluster sizes frommaster

to workers
Our first proposition concerns the synchronization and estimation
of the DPM. It is done with a Gibbs sampling conditionally on the
sufficient statistics instead of the whole dataset/individual obser-
vations. Our second proposition is a construction of a shared prior
distribution updated at the master level and send to the workers’
DPM. This distribution reflects the information/results collected
from all workers and synchronized at the master.

The likelihood for one observationyi from the Exponential family
is:

F (yi |η)=h(yi )exp
(
ηTψ (yi )−a(η)

)
where :

Figure 2: Diagram/workflow of the DC - DPM

• η are the natural parameters and is a function of ϕ.
• ψ (yi ) are sufficient statistics
• a(η) is the Log-normalizing factor or Log-partition can be
expressed in function of ϕ : a(η(ϕ))

• h(yi ) is the base measure
and the likelihood for all the observations is:

F (y1,...,yn |η)=

( N∏
i=1

h(yi )

)
exp

(
ηT

( N∑
i=1

ψ (yi )

)
−Na(η)

)
Among all the distributions included in the Exponential Fam-

ily, we implemented the Normal case for the experiments: F (. |
ϕc )=N (ϕc ,Σ1). This choice corresponds to the simple linear model
yn =ϕc+εn and εn is Normally distributed N (0,Σ1). In this case, the
sample mean of cluster c , namely ȳc is a sufficient statistic and the
posterior distribution can be conditioned only on its value:

P(ϕ | {yn }cn=c )=P(ϕ | ȳc )∝F (ȳc |ϕ)G0(ϕ)

When G0 is not a conjugate prior (e.g., a normal distribution),
the posterior distribution is not a usual one but a value from this
posterior can be simulated with a Metropolis Hasting (MH) within
Gibbs algorithm.

When variances are known andG0 is a conjugate prior (normal
distribution N (m,Σ1)), there is no use of MH algorithm. The poste-
rior is a normal distribution N (ϕ

post
c =Σ(#(c)Σ−1

2 ȳc+Σ
−1
1 m),Σ

post
c )

where Σpostc = (#(c)Σ−1
2 +Σ

−1
1 )−1. The predictive posterior is a nor-

mal distribution N (ϕ
post
c ,Σ2 + Σ

post
c ). In our context, Σpostc was

considered negligible and the mean value ϕpostc was replaced by an
individual drawn from the posterior.

5 EXPERIMENTS
The parallel experimental evaluation was conducted on a cluster of
32 machines, each operated by Linux, with 64 Gigabytes of main
memory, Intel Xeon CPUwith 8 cores and 250 Gigabytes hard disk.
The centralized approach is an implementation DPM in Scala, and
was executed on a single machine with the same characteristics.

The distributed algorithm we proposed is an approximation of
a classic DPM, we will compare its properties to a centralized DPM
implementation, on synthetic data and also in our use-case for digital
agronomy. The first step of our process is a distributed K-means that
sets the initial state (usually we set K to be one tenth of the dataset
size).
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Reproducibility : All our experiments are fully reproducible.We
make our code and data available at https://github.com/khadidjaM/
DC-DPM.

In the rest of this section, we describe the datasets in Section 5.1
andourevaluationcriteria inSection5.2.Then, inSection5.3,wemea-
sure the performances, in response time, of our approach compared
to the centralized approach and also by reporting its scalability and
speed-up. We evaluate the clusters obtained by DC-DPM in the case
of real and synthetic dataset in Section 5.4 and Section 5.5 discusses
the results and interest of our work in a real use-case of agronomy.

5.1 Datasets
We carried out our experiments on a real world and a synthetic
dataset.

Our synthetic data are generated using a two-steps principle. In
the first step we generate cluster centers according to a multivariate
normal distribution with the same variance σ 2

1 for all dimensions. In
the second step, we generate the data corresponding to each center,
by using a multivariate normal distribution parameterized on the
center with the same variance σ 2

2 for all dimensions. We generated
a first batch of 5 datasets having size 20K, 40, 60, 80K and 100K with
σ 2

1 = 1000 and σ 2
2 = 1. They represent 10 clusters. We generated a

second batch of 5 datasets having size 2M, 4M, 6M, 8M and 10Mwith
σ 2

1 =100000 and σ 2
2 =10. They represent 100 clusters. This type of

generator is widely used in statistics, where methods are evaluated
first on synthetic data before being applied on real data.

Our real data correspond to the use-case described in Section 1.
The image used to test our algorithmwas in RGB format. After pre-
processing it contains 1,081,200 data points, described by a vector
of 3 values (red, green and blue) belonging to [0,1].

5.2 Clustering Evaluation Criteria
There are two cases for evaluating the results of a clustering algo-
rithm. Either there is a ground truth available, or there is not. In
the case of an available ground truth, there are measures allowing
to compare the clustering results to the reference, such as ARI, de-
scribed below, for instance. This is usually exploited for experiments
when onewants to check performances in a controlled environment,
on synthetic data or labelled real data. In the case where there is no
ground-truth (which is the usual case, because we don’t knowwhat
should be discovered in real world applications of a clustering algo-
rithm) the results may be evaluated by means of relative measures,
like RSS, described below, for instance. In our experiments, we chose
the following three criteria.
1. The Adjusted Rand Index (ARI): it is the corrected-for-chance
version of the Rand Index [24], which is a function that measures the
similarity between two data clustering results, for example between
the ground truth class assignments (if known) and the clustering
algorithm assignments. ARI values are in the range [-1,1] with a best
value of 1.
2. The residual sum of squares (RSS): it is a measure of how well
the centroids (means) represent the members of their clusters. It is
the squared distance of each data from its centroid summed over all
vectors. In the univariate case, the RSS value divided by the number
of observations gives the value of the Mean Squared Error (MSE),
an estimator of the residual variance. In multivariate dataset with

independent variables, the RSS value divided by the number of obser-
vations gives an estimator of the sum of the variable variances. This
sum represents its lower bound and also the best value to be observed
in the clustering of synthetic data. To simplify, we give in the follow-
ing the result of theRSSvaluedividedby thenumberofdataNand the
variance. Therefore the lower bound is known and should be equal
to the number of variables (for example 2 for our synthetic data).
3. K, the number of discovered clusters.

5.3 Response Time
In this section we measure the clustering time in DC-DPM and com-
pare it to the centralized approach. Figure 3 reports the response
times of DC-DPM and the centralized approach on our synthetic
data, limited to 100K data points. Actually, the centralized approach
does not scale andwould take several days for larger datasets.The dis-
tributed approach is run on a cluster of 8 nodes. The results reported
by Figure 3 are in logarithmic scale. The clustering time increases
with the number of data points for all approaches. This time is much
lower in the case of DC-DPM, than the centralized approach. On 8
machines (64 cores) and for a dataset of 100K data points, DC-DPM
performs the clustering in 24 seconds,while the centralized approach
needs more than 7 hours on a single machine.

Figure 4 reports an extended view on the clustering time, only
for DC-DPM, and with a dataset having up to 10 million data points
from the synthetic dataset. DC-DPM is run on a cluster of 16 ma-
chines. The running time increases with the number of data points.
Let us note that the centralized approach does not scale and cannot
execute on such dataset size. DC-DPM enjoys linear scalability with
the dataset size.

Figures 5 and 6 illustrate the parallel speed-up of our approach on
2Mdata points from the synthetic dataset and onmore than 1million
data points obtained after preprocessing the image of our use-case.
The results showoptimal or near optimal gain. In Figure 6weobserve
that the response time for 2 nodes is more than twice the response
time for 4 nodes. That is unexpected when measuring a speed-up.
However, the response times of our approach are very fast (a fewmin-
utes) anddonot consider the time it takes for Spark to load-up, before
running DC-DPM. The slight difference between an optimal speed-
up and the results reported in Figure 6 are due to that loading time.

5.4 Clustering Evaluation
In the following experiments, we evaluate the clustering perfor-
mance of DC-DPM and compare it to the centralized approach.

Table 1 reports 1) the ARI value computed between the cluster-
ing obtained and the ground truth, 2) the RSS value divided by the
number of data N and variance (σ 2

2 ), and 3) the number of clusters,
obtained with DC-DPM and the centralized approach on our syn-
thetic data while increasing the dataset size. The DC-DPM is run
on a cluster of 8 nodes. DC-DPM performs as well as the central-
ized approach, there is a small gap in RSS values which is negligible
compared to the gained time.

Table 2 reports an extended view on the ARI value, and the RSS
value divided by the number of data N and by the variance (σ 2

2 ), and
number of clusters obtainedwith DC-DPM,while increasing dataset
size (up to 10 million data points). DC-DPM is run on a cluster of 16
machines. The performance keeps showing the maximum possible
accuracy, even with a large number of data points.

https://github.com/khadidjaM/DC-DPM
https://github.com/khadidjaM/DC-DPM
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Figure 3: Logarithmic scale. Response
time ofDC-DPMand centralizedDPM
as a function of the dataset size.
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Figure 5: Clustering time as a function
of the number of computing nodes on
the synthetic data.
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Figure 6: Clustering time as a function
of the number of computing nodes on
the image of our use-case.

Figure 7: Visual representation of the
synthetic dataset.

Figure 8: Visual representation of the
results obtained by DC-DPM

Table 1: Clustering evaluation criteria obtained with the
centralized DPM andwith DC-DPM.

Centralized DPM DC-DPM
ARI RSS

N×σ 2
2

Clusters ARI RSS
N×σ 2

2
Clusters

20K 1.00 2.01 10 1.00 2.04 10
40K 1.00 2.00 10 1.00 2.03 10
60K 1.00 2.00 10 1.00 2.02 10
80K 1.00 2.00 10 1.00 2.01 10
100K 1.00 2.00 10 1.00 2.02 10

Table 2: Clustering evaluation criteria obtained byDC-DPM .

ARI RSS/(N*σ 2
2 ) Clusters

2M 1.00 2.00 102
4M 1.00 2.00 100
6M 1.00 2.00 100
8M 1.00 2.02 99
10M 1.00 2.10 101

Figure 7 gives a visual representation of our 4M data points syn-
thetic dataset. Each cluster is assigned to a color. Our goal is to
retrieve these clusters. Figure 8 represents the results obtained by
our approach on the data of Figure 7, with 16 nodes. Each cluster is
assigned to a different color. shows the performance of our approach

withalmostperfect resultswhere thediscoveredclustersare thesame
as the actual ones from the data. This is confirmed by Table 2, line 2.

5.5 Use-case
Phenotyping and precision agriculture use more and more informa-
tion fromsensors anddrones, like aerial images, leading to the emerg-
ing domain of digital agriculture (see for example http://ec.europa.
eu/research/participants/portal/desktop/en/opportunities/h2020/topics/
dt-rur-12-2018.html). An important challenge, in this context, is to
be able to distinguish clusters of plants: status (normal, hydric stress,
disease,...) or species for example. Clustering, applied to images, is
a key in this domain.

We want to discover clusters in the image presented in Section 1
and transformed as described in Section 5.1. We set σ 2

1 =1 because
ourdata is in the rangeof [0,1]. For bothparameter values ofσ 2

2 =0.01
and σ 2

2 =0.0025, the clusters are extracted in approximately 3 min-
utes with DC-DPM running in parallel on 16 computing nodes. This
is confirmed by Figure 6. The centralized approach does not scale
on this data and we could not obtain results.

The number of clusters depends on the value of the variance er-
ror. A value of σ 2

2 = 0.01 gave a rough clustering with only K = 3
clusters. Those clusters identified the brightness in the RGB image
(see figure 9). A lower value of σ 2

2 = 0.0025 gave a clustering with
k = 12 clusters, which is enough to reconstruct the image (see fig-
ure 10). Depending on the aim of the clustering, different types of
wavelength or data must be used for identification. The accuracy of

http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/dt-rur-12-2018.html
http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/dt-rur-12-2018.html
http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/dt-rur-12-2018.html
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Figure 9: Clustering of the Durum
image by DC-DPMwith σ 2=0.01.

Figure 10: Clustering of the Durum
image by DC-DPMwith σ 2

2 =0.0025.
Figure 11: Clustering of a part of the
Durum image by DC-DPM (top) and
Centralized DPM (bottom).

the clustering (number of clusters) relies on the variance value (σ 2
2 ).

Clustering is used to detect structures in the data (genetic, popula-
tion, status) before processing. This group detection allows reducing
data dimension and bias in further prediction analysis.

DC-DPMwas compared to the centralized DPM on a part of the
the Durum image in the experimental field. RGB Image with DC-
DPM (top, 12 clusters) and centralized DPM (bottom, 17 clusters),
σ 2

2 =0.0025. The results were quite similar as shown in figure 11. The
impact of σ 2 on the number of clusters varies for centralized and
distributed approaches and may be adjusted by the end-user.

6 CONCLUSION
We proposed DC-DPM, a novel and efficient parallel solution to per-
form clustering viaDPMonmillions of data points.We evaluated the
performance of our solution over real world and synthetic datasets.
The experimental results illustrate the excellent performance of DC-
DPM (e.g., a clustering time of less than 30 seconds for 100K data
points, while the centralized algorithm needs several hours). The
results also illustrate the high performance of our approach with
results that are comparable to the ones of the centralized version.
Overall, the experimental results show that by using our parallel
techniques, the clustering of very large volumes of data can now be
done in small execution times, which are impossible to achieve using
the centralized DPM approach. A nice perspective of our approach
is to open fundamental research tracks such as DPM clustering on
complex data like, e.g. time series.
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