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Abstract

The aim of this paper is to develop a full Finite Element (FE) computational method for the dynamics of unstable

frictional rolling contact systems in order to calculate reference solutions in many applications, especially curve

squeal for railway transportation but also roller bearing or metal cutting. The proposed method is characterized

by the use of a fine FE discretization of the contact surface in an Eulerian frame, nonlinear frictional contact laws

and model reduction techniques. An application to the frictional rolling contact between two annular cylinders is

presented in both quasi-static and dynamic cases with mode coupling instabilities. The validation of the approach

in quasi-static conditions is carried out by comparison with CONTACT software. Stability and transient results

show that the technique is able to simulate friction-induced vibrations at high frequencies. Reduced models are

tested and show a good agreement with the full model.

Keywords: Curve squeal, Friction-induced vibrations, Rolling contact, Finite element method, Structural

instability, Mode coupling, Railway noise.

1. Introduction

A large variety of mechanical system (road vehicle tyres, railway wheels and roller ball bearings, gear box,

belt/pulley, lead-screw drives, metal cutting, etc.) generates rolling contact forces which are transferred within a

finite area of contact between the rolling element and the substrate. The main reason to make use of rolling contacts

in different applications is the low resistance to motion. Even if friction mechanisms are rather weak, they may be5

an important source of vibration and noise.

As an example in the railway field, the squeal noise emitting by rail-bound vehicles in tight curves (radius

lower than 200m) is characterized by high sound pressure levels (130 dB at 0.9m from the wheel) at pure medium

and high frequencies. In urban areas where tight curves are numerous, squeal may affect many passengers and

local residents and it is necessary to reduce this noise. The modeling of curve squeal can contribute towards an10

understanding of the generation mechanism and the effects of the different kinematic and mechanical parameters.

State of the art brings many models able to simulate curve squeal, distinguished according to mechanisms leading

to squeal, wheel/rail contact models and solution domains (time or frequency).

Although longitudinal wheel slip and wheel flange contact have originally been cited as a cause of curve

squeal, they have been discredited as a main energy input in several works [1–3]. Most of mechanisms proposed in15

literature put forward the high lateral slip of the wheel on the rail-head as the main cause of curve squeal. Indeed,
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in tight curves, a steady lateral sliding motion is imposed to the wheel due to the misalignment between wheel and

rail (angle of attack or yaw angle). A widespread assumption is that the friction forces generated by the sliding

motion may lead to structural instability and self-sustained vibration of the wheel/rail system. Two instability

mechanisms have been proposed: falling friction and mode coupling. The falling friction was first mentioned20

by Rudd [1]. A falling slope in the velocity-dependent friction law can be mathematically expressed as negative

damping leading to an unstable behavior. A large number of squeal models are based on this mechanism, as in the

former paper of Rudd [1] or the more recent works of Heckl et al. [4, 5] which explain in detail the mechanism by

using frequency-domain and time-domain models. The consideration of mode coupling instability in curve squeal

models is more recent. Although such a mechanism may occur with a constant friction coefficient, it needs to25

take into account the vertical dynamics of the wheel/rail system in order to work. Mathematically, this is the non-

symmetric stiffness matrix due to friction which generates the instability. Models proposed in [6–8] consider the

mode-coupling mechanism whereas models proposed in [9, 10] considers both falling friction and mode coupling.

For the modeling of rolling contact, there are mainly three kinds of model: point contact models, Kalker’s type

models with discretized contact surface and finite element models. Extensive reviews can be found for instance in30

[11, 12]. The first two types have been developed in the context of wheel/rail contact and have been investigated

in detail by Kalker using special algorithms and formulations based on linear elasticity. Equivalent point-contact

models are based on analytic formulas or heuristic laws of frictional rolling contact such as Hertz theory [13]

for the normal problem and Kalker’s linear theory [14], Vermeulen and Johnson’s model [15], Shen et al. model

[16] or CHOPAYA law proposed by Ayasse et al. [17] for the tangential problem. They are used in quasi-static35

computations with smooth surfaces, even in the case of large slips. In slightly nonlinear dynamic cases, close

to pure rolling, equivalent point stiffness and damping can also be used and give good results, especially for

wheel/rail rolling noise modeling [18]. In other cases, including large slips and high-frequency dynamics, surface

contact models are more adapted. They need a discretization of the contact zone. Kalker’s simplified theory [19]

implemented in the algorithm FASTSIM and Kalker’s variational theory [14] implemented in CONTACT software40

are the most used models but other methods exist (cf. for instance Pieringer’s model [7]) with slightly different

assumptions or resolution techniques. However, some simplifications are generally performed in these models

especially in the semi-analytical computation of the local contact flexibilities or influence functions (Boussinesq

and Cerruti elastic half-space assumptions, contact/friction decoupling). The impact of these simplifications is

rather unknown in the case of friction-induced vibrations characterized by large slips, high frequency dynamics45

and very fast evolutions at the contact zone. The alternative is to use finite element models. It makes it possible to

consider also large deformations and plastic behaviors. The modeling of contact and friction by the finite element

method is an active search field. Several variational formulations, discretization methods and specific non linear

algorithms exist in the literature [11]. Lagrange multipliers or penalty methods are the most used techniques in

order to take into account the constraints corresponding to contact and friction. Dynamics problems require special50

care since unilateral contact can lead to non-smooth behaviors like localized impacts between the structures [20–

22]. In the case of rolling contact, it can be useful not to apply a Lagrangian description but to use a rotating

reference frame, notably in order to optimize the meshes of the structures. Finite element treatment based on

pure Eulerian or Alternate Lagrangian Eulerian (ALE) formulations for rolling contact problems can be found in

[11, 12]. Most applications are quasi-static but such formulations could be advantageously used in high-frequency55
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dynamics cases. Works dealing with wheel/rail contact analysis by FE methods are quite recent. Bogdansky et al.

[23] solved the normal problem of static elastic wheel/rail contact in three dimensions with the FE method. The

normal problem of contact of elastic-plastic material was investigated by Wiest et al. with a 3D static FE model

[24]. Other solutions of the normal problem with FE can be found but the treatment of the tangential problem of

wheel/rail rolling contact with FE is not frequent. Interesting results are given in the study of Toumi [25] as well as60

the work of Zhao and Li [26] who treated wheel/rail rolling contact with an explicit FE method. By approaching

a quasi-static state, the FE model is notably validated against Hertz theory and CONTACT in both normal and

tangential solutions, for the case of wheel treadrail head contact. In these studies, dynamics and contact equations

are solved in a Lagrangian frame. All the potential contact area in the rolling direction needs to be meshed with

elements of sufficient small size to insure the desired precision. In addition, the meshes of the two potential contact65

surfaces are not compatible. As a consequence, the treatment of the contact is not straightforward. For instance,

Wiest [24] and Toumi [25] used a commercial software where contact between the two bodies is defined using a

”masterslave” algorithm. Two types of contact discretization (node-to-surface and surface-to-surface) are used and

the results differ depending on the user choice. Efficient algorithms exist for both formulations but, in any case,

nonlinear transient FE simulations with frictional contact still remain very expensive in terms of CPU time and70

memory size when Lagrangian reference frame are considered.

Existing studies can also be distinguished according to the type of researched solutions. Two possible ap-

proaches can be used: complex eigenvalue analysis (CEA) and time-integration analysis. On the one hand, stabil-

ity analyses look for solutions of the linearized dynamic equations governing the system [5, 27–30]. By solving

a complex eigenvalue problem or by using the Nyquist criterion, they allow to determine the potential unstable75

modes and corresponding frequencies of the wheel/rail system and are useful to test the influence of the parame-

ters on the onset of squeal. On the other hand, the dynamic nonlinearities related to the contact evolution at the

frictional interfaces can be taken into account using time integration methods and the steady-state amplitudes as

well as the full spectrum of squeal can be determined [4, 6, 7, 31–35]. As mentioned by many authors (cf. [36] for

instance), both approaches are needed. Indeed, the complex eigenvalue problem may overestimate or underesti-80

mate the number of unstable modes. The time integration method can also lead to the appearance of new frequency

peaks related to harmonics of the fundamental frequencies of unstable modes. Finally, frequencies of the unstable

modes could be different from those resulting from the time integration.

The aim of this paper is to develop a full Finite Element (FE) computational method for the dynamics of

frictional rolling contact systems in order to calculate reference solutions of complex systems, for curve squeal85

noise for example. Continuous equations of the problem are derived around the stationary position of rolling

in an Eulerian reference frame. Local unilateral contact and Coulomb friction laws apply on the rolling interface.

Weak formulation and FE discretization lead to a nonlinear discrete system which is solved in the time domain by a

numerical integration and a point-fixed algorithm at each time step. In addition to the transient approach, a stability

analysis performed around the sliding equilibrium position allows to determine unstable modes and frequencies.90

In order to obtain reasonable computation times, two reduction strategies are proposed. An application of the

method to the frictional rolling contact between two annular cylinders is presented in both quasi-static and dynamic

cases with mode coupling instabilities.The validation of the approach in quasi-static conditions is carried out by

comparison with CONTACT software. Reduction strategies are validated by comparison with the full method.
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The main contribution of the paper lies in the whole strategy proposed in order to efficiently compute dynamic95

transient solutions of rolling/sliding contact systems at high frequencies using finite elements. This strategy is

based on the combination of existing techniques: an Eulerian reference frame, numerical tools adapted to the

treatment of non-smooth frictional contact laws and reduction methods. The general features of the rolling contact

formulations, the non-smooth contact formulations and the reduction methods are not new as part of the finite

element method. However, their application to 3D high frequency dynamics of rolling systems with friction is100

less frequent, essentially due to the computational practical challenge of combining rolling phenomena, nonlinear

frictional contact and time integration schemes. The paper provides some tools, which can help the community to

compute numerical solutions for this kind of problem, especially in the case of friction-induced vibrations.

2. Finite Element (FE) formulation in the time-domain

2.1. Contact problem in the Eulerian frame105

Two bodies in rolling contact are considered, as shown in Fig. 1. The conventions frequently used of rolling

contact problems are adopted (cf. for instance [37]). The z−axis is chosen to coincide with the common normal

to the two surfaces in contact, the longitudinal x−axis corresponds to the rolling direction and the y−axis refers to

the lateral direction. The whole structure is decomposed into two subdomains Ω = Ω1 ∪ Ω2 where subscripts 1

and 2 stand for the upper and the lower bodies respectively. In the absence of deformation and sliding, material110

particles of each surface move through the contact region in a direction parallel to x−axis with rolling speed V . In

case of sliding, relative lateral velocities ∆Vy = Vy1 − Vy2 and longitudinal velocities ∆Vx = Vx1 − Vx2 have to be

considered. The bodies may also have a relative angular velocity ∆ωz = ωz1 − ωz2 around their common normal

(or spin).

∂Ωu�f

Ω1

Ω�2

∂Ωf1

S
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Z (commun normal)

Y

Δω z
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��f�u

0
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Figure 1: Two bodies in rolling contact

According to [37], in the Eulerian frame which moves with the point of contact, the relative sliding instanta-

neous velocities (or creep velocities) between the two deformable bodies at a fixed point of the potential contact
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interface S c are given by:

ṡx = vx1 − vx2 = ∆Vx − ∆ωzy + V
(
∂ux1

∂x
−
∂ux2

∂x

)
+ (u̇x1 − u̇x2)

ṡy = vy1 − vy2 = ∆Vy + ∆ωzx + V
(
∂uy1

∂x
−
∂uy2

∂x

)
+ (u̇y1 − u̇y2)

(1)

where u(x, y, z, t) and v(x, y, z, t) denote respectively the displacement and velocity fields of the structure in the115

Eulerian frame, subscripts x and y stand for the spatial components of the fields and the notation u̇ = ∂u
∂t refers to

the time partial derivative. The terms involving V ∂u
∂x represent the deformation contributions due to rolling in the

Eulerian frame whereas the terms involving u̇ simply represent the dynamic contributions.

In addition, a displacement ud is prescribed on the part of the boundary of the domain δΩu = δΩu1 ∪ δΩu2 and

a surface load fs is applied on the part δΩ f = δΩ f 1 ∪ δΩ f 2. In Ω, a volume load fd can be also considered.120

2.2. Contact laws

To deal with unilateral contact on the interface, a non-regularized Signorini law is chosen:

∆un − g ≤ 0

rn ≤ 0

(∆un − g)rn = 0

(2)

where ∆un = un1−un2 is the normal relative displacement on the potential contact interface, rn is the normal contact

stress and g is the initial gap. This law simply conveys that (i) there is no interpenetration between the two bodies,

(ii) the interface only undergoes compression and (iii) it respects the condition of complementarity. A equivalent

semi-regularized form of the law uses the projection on the negative real set (cf. for instance [38]):

rn = ProjR− (rn − ρn∆un) ∀ρn > 0 (3)

where ProjR− (x) = min(x, 0) and ρn is a positive real number called normal augmentation parameter.

To deal with frictional contact, a non-regularized Coulomb law with a constant friction coefficient µ is used:

‖rt‖ ≤ −µrn

‖rt‖ = −µrn ⇒ ∃λ > 0, ṡt = −λrt

‖rt‖ < −µrn ⇒ ṡt = 0

(4)

where ṡt is the vectorial creep velocity with components ṡx and ṡy defined in equation (1) and rt is the tangential

stress due to friction. This law states that the frictional reaction cannot be greater than a limit −µrn. If it reaches

the limit, the material particle slides and has a direction opposed to the direction of the reaction (slip state). In125

other cases, the relative velocity is null (stick state).

A equivalent semi-regularized form of the law uses the projection on the Coulomb cone (cf. for instance [38]):

rt = ProjC (rt − ρt ṡt) ∀ρt > 0 (5)

where ProjC(x) = min( µ|rn |

‖x‖ , 1)x and ρt is a positive real number called tangential augmentation parameter.
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2.3. Dynamics equations and FE discretization

A major consequence of the Eulerian frame is to induce convective terms in the equations of motion. These

terms are only significant in the case where the rotational speed is in the order of magnitude of the eigenfrequencies130

([39]). It is assumed that it is not the case in the present application and the effects of the convective terms are

neglected in the following developments.

The displacement field u must verify the equations of continuum mechanics [40] together with the local for-

mulations of contact equations Eqs. (3) and (5). In order to introduce FE approximations, the principle of virtual

power is used for the system dynamics and the contact laws are written in weak forms [41]:

find u ∈ U and r such as ∀u∗ ∈ Uo and ∀r∗∫
Ω

ρu∗.ü dΩ +

∫
Ω

ε(u∗) : σ(u) dΩ =

∫
Ω

u∗.fs dΩ +

∫
∂ΩF

u∗.fd ds +

∫
S c

u∗.r ds∫
S c

r∗nrn ds =

∫
S c

r∗nProjR− (rn − ρn∆un) ds∫
S c

r∗t rt ds =

∫
S c

r∗t ProjC (rt − ρt ṡt) ds

(6)

where ε(u) and σ(u) stand respectively for the symetric gradient and the stress tensor corresponding to any dis-

placement field u, the notation ü = ∂2u
∂t2 refers to the double time partial derivative, U = {u|u = ud on ∂Ωu} and

U0 = {u|u = 0 on ∂Ωu}.135

By using appropriate shape interpolation functions for unknown and test displacement and reaction fields

(u, r,u∗, r∗), finite element discretization of Eq. (6) directly gives:

MÜ + CU̇ + KU = F + Pn
TRn + Pt

TRt

Rn =

∫
S c

Nn
TProjR−

(
Nn

(
H−1

n Rn − ρn(PnU −G)
))

ds

Rt =

∫
S c

Nt
TProjC

(
Nt

(
H−1

t Rt − ρtṠt(PtU,PtU̇)
))

ds

(7)

where U, Rn and Rt denote respectively the vectors of nodal displacements, equivalent normal reactions and

equivalent friction forces, M,C,K are respectively the mass, damping and stiffness matrices of the structure with-

out contact, G is the vector of nodal initial gaps and Nn,Nt are the shape function vectors on the contact interface.

In addition, Pn,Pn are matrices allowing to pass the contact reactions from the local relative frame to the global

frame whereas Hn =
∫

S c
Nn

TNn ds and Ht =
∫

S c
Nt

TNt ds are transformation matrices from nodal to equivalent140

forces. Finally, Ṡt(PtU,PtU̇) denotes the vector of nodal creep velocities which can be determined linearly from

local displacement and velocity vectors, taking into account quasi-static creep velocities (cf. Eq. (1)).

3. Reduction strategies

As the size of the system is often large and the nonlinear solving process implies several resolutions of a linear

system at each time step, reducing the size of the system is necessary to obtain reasonable computation times. The

principle is to search an approximated solution U = Bqr of the problem spanned by a reduced basis B which leads

to a reduced dynamics equation:

Mrq̈r + Crq̇r + Krqr = BT(F + Pn
TRn + Pt

TRt) (8)
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where Mr,Cr,Kr = BT(Mr,Cr,Kr)B and the size of the system is reduced to the number of modes in basis B.

In the field of friction-induced vibrations, the use of a priori reduction bases remains a commonly used tech-145

nique for industrial systems but the performance of the bases depends on the application. In the case of a simplified

brake squeal application, Brizard et al. proposed several optimized reduction bases for the stability analysis [42].

For the same application, Lorang and Chiello [43] showed a strong participation of the unstable complex mode

shapes determined by the stability analysis in the nonlinear solution, suggesting that reduction bases based on un-

stable complex modes could be used in the nonlinear problem. However, Sinou [36] observed that the contributions150

of the harmonic components and the combination of frequency components can not be neglected. Loyer et al. [22]

performed intensive simulations in order to test two types of bases. The degrees of freedom at contact interface

are kept in these bases based on the complex modes resulting from the stability analysis. The study notably shows

that an accurate model reduction for friction-destabilized system is possible but requires great care. In particular,

all the stable modes in the frequency range must be included to ensure an accurate prediction of the nonlinear155

response. In addition, if separation at the interface is present, the reduction basis must also contain corresponding

static boundary modes.

It should also be noted that some other performant techniques exist for the reduction of non linear dynamic

systems. To determine relevant reduction bases, it is thus possible to use singular value decomposition (SVD)

of Proper Orthogonal Decomposition [44] of some representative sets of the full temporal solution to extract the160

major shapes. The concept of nonlinear modes [45] was also developed in recent years and proves to be efficient in

some applications. For autonomous systems with mono-instabilities (only one unstable mode), the benefit is small

since the searched periodic limit cycles are precisely the nonlinear modes.

In this paper, the proposed basis is rather classical and is based on an a priori selection of free-interface normal

modes enriched by static local modes.165

3.1. Component Mode Synthesis (CMS) with free-interface modes

A first reduction basis includes free-interface normal modes of the structure and static attachment modes B =

[Φ Φs]. Matrix Φ contains the real solutions of the free and undamped system:

(K − ω2M)U = 0 (9)

whereas Φs make the base statically complete by adding static solutions to unitary forces (normal and tangential)

on the contact interface:

KΦs = Pc
T (10)

where Pc
T = [Pn

T Pt
T]. In order to improve the numerical efficiency, the basis is then orthogonalized in relation

to stiffness matrix K before use. It is well-known that static attachment modes are useful to provide a better

approximation of the dynamics by comparison with normal modes alone. It is also worth noticing that the size of

the basis is nm + 3nc where nm is the number of normal modes taken into account in the frequency range of interest170

and nc is the number of facing nodes on the interface.

3.2. Contact static approximation

A stronger approximation consists in neglecting the dynamic terms in the reduced equations corresponding to

attachment modes. However, basesΦ andΦs are not orthogonal which is a necessary condition in order to separate
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the contributions of normal modes and attachment modes. This can be fixed by using residual attachment modes

defined by:

Φ̃s = Φs −Φ(ΦTKΦ)−1ΦTPc
T (11)

These modes are the static displacement responses to unit contact reactions after the elimination of the contribution

of normal modes. It can be easily verified that Φ̃T
s KΦ = 0.

The use of basis B = [Φ Φ̃s] in Eq. (8) together with the elimination of the dynamic terms relating to

attachment modes gives:

ΦTMΦq̈ +ΦTCΦq̇ +ΦTKΦq = ΦT(F + Pn
TRn + Pt

TRt)

Φ̃
T
s KΦ̃sqs = Φ̃

T
s (F + Pn

TRn + Pt
TRt)

(12)

where q and qs are the generalized coordinate vectors corresponding respectively to normal modes and residual175

attachment modes such that U = Φq + Φ̃sqs. A total decoupling between the generalized equations corresponding

to free-interface normal modes and residual static attachment modes is obtained.

In addition, noticing that:

Φ̃
T
s KΦ̃sqs =

(
ΦT

s − PcΦ(ΦTKΦ)−1ΦT
)

K
(
Φs −Φ(ΦTKΦ)−1ΦTPc

T
)

qs

=
(
PcΦs − PcΦ(ΦTKΦ)−1ΦTPc

T
)

qs

= PcΦ̃sqs

= Pc(U −Φq)

(13)

and including the above expression in Eq. (12) gives:

ΦTMΦq̈ +ΦTCΦq̇ +ΦTKΦq = ΦT(F + Pn
TRn + Pt

TRt)

PcU = Φ̃
T
s (F + Pn

TRn + Pt
TRt) + PcΦq

(14)

It must be emphasized that, with this formulation, contact displacements PcU can be directly calculated from

expanded forces and normal modes coordinates.

This reduction strategy consists in solving the global dynamics using free-interface normal modes and adding a180

local static residual flexibility controlled by matrix Φ̃T
s in the expression of the contact displacements. This allows

to determine the contact displacements with a high precision level which is needed to solve the frictional contact

laws and calculate the reaction forces. This method gets very close to models such Pieringer’s one [7] combining

modal dynamics and static local resolutions of the kind of CONTACT software. However, in the proposed method,

the local flexibility is calculated numerically by finite elements instead of using semi-analytical influence functions185

derived from Boussinesq’s approximations. In particular, it takes into account the static normal/tangential coupling

at the contact zone. It also depends on the number of free-interface modes in the basis since it corresponds to a

residual flexibility.

4. Stability analysis

The aim of the stability analysis is to address the mechanism of self-excited vibration due to frictional contact190

through the determination of the evolution of small perturbations around the steady sliding equilibrium. In stable

cases, the perturbations vanish and no vibration occur. In unstable cases, some perturbations tend to diverge which

can lead to self-sustained vibrations. Such an analysis is performed by a linearization of the non-linear equations

around the equilibrium.
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4.1. Quasi-static equilibrium195

The quasi-static or steady sliding equilibrium is first obtained by neglecting the dynamic terms in Eqs. (1)

and (7):

KUe = F + PT
nRe

n + PT
t Re

t

Re
n =

∫
S c

NT
nProjR−

(
Nn

(
H−1

n Re
n − ρn(PnUe −G)

))
ds

Re
t =

∫
S c

NT
t ProjC

(
Nt(H−1

t Rt − ρtṠe
t )
)

ds

(15)

where Ṡe
t = Ṡt(PtUe, 0) is the vector of nodal quasi-static creepage velocities.

Assuming that some solutions of Eq. (15) exist and can be calculated, it notably provides the status of the nodes

on the contact interface as a function of the equivalent normal reactions re
n and friction forces re

t :

• if re
n = 0, the facing nodes are not in contact,

• if re
n , 0 and ‖re

t ‖ < −µre
n the facing nodes are sticking,200

• if re
n , 0 and ‖re

t ‖ = −µre
n the facing nodes are sliding ; the sliding direction of the friction force is then given

by t = re
t /‖re

t ‖.

4.2. Complex Eigenvalue Analysis (CEA) in case of full steady sliding

In this paper, stability analysis is only carried out in the case of full steady sliding (no sticking region) and

maintained contact configuration: it is thus assumed that for each node in contact at equilibrium, bilateral contact

and sliding Coulomb friction laws apply. In order to perform the stability analysis, these laws have to be linearized.

On effective contact region, the linearized forms of Eqs. (3) and (5) with the above assumptions can be written

(cf. for instance [42]):

∆un = 0

rt = −µrnt − cbu̇bb
(16)

where cb = −µre
n/‖ṡe

t ‖ is a damping term due to the linearisation of the sliding direction of the friction force and b

is the tangential direction orthogonal to t.205

Searching a discrete solution of the form Ue + Ũ exp(λt) where Ũ stands for the complex displacement vector

corresponding to small harmonic perturbations around the equilibrium, the linearized form of equation (7) leads to

a constrained non symmetric eigenvalues problem:(
λ2M + λ(C + Cb) + K

)
Ũ = (P̃T

n + µP̃T
t )R̃n

P̃nŨ = 0
(17)

where Cb is the damping matrix provided by the linearisation of the sliding direction of friction force [22, 42, 46]

and P̃n, P̃t are new projection matrices such that P̃n is the restriction of Pn on nodes in the effective contact region

at equilibrium whereas P̃t is the restriction of Pt on components in direction t on nodes in the effective contact

region.

Complex modes and eigenvalues of the problem are then calculated. Modes corresponding to eigenvalues210

with positive real part are unstable. The divergence rate of a mode is notably defined as Re(λ)/Im(λ) where

(Re(λ), Im(λ)) are respectively the real and imaginary parts (pulsation) of the mode. This rate corresponds to a

negative damping rate.
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4.3. Reduced CEA formulations

Solving such a large non-symmetric eigenvalue problem needs model reduction. Several reduction bases have215

been notably tested by following the methodology proposed by Brizard [42]. The two reduction strategies proposed

in the nonlinear case (section 3) are adapted here for the stability analysis.

4.3.1. Component Mode Synthesis with free-interface modes

The first reduced basis includes free-interface normal modes of the structure and static attachment modes

B = [Φ Φs] as proposed in section 3 but defined on effective contact region by using P̃n and P̃t instead of Pn220

and Pt . In order to solve the eigenvalue problem with this reduced basis, the constraints are directly added to

the generalized coordinates associated to the modes (cf. [47, 48] for symmetric normal problems and [22, 42] for

non-symmetric friction problems).

4.3.2. Contact static approximation

The stronger approximation consisting in neglecting the dynamic part of the attachment modes is also tested for

the stability analysis. The same technique used in section 3 is applied. The reduction is first performed with basis

B = [Φ Φ̃s] composed of free-interface component modes Φ and static attachment residual modes Φ̃s defined

on effective contact region. The dynamic effects corresponding the residual attachment modes are then neglected

leading to the following constrained eigenvalue problem:(
λ2ΦTMΦ + λΦT(C + Cb)Φ +ΦTKΦ

)
q̃ = ΦT(P̃T

n + µP̃T
t )R̃n

P̃cŨ = Φ̃
T
s (P̃T

n + µP̃T
t )R̃n + P̃cΦq̃

P̃nŨ = 0

(18)

where q̃ is the generalized vector corresponding to free-interface normal modes.225

From the two last lines of Eq. (18), normal reactions R̃n can be expressed as a function of the generalized

vector q̃:

R̃n = −
(
InΦ̃

T
s (P̃T

n + µP̃T
t )

)−1
P̃cΦq̃ (19)

where In is the Boolean localization matrix such that P̃n = InP̃c. Finally, using the above expression in the reduced

eigenvalue problem gives: (
λ2ΦTMΦ + λΦT(C + Cb)Φ +ΦT(K + Kc)Φ

)
q̃ = 0 (20)

where Kc is a non-symmetric stiffness matrix taking account the effect of the local residual flexibility of the

structure due to normal and friction forces:

Kc = (P̃T
n + µP̃T

t )
(
InΦ̃

T
s (P̃T

n + µP̃T
t )

)−1
P̃n (21)

This reduction strategy consists in solving the global dynamics using free-interface normal modes and adding

a local static residual stiffness controlled by matrix Kc. This matrix plays the same role than 2-DOF Hertzian stiff-

ness/Coulomb friction relations in the case on equivalent point contact models but is calculated by finite elements.

5. Numerical methods for nonlinear simulations

For the determination of quasi-static and transient solutions from Eqs. (7) and (15), with or without reduction,230

the following numerical methods are used.
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5.1. Integration scheme for the dynamics

For the computation of the transient solution, the chosen time integration method is a modified θ-method. This

is a first-order scheme developed by Jean [38] and appropriate to unilateral contact dynamics. It notably allows to

compute quasi-inelastic shocks. A value θ = 0.5 is chosen to avoid numerical damping. The detail of the scheme235

with an application to friction-induced vibrations can be found for instance in Loyer’s work [22].

5.2. Non-linear resolution

For the computation of the quasi-static solution and dynamics solutions at each time step, an iterative fixed

point algorithm on equivalent contact reactions and friction forces is used with a stop criterion based on forces

convergence [22]. This algorithm is appropriate to the formulation of the frictional contact laws as nonlinear240

projections. The main advantage of the fixed point algorithm is that the integrator matrix remains constant at each

iteration. In the simulations presented in this paper, the augmented parameters ρn, ρt are chosen as the smallest

eigenvalue of the integrator matrix condensed on the contact degrees of freedom [49]. More optimized parameters

can be found in [22] but have not been used.

6. Results245

In this section, an application of the methodology presented in the previous sections is proposed for the case

of rolling contact of two annular cylinders with lateral creepages. The model is first described. Second, the model

is validated in quasi-static conditions with CONTACT software. Considering that there is no reference approach

in the dynamic case, this quasi-static validation is essential in order to show that the proposed method is able to

accurately reproduce the creep phenomenon characterized by an effective contact area separated in two (stick and250

slip) zones. A stability analysis is then carried out. Transient calculations are finally performed with and without

reduction and results are discussed and compared.

6.1. Description of the model

A rolling contact between two same annular cylinders is considered, as shown in Fig. 2. The material behavior

is assumed to be linearly elastic, isotropic and undergoing small deformations. A Rayleigh damping with coef-255

ficients α and β is introduced in the model. The values of α and β have been chosen in order to obtain modal

damping factors comprised between 0.5 % and 5 % in the frequency range of interest of [100-5000] Hz. These

quite high values are useful to show that the found instabilities are strong and do not disappear with any small

damping in the structures (cf. section 6.4). The material and geometrical parameters of the cylinders are listed in

Tab. 1.260

A vertical displacement uz0 is applied at the hub of the upper cylinder whereas a rigid constraint is applied at the

lower cylinder. For the discretization by finite elements, compatible meshes on the interface are considered: facing

nodes of the two cylinders in potential contact have identical tangential coordinates x and y. The global meshes

of the cylinders have been chosen in order to respect the dynamic criterion of 10 elements per wavelength for the

free normal modes in the frequency range of interest. The meshing of the contact zone have to allow an accurate265

description of the slip/stick transition in the area. Consequently, the size of the elements in the contact zone have to

be much smaller than the dimensions of the effective area (at least an order of magnitude). On the other hand, the
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Figure 2: Contact between two annular cylinders with lateral curvatures and contact point in the center (a:Front view with zoom on the contact

zone, b: Side view)

Table 1: Material and geometrical parameters of the cylinders

Young’s modulus 205 GPa

Poisson’s ratio 0.3

Density 7800 kg/m3

Rayleigh’s damping coefficients (α, β) (1, 10−6)

Internal radius 0.1 m

External radius 0.5 m

Thickness 0.05 m
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size of the problem can become very large when the number of contact dofs increases. In this application, Hertz

theory gives the dimensions of (4.5, 4.5) mm for the contact area. The convergence of the quasi-static and dynamic

solutions gives an optimal size of 1 mm for the elements at the contact zone as shown in Fig. 3.270

22mm

22mm

Figure 3: FE model of a cylinder with fine mesh on the contact zone

Actually, in the proposed application, the two cylinders are fully symmetrical and it would have been possible

to model only one cylinder using symmetry relations.

6.2. Free-interface normal modes

The 80 first natural frequencies and corresponding free-interface modes have been calculated up to 7510 Hz.

The eigenmodes are classified according to their predominant deformations (axial, radial or circumferential) and275

their numbers (n,m) of nodal diameters and nodal circles. Two modes are represented in Fig. 4. This classification

is necessary to determine the optimal mesh according to a targeted number of element per wavelength for the free

normal modes. However, no convergence study has been performed in order to examine the effect of these meshes

on the full model with frictional contact (nor for stability analysis either for self-sustained vibrations).

(a) (b)

Figure 4: Examples of free eigenmodes of a cylinder (a: Axial mode (0,2) (316 Hz), b: Radial mode (0,3)(3695 Hz))

6.3. Quasi-static results280

In this section the quasi-static rolling contact of the two cylinders with lateral creepage is considered. The

contact zone is supposed to be laterally centered. As shown in Fig. 2b, the geometry of the lateral profiles of the

two cylinders has been curved in order to obtain an effective 3-dimensional contact. For each cylinder the applied
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radius of curvature is 0.5 m. The rolling is performed in the −x direction with V = 10 m/s. An vertical displacement

uz0 = 0.1 mm is applied leading to a resultant vertical contact force of about 75 kN. A friction coefficient µ = 0.3285

is considered. Longitudinal and spin creepages are set to zero (∆Vx = ∆ωz = 0).

For an imposed lateral creepage ∆Vy/V = 0.3%, the longitudinal distributions of the normal contact stresses

Pn and frictional stresses Pt on the center line of the contact zone (y = 0) are presented in Fig. 5. As expected,

a stick zone occurs at the leading edge of the contact and a slip zone occurs at the trailing edge of the contact.

The comparison of the results obtained with the proposed full FE method and the results provided by CONTACT290

software shows a good agreement with some small differences for the tangential stresses in the transition between

the stick zone and the slip zone.
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Figure 5: Quasi-static frictional stresses along the line y = 0 for ∆Vy/V = 0.3% and µ = 0.3

As in the finite element method proposed, Kalker’s variational theory [14] implemented in CONTACT soft-

ware is based on a discretization of the contact zone combined with unilateral contact and Coulomb friction laws.

The differences mainly lie in the two simplifications proposed by Kalker in order to calculate the distribution of295

stresses and deformations in the contact area: local flexibilities computed by using Boussinesq and Cerruti (static)

elastic half-space assumptions and decoupling between the normal and tangential problems. Another difference

concerns the interpolation functions in the contact zone (linear in the proposed method versus constant in CON-

TACT software). This can explain the small differences between the results obtained with both methods. As fewer

approximations are involved in the proposed method than in Kalker’s theory, the results obtained with the finite300

element method are supposed to be more accurate. However, in such a quasi-static configuration, the differences

can simply come from the interpolation functions.

6.4. Stability results

Stability analysis is carried out in case of full sliding using a higher creepage ∆Vy/V = 1% by using 160

free-interface normal modes (80 for each cylinder). In order to solve the non symmetric eigenvalue problem, the305

two reduction strategies presented in section 4.3 (classical CMS and contact static approximation) are tested and

compared with reference results obtained with an iterative method minimizing the force residue, like in [42].

In the case where the contact point is centered, no instability is found whatever the friction coefficient. In

order to obtain instabilities the contact point is laterally shifted, as shown in Fig. 6. This offset increases the
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lateral/vertical coupling which is a necessary condition to obtain mode-coupling instabilities. The lateral position310

of the contact point seems to be one of the most important parameter for the occurrence of instabilities. Indeed,

it bring out a stronger coupling between the normal and tangential dynamics due to the asymmetrical geometry of

the system compared with the centered position.

O
Y

z

Figure 6: Lateral offset of the contact point

With an lateral offset uy0 = 4 cm, one mode is founded to be unstable. Results obtained with µ = 0.3 are shown

in Fig. 7. The real part of a complex mode at frequency 1609 Hz is positive. The corresponding mode shape is315

presented in Fig. 8.
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Figure 7: Divergence rate of complex eigenvalues for ∆Vy/V = 1% and µ = 0.3

In order to confirm the mode-coupling instability and to test the behavior of the reduced basis presented in

section 4.3, the evolution of the eigenvalues corresponding to the two complex modes involved in the instability (i.e.

the bifurcation curves) are represented in Fig. 9 without damping (by imposing C = Cb = 0) and in Fig. 10 with

damping. As expected, the increase of the friction coefficient brings the two modes closer until their frequencies320

coalesce and one mode becomes unstable.

In order to analyze the case with damping, a brief discussion about the known effects of damping on coa-

lescence patterns is needed. Indeed, these effects are not straightforward as shown for instance [20, 50, 51]. In

particular, a non-uniform repartition of damping between the modes involved in the coalescence can destabilize

the system in some cases, especially trough a smoothing effect. In the present system, the internal viscous damping325
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Figure 8: Unstable mode for ∆Vy/V = 1% and µ = 0.3
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Figure 9: Evolutions of the frequency and divergence rate of complex modes without damping for ∆Vy/V = 1% (a: Frequency, b: Divergence

rate)
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Figure 10: Evolutions of the frequency and divergence rate of complex modes with damping for ∆Vy/V = 1% (a: Frequency, b: Divergence

rate)
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in the structures is proportional and the two modes involved in the instability are equally damped at µ = 0. Thus,

in this special case, only a lowering effect is expected, which tends to stabilize the mechanical system by shifting

vertically the bifurcation curves in comparison with the undamped case. This can be observed in Fig. 10b. To be

rigorous, it should be noted that the linearization of the planar friction force in Eq. (16) leads to an added damping

effect (matrix Cb), which is nor proportional either equally distributed between the modes or could be a smoothing330

factor as show in [21]. However, in the present application, this effect seems to be negligible compared to the high

internal damping. Concerning the evolution of the frequencies in Fig. 10a, the results also comply with previous

observations, showing a dispersion of the curves after the merging point.

With regard to reduction strategies, the first validation has been performed by comparing the real and imaginary

parts of complex pulsations provided by the different bases in the CEA for the reference friction coefficient µ = 0.3.335

As recommended in Brizard’s work, the highest frequency of the modes taken into account has to be equal to 1.5

times the upper frequency of the frequency range of interest, i.e. 7546 Hz. The number of free normal modes in

the CMS and CSA bases are chosen with this criterion. Thus, 80 free normal modes per disc have been retained,

i.e. 160 modes in all. To go further, the validation has been done for µ = 0 to 0.6 but only for the complex

pulsations of the two modes involved in the instability (bifurcation curves). The relative errors on the frequencies340

and the absolute errors on the divergence rates of complex modes obtained with the two proposed reduction bases

in comparison with the results obtained with the iterative method are presented in Figs. 11 and 12. It is observed

that the differences are very small.
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Figure 11: Relative errors of the frequency and absolute errors on the divergence rate of complex modes without damping for ∆Vy/V = 1% (a:

Frequency, b: Divergence rate)

6.5. Transient results

Transient results corresponding to the unstable case founded in the previous section are determined using a345

numerical time integration from given initial conditions. In all the following results, the integration starts from

the equilibrium i.e. the initial displacements are the displacements obtained from the quasi-static solution and the

initial velocities are null. At this point, it is important to recall that the initial conditions can influence the final

limit cycle. However, it is especially true in the case of several unstable modes as shown for instance in [22].

When only one mode is unstable as in the present case, it is also true but particularly when initial conditions are350
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Figure 12: Relative errors of the frequency and absolute errors on the divergence rate of complex modes with damping for ∆Vy/V = 1% (a:

Frequency, b: Divergence rate)

far from the quasi-static equilibrium. The parameters Vx = 10 m/s, µ = 0.3 and ∆Vy/V = 1% are used. The time

step for the integration is ∆t = 1µs. Results obtained with the full non-reduced model are first discussed. Reduced

solutions are then presented.

6.5.1. Full model

Figs. 13 and 14 show the time series of the normal and lateral contact resultant forces Fn and Ft. The tangential355

resultant force increases until a pronounced stick/slip oscillation builds up as shown in Fig. 15. When the tangential

contact resultant force is smaller than the traction bound µFn, a transient stick zone appears at the leading edge of

the effective contact region as shown in Fig. 16.
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Figure 13: Evolution of the normal contact resultant force

The time series of the lateral velocity of a point outside the contact zone with coordinates (-0.01, 0, -0.01),

i.e. at 1 cm from the contact zone in the vertical and longitudinal directions, is presented in the Figure 17a. The360

spectrogram in Fig. 17b allows to observe which frequencies are present in the solution and when they appear. A

fundamental frequency is founded at f0 = 1612.9 Hz which gets very close to the frequency of the unstable complex

mode provided by stability analysis (1609 Hz). In the steady-state response, harmonic frequencies fk = k f0

appear. Although in this case, the fundamental frequency is not so different from the frequency of the unstable
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Figure 14: Evolution of the tangential contact resultant force
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Figure 15: Zoom on time series of the contact resultant forces ; the status of the contact points at the time steps marked with Arabic numerals

is represented Fig. 16
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complex mode, these results show the advantages of the nonlinear time integration method compared with the365

stability analysis. Indeed, the amplitude of the vibrations and the harmonic frequencies cannot be determined by

the complex eigenvalue analysis.
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Figure 17: Tangential velocity of a point outside the contact zone with coordinates (-0.01, 0, -0.01) (a: Temporal evolution, b: Spectrogram

(time-frequency))

6.5.2. Reduced models

The two reduction strategies presented in section 3 are tested using 160 free-interface normal modes in the

frequency range up to 7510 Hz and 1323 residual attachment modes corresponding to 1323 degrees of freedom370

on the potential contact interface. For the classical CMS method, a reduced integrator matrix of size 1473 × 1473

is then obtained while the size of the initial matrix is 239358 × 239358. This reduced matrix is full but may be

factorized before the iterative computation. The problem is therefore reduced significantly. For the contact static

approximation, the size of the integrator matrix is reduced to 160 × 160 which induces a high gain in computation

times.375

Concerning the precision of the reduced models, the lateral velocity of the point outside the contact zone with

coordinates (-0.01, 0, -0.01) obtained with the reduced basis are presented in Figs. 18 and 19 in comparison with the

full solution. The fundamental frequencies of the three solutions are very close to each other. With the same initial

conditions, the amplitudes of the reduced solutions in the transient response are greater than the full solution. It is

well-known that the alteration of the transient evolution of modal participations in the transient state can lead to an380

acceleration or a deceleration of the transient response [22]. In the present case, the reduced solutions are clearly

accelerated, which explains the differences in amplitudes. In the steady-state response (Fig. 19b), the fundamental

frequencies obtained with both reduction bases are 1615.5 Hz. The corresponding error (0.16 %) is small. In

addition, the amplitude of the three solutions are very similar, with an error of 2.3% on the maximum amplitude.

The corresponding spectra are also given in Fig. 20 showing a good agreement between the reduced solutions and385

the full solution: an error of 0.15 dB at the fundamental frequency and errors of 0.02, 0.73 and 1.12 dB at the

harmonic frequencies.

In addition, it should be noted that the computation times resulting from the use of the reduction bases CMS

and CSA are respectively ten and fifteen times shorter than for the computation of the full solution.
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Figure 18: Lateral velocity in a point outside the contact zone with coordinates (-0.01, 0, -0.01) obtained with the reduced basis (a: Component

Mode Synthesis, b: Contact static approximation)
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Figure 19: Zoom on time series of the lateral velocity in a point outside the contact zone with coordinates (-0.01, 0, -0.01) obtained with the

reduced basis (a: In the transient response, b: In the steady-state response)
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Figure 20: Power spectrum (dB re 1 m/s) of the steady-state lateral velocity in a point outside the contact zone with coordinates (-0.01, 0, -0.01)

obtained with the reduced basis
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Although the performance of the reduction bases are rather impressive, it is difficult to generalize this result390

to other cases or applications since it strongly depends on the frequencies involved in the nonlinear solution.

In the present case, the nonlinear effects seem to be localized to the contact area, which is coherent with the

approximations induced by the two reduction strategies. The amplitude of the harmonics in the velocity spectrum

of the point outside the contact zone are quite small compared with the amplitude of the peak at the fundamental

frequency. For cases with a greater contribution of harmonics, it might be necessary to complete the basis with395

normal modes at higher frequencies.

To be complete, it should also be noted here that several non linear methods exist for the direct computation of

the steady-state solution, even if they have not been used much in the case of rolling contact systems. In particular,

when only one mode is unstable, nonlinear frequency-domain methods like for instance the constrained harmonic

balance method (CHBM) proposed by [52] could undoubtedly be an efficient alternative to the time integration400

method. Other techniques like the shooting method or the orthogonal collocation method could also be used

[44, 45, 53]. However, the main objective of the paper does not concern the performance of the time integration

scheme but the use of a full finite element approach to study the dynamics of rolling/sliding contact systems at

high frequencies, notably in order to calculate reference solutions. Solutions provided by time integrations are

often used as reference solutions even when effective nonlinear methods like the CHBM can be used. Moreover,405

the time integration method has the advantage of providing the transient part of the solution and allows the steady-

state solution to be linked with initial conditions. Finally, a third reason for using the time integration method is

that it could be used without adaptation for systems exhibiting several unstable modes in the complex eigenvalue

analysis, which is not a rare case, for instance in curve squeal problems.

7. Conclusion410

In this paper, a method is proposed for the modeling and analysis of the high-frequency friction-induced in-

stabilities of two structures in rolling contact in time and frequency domains. A full finite element formulation

around the stationary position in an Eulerian reference frame is derived with a fine discretization of the contact

surface combined with unilateral and Coulomb friction laws with constant friction coefficient. Appropriate numer-

ical techniques are used in order to solve the nonlinear discrete equations in quasi-static or dynamic conditions. In415

addition to the transient approach, a stability analysis performed around the full sliding equilibrium position allows

to determine unstable modes and frequencies.

In order to reduce the computational effort, reduction strategies are proposed for both domains. The first

technique uses a classical CMS reduced basis including free-interface normal modes and static attachment modes.

A second technique consists in simply adding a residual static contact flexibility to the free-interface normal modes420

when solving the frictional contact equations (contact static approximation). It significantly differs from classical

reduction bases used in previous papers and is well suited to this kind of problem where the contact area is small

compared to the structures and proves to be efficient in computation cost.

The method is tested in the case of frictional rolling contact between two annular cylinders. The quasi-static

results show a good agreement with the ones obtained with Kalker’s CONTACT software. In case of full sliding,425

the stability analysis brings out a mode coupling instability when the contact zone is laterally shifted from the

center of the cylinders. In the unstable configuration, the numerical integration provides solutions in the time
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domain which are coherent with the stability results. In particular, the unstable frequency determined by this

analysis is very close to the fundamental frequency observed in the transient solution. The status of the nodes at

the contact zone in the self-sustained vibrations clearly show slip-stick limit cycles.430

Concerning the performance of the reduction strategies, the approximate results obtained for the stability analy-

sis show a good agreement with the reference ones. In the time domain, the amplitudes of the reduced solutions are

slightly greater than the full solution in the linear phase. However in the steady-state phase, solutions are very sim-

ilar. This allows to considerably reduce the computational times, especially when the contact static approximation

is used.435

This methodology may be used later in a large variety of complex friction-mechanical system, especially curve

squeal.
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