
HAL Id: hal-01999033
https://hal.science/hal-01999033

Submitted on 30 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance Model of MapReduce Iterative
Applications for Hybrid Cloud Bursting

Francisco Clemente-Castello, Bogdan Nicolae, Rafael Mayo, Juan Carlos
Fernandez

To cite this version:
Francisco Clemente-Castello, Bogdan Nicolae, Rafael Mayo, Juan Carlos Fernandez. Performance
Model of MapReduce Iterative Applications for Hybrid Cloud Bursting. IEEE Transactions on Parallel
and Distributed Systems, 2018, 29 (8), pp.1794-1807. �hal-01999033�

https://hal.science/hal-01999033
https://hal.archives-ouvertes.fr

1

Performance Model of MapReduce Iterative
Applications for Hybrid Cloud Bursting

Francisco J. Clemente-Castelló∗, Bogdan Nicolae†,
Rafael Mayo∗, Juan Carlos Fernández∗

∗Universitat Jaume I, Spain
Email: {fclement, mayo, jfernand}@uji.es
†Argonne National Laboratory, USA

Email: bogdan.nicolae@acm.org

F

Abstract—Hybrid cloud bursting (i.e., leasing temporary off-premise
cloud resources to boost the overall capacity during peak utilization) can
be a cost-effective way to deal with the increasing complexity of big data
analytics, especially for iterative applications. However, the low through-
put, high latency network link between the on-premise and off-premise
resources (“weak link”) makes maintaining scalability difficult. While sev-
eral data locality techniques have been designed for big data bursting on
hybrid clouds, their effectiveness is difficult to estimate in advance. Yet
such estimations are critical, because they help users decide whether
the extra pay-as-you-go cost incurred by using the off-premise resources
justifies the runtime speed-up. To this end, the current paper presents a
performance model and methodology to estimate the runtime of iterative
MapReduce applications in a hybrid cloud-bursting scenario. The paper
focuses on the overhead incurred by the weak link at fine granularity,
for both the map and the reduce phases. This approach enables high
estimation accuracy, as demonstrated by extensive experiments at scale
using a mix of real-world iterative MapReduce applications from stan-
dard big data benchmarking suites that cover a broad spectrum of data
patterns. Not only are the produced estimations accurate in absolute
terms compared with experimental results, but they are also up to an
order of magnitude more accurate than applying state-of-art estimation
approaches originally designed for single-site MapReduce deployments.

Index Terms—Hybrid Cloud; Big Data Analytics; Iterative Applications;
MapReduce; Performance Prediction; Runtime Estimation

1 INTRODUCTION

An important class of problems running on private clouds
is big data analytics. However, with data sizes exploding
(zettabytes predicted by 2020 [1]) and applications becoming
increasingly complex, private clouds struggle to accommo-
date the required scale and scope. Often there is simply not
enough capacity to run the desired analytics, or it is difficult
to obtain the desired results within a given deadline. In
addition, the rich, shared big data ecosystem facilitated by
public cloud computing (large amounts of data exploitable
from multiple data sources and users) opens many new
opportunities for combined analytics that potentially enable
new insight beyond what is possible within the scope of

a private cloud alone. In this context, cloud bursting [2] has
seen a rapid increase in popularity among big data analytics
users. It is a form of hybrid cloud computing that enables
temporary boosting of on-premise resources managed by
a private cloud with additional off-premise resources from
a public cloud provider, for the purpose of overcoming the
limitations of private data centers only when necessary (e.g.,
during peak utilization) in a flexible, cost-efficient pay-as-
you-go fashion.

Enabling cloud bursting for big data analytics at large
scale poses a major challenge: unlike conventional datacen-
ters where big data analytics applications and middleware
run on top of physically colocated IT resources with high-
speed interconnections, the use of both on-premise and off-
premise resources is bottlenecked by a “weak link” between
them that is often orders of magnitude slower (e.g., 1 Gbps
links between on-premise virtual machines but a shared
100 Mbps link to access off-premise VMs from a public
cloud). This effect has multiple implications at the level of
the runtime and storage layer, prompting the need for new
“hybrid cloud big data analytics” approaches.

In our previous work [3], [4], we showed that iterative
applications are particularly well positioned to take ad-
vantage of hybrid clouds. This class of applications typi-
cally reuses a large amount of invariant input data. Hence,
the runtime overhead introduced by shipping data off-
premise over the weak link can be offset by leveraging
locality awareness to reuse it at each iteration. Thus, by
taking advantage of these properties, we introduced two
complementary techniques to accelerate iterative big data
applications on hybrid clouds, which we illustrated based
on Hadoop MapReduce [5]: (1) extended off-premise HDFS
storage layer using asynchronous rack-aware replica re-
balancing and (2) locality-enforced scheduling that avoids
redundant data transfers over the weak link. Thanks to these
techniques, we have shown significant speed-up compared
with the default Hadoop implementation designed for a
single data-center [6]. In addition, we showed that such
techniques can perform close to the lower bound; that is,

2

the performance is close to the case when more on-premise
resources are added to match the capacity of the hybrid
setup.

Despite the potential to achieve a significant speed-up,
however, the extra pay-as-you-go cost for the temporary
provisioning of the off-premise virtual machines (VMs) can
be significant. Thus, from a business perspective, the ability
to estimate the speed-up in advance for a given hybrid config-
uration is critical, in order to be able to decide whether the
return of the investment is justified before committing to any
extra pay-as-you-go costs.

We focus here on this challenge. Specifically, we extend
our previous work with a generic performance model that
can be used to estimate the runtime of iterative MapRe-
duce applications in a hybrid cloud. A key advantage of
the model is that it offers both a pessimistic (upper) and
optimistic (lower) runtime estimation, which enable more
informed decision-making that is adapted to the inherent
performance fluctuations exhibited by the off-premise VMs
due to multitenancy on the public clouds. We summarize
our contributions as follows.

• We elaborate on the fundamental issues in operat-
ing iterative MapReduce applications over hybrid
cloud setups comprising both on- and off-premise
VMs. In particular, we further develop the main
issue VMs. In particular, we further develop the
main issue discussed in our previous work (lacking
data locality on the off-premise part and associated
consequences) from multiple angles: I/O interactions
with the underlying storage layer, task scheduling,
and data shuffling (Section 3).

• We propose a methodology that combines analytical
modeling with synthetic benchmarking to estimate
the time to solution in a hybrid setup, including
all fine-grained overhead associated with the map
phase and the reduce phase (shuffle, sort, reduce).
This model extends our preliminary efforts in this
direction [4] that addressed the map phase only
(Section 4).

• We evaluate our approach in a series of experiments
that involve four representative real-life iterative
MapReduce applications from standardized big data
benchmarks that cover a broad range of use cases.
Our experiments demonstrate small errors between
the runtime estimations and the actual measured
values, which are up to an order of magnitude
smaller than using state-of-art MapReduce runtime
estimation approaches designed for single-site setups
(Section 5).

2 RELATED WORK

MapReduce applications have been studied extensively on
single-cloud computing platforms [7], [8]. Storage elastic-
ity [9], [10] is a particularly interesting aspect for iterative
applications, as it is an important component of the overall
pay-as-you-go cost. Data shuffling is another difficult prob-
lem even in a single data center [11].

Iterative MapReduce applications have been empha-
sized in [12], [13]. The proposed optimizations included
making the task scheduler loop-aware and adding various

caching mechanisms. Although designed for single-site de-
ployment, such techniques can be adapted for hybrid cloud
bursting to complement our own techniques. In this context,
the core ideas of the performance model proposed in this
paper are generic enough to enable an extension that takes
such additional optimizations into consideration.

Performance and cost prediction in a single data center
have been studied from multiple angles. A storage perfor-
mance and cost model for iterative applications was intro-
duced in [14]. Given the data-intensive nature of MapRe-
duce applications and the need to persist data between jobs,
such a direction is an important complement to our own
work. MapReduce performance modeling in particular has
focused on various aspects: scheduling, resource provision-
ing, performance, and cost estimation.

Tian and Chen [15] proposed a cost model that estimates
the performance of a job from a set of test runs on a small
input datasets and small number of nodes. The authors pro-
visioned the resources for the job using a simple regression
technique. Chen et al. [16] further improved the cost model
and proposed CRESP, which employs a brute-force search
technique for provisioning the optimal cluster resources in
term of map slots and reduce slots for Hadoop jobs. In the
two models, however, the number of reduce tasks have to
be equal to the number of reduce slots; hence, these models
consider only a single wave of the reduce phase.

Many tuning frameworks for Hadoop MapReduce have
been proposed. Lama and Zhou [17] proposed AROMA,
a machine learning optimization framework that automati-
cally selects the cloud resources and tunes the configuration
parameters of a Hadoop MapReduce job to achieve quality
of service (QoS) goals with as little cost as possible. Sim-
ilarly, Starfish [18] relies on dynamic Java instrumentation
to collect profile information about executed jobs at a fine
granularity for job estimation and automatic optimization.
Such approaches complement our proposal in that they can
act as a tool to find the optimal application-level parameters
needed to obtain the performance prediction model.

ARIA [19] and its extension [20] introduce a MapRe-
duce analytical performance model based on the makespan
theorem for homogeneous compute clusters. Using this
approach, one can reason about performance prediction in
terms of upper and lower bounds. Herodotou [21] refined a
more detailed mathematical model of each phase of MapRe-
duce, where the map phase is divided into five subphases
and the reduce phase is divided into four subphases. As
a follow-up, the work presented in [22] estimated the du-
ration of these phases by using regression techniques. The
estimated values were then used in the analytical model
presented in [19] to estimate the overall job execution time.
The same bound-based approach [19] was applied by Zhang
et al. [23] to heterogeneous Hadoop cluster environments.
Different from our work, heterogeneity is understood as
compute nodes with different processing power located in
the same cluster (which raises an entirely different set of
problems other than network partitioning due to a weak
link). Several other works show interest [24]–[26] in hetero-
geneous MapReduce environments.

Because of the specific nature of hybrid clouds that
introduce a weak link and iterative MapReduce applications
that reuse input data, none of the previous models is accu-

3

rate enough or easy to adapt in this context. Therefore, to
our best knowledge, we are the first to reveal and solve
the challenges associated with performance modeling when
both iterative MapReduce applications and hybrid cloud bursting
are considered simultaneously.

3 DATA LOCALITY CHALLENGES AND SOLUTIONS
FOR HYBRID CLOUD BURSTING

The MapReduce paradigm is specifically designed to facil-
itate a high degree of data parallelism. In the first stage
(map phase), massive amounts of input data are read from
a storage layer (typically a distributed file system such as
HDFS [27]) and transformed in an embarrassingly parallel
fashion by mapper processes such that an intermediate
output (consisting of key-value pairs) is obtained that is
sorted by key. Then, in a second stage (shuffle phase), a
separate set of reducer processes fetches (in parallel) the
data corresponding to individual keys from all mappers
and merges it. In a third stage (reduce phase), the reducers
apply an aggregation over the values merged under the
same key to obtain the final result (one value per key), which
is typically persisted in the storage layer.

Both the mappers and reducers are distributed processes
that exhibit highly concurrent I/O-intensive data access
patterns, which can overwhelm the networking infrastruc-
ture with internode data transfers. In order to address this
issue, data locality awareness is a key feature of MapReduce.
The storage layer is colocated with the runtime on the
same nodes and is designed to expose the location of the
data blocks, effectively enabling the scheduler to bring the
computation close to the data and to avoid a majority of the
storage-related network traffic.

3.1 Impact of the Weak Link
A hybrid cloud-bursting scenario adds a new level of com-
plexity to data locality, as illustrated in Figure 1a. In this
context, the on-premise VMs and off-premise VMs compete
for the same wide area link when cross-site communication
is necessary. In addition, this link is often of lower through-
put and higher latency that the direct inter-VM links. As
a consequence, highly concurrent cross-site data transfers
are likely to saturate the wide area link and cause an I/O
bottleneck. For this reason, we refer to the wide area link as
the weak link. Specifically, the weak link affects MapReduce
applications in the following fashion.

Map phase: Since the input data is present initially
only on the on-premise VMs, any map task that is sched-
uled off-premise needs to access the on-premise data, thus
involving a data transfer over the weak link. Furthermore,
all off-premise mappers are running in parallel and thus
compete for the weak link, thereby introducing high I/O
pressure on it.

Shuffle phase: Each reduce task needs to collect the
intermediate data generated by the map tasks: if r reduce
tasks collect the intermediate data from m map tasks, an
m-to-r concurrent communication is required during this
phase. Therefore, the weak link will be stressed by all
communication required between the on-premise maps and
the off-premises reduces, and between the off-premise maps
and the on-premise reduces, as can be seen in Figure 1b.

Reduce phase: Once the reduce tasks have finished
pulling the intermediate data and have performed the ag-
gregation, they typically need to persist the results on-
premise. Again, this process involves data transfers from
the off-premise VMs to the on-premise VMs over the weak
link, which put I/O pressure on it.

In the context of iterative MapReduce applications, the
impact of the weak link accumulates as each iteration needs
to go through all three phases. However, the iterations are
not independent MapReduce jobs since they share a large
part of the initial input data. Thus, one can to leverage this
particular aspect in order to reduce the pressure on the weak
link. To this end, we introduced in our previous work [3], [4]
two complementary techniques to improve data locality for
hybrid cloud bursting. For completeness, we present these
techniques below.

3.2 Off-Premise Replication Using Site-Aware Rebal-
ancing

A naive approach that is oblivious to data locality is to sim-
ply leave the input data on-premise and pull it on-demand
from the off-premise map tasks. While straightforward, this
approach has a major disadvantage: the input data needs to
be transferred over the weak link unnecessarily for each it-
eration, leading to performance degradation. A better choice
is to ship the input data off-premise before running the
iterative MapReduce application. Such an approach avoids
putting I/O pressure on the weak link during the runtime
of the application. But the initial data transfer is a time-
consuming process that leads to extra runtime overhead,
while generating extra cost due to additional off-premise
storage space utilization.

Therefore, a much better choice is to ship the input
data to the off-premise VMs asynchronously during run-
time. Such an approach hides the data transfer overhead in
the background, but it may interfere with the application
communication patterns (the VMs act as both data store
and compute elements that share the same communication
channels). We have shown that input data can be efficiently
shipped off-premise by using rack awareness. This was ini-
tially implemented as a resilience mechanism in HDFS [27],
the default storage layer of Hadoop. Specifically, data blocks
are replicated in HDFS (three times by default) for resilience
purposes, with at least one replica in a different rack from
the one where the write originated. Furthermore, HDFS also
can rebalance the replicas across the storage elements to
distribute the load evenly while preserving rack awareness.
Thus, by deploying new HDFS storage elements on the off-
premise VMs as a separate rack, a rebalancing operation
will migrate one replica for each data block to the off-
premise VMs asynchronously, effectively achieving a site-
aware rebalancing.

The main advantage of this approach is that it minimizes
the amount of data transferred off-premise (a single replica)
to achieve full potential of exploiting the data locality,
while maintaining the resilience properties. Furthermore,
although illustrated on HDFS, the core idea (asynchronous
migration of a single replica) can be implemented also for
in-memory frameworks (e.g., Spark [28], Pregel [29]) that
aim to minimize the interaction with the storage layer.

4

weak link

on-premise

network

n
o
d
e
 #

0

d#0

n
o
d
e
 #

1

d#1

off-premise

network
n
o
d
e
 #

2

d#2

n
o
d
e
 #

3

d#3

n
o
d
e
 #

4

d#4

(a) Infrastructure: The weak link inter-
connects the on-premise VMs with the off-
premise VMs

on-premise off-premise

n
o
d
e
 #

0

n
o
d
e
 #

1

n
o
d
e
 #

2

n
o
d
e
 #

3

weak link

network network

map
#0

map
#1

map
#2

map
#3

map
#4

map
#5

map
#6

map
#7

reduce
#0

reduce
#1

reduce
#2

reduce
#3

(b) MapReduce shuffle phase: Concurrent data transfers put I/O
pressure on the weak link. For clarity, only data transfers from one
on-premise map and one off-premise map are depicted.

Fig. 1: Schematic representation of a hybrid cloud-bursting architecture and its implications for MapReduce applications

3.3 Scheduling Based on Enforced Multilevel Locality

The default Hadoop scheduler uses data locality only as a
preferential matching mechanism between map tasks and
free slots. If asynchronous HDFS rebalancing is employed,
however, a map task may be scheduled off-premise before
a replica of its corresponding data block was migrated, thus
triggering a pull and leading to a double data transfer of the
same block. In this case, delaying the scheduling of such off-
premise map tasks is beneficial, under the assumption that
avoiding stress on the weak link leads to a smaller overall
overhead. To this end, we propose an enforced multilevel
locality scheduling policy. Specifically, a map task will be
preferentially scheduled on the same VM that holds its data
dependencies. If all VMs that satisfy its data dependencies
are busy, then the map task will be scheduled to another off-
premise VM with a free compute slot only if the data was al-
ready migrated off-premise. Otherwise, it will be scheduled
on an on-premise VM even if all on-premise VMs are busy.
With this approach, off-premise map tasks will never pull
data remotely over the weak link, and thus interferences
with the asynchronous background data migration will be
avoided.

We implemented this policy in Hadoop by modifying the
resource manager to make use of the relaxLocality flag. As in
the previous case, the core idea of enforced multilocality
can be extended beyond Hadoop MapReduce to in-memory
processing frameworks as well.

4 PERFORMANCE MODELING PROPOSAL

In this section, we introduce the broad principles and
methodology behind our performance modeling proposal.
Our goal is to estimate the completion time of a given itera-
tive MapReduce application for hybrid cloud bursting based
on a series of system-level and application-level parameters
that are extracted in advance.

Given the locality challenges of hybrid cloud bursting,
our proposal assumes that the underlying big data analytics
framework for which the user needs to estimate the com-
pletion time is optimized by using the principles discussed
in Section 3. Specifically, we make two assumptions: (1)
there is a data rebalancing that migrates one replica of
the input data asynchronously off-premise while the ap-
plication is running; and (2) the scheduling policy for the

map tasks obeys the enforced multilevel locality condition.
These assumptions influence the mathematical expressions
we introduce in Section 4.4.

For simplification, we assume that the setup consists
of a fixed set of on-premise VMs and off-premise VMs of
similar capability, which gives us a fixed set of system-
level parameters. Users interested in estimating the runtime
for various setups (e.g., finding the optimal number of off-
premise VMs to achieve the desired runtime) can apply our
approach for each configuration individually.

Our approach consists of three steps. First, we run a
synthetic benchmark to extract the fixed system-level pa-
rameters corresponding to the on-premise and off-premise
VMs. These parameters are independent of the application
and can be reused for a different application or user (e.g.,
they can be cached on-premise). We refer to this step as
calibration.

Second, we extract the application-level parameters.
These parameters are independent of the hybrid setup and can
be either known in advance or obtained by running the
application at smaller scale on-premise only. In this way,
users can estimate the benefits of hybrid cloud bursting
without actually ever trying it, as long as the calibration
step was already performed for the desired configuration.
We refer to this step as characterization.

Third, once both the calibration and the characterization
is complete, we apply a mathematical expression to esti-
mate the completion time. Note that the approximations
introduced above have an inherent variability due to the
complexity of MapReduce applications in general and the
additional complexity introduced by the weak link. There-
fore, it is important to be able to present both the optimistic
(lower bound) and pessimistic (upper bound) runtime estima-
tion to the user. To derive the mathematical expressions for
both cases, we use the makespan theory as applied in the
context of MapReduce.

To aid the extraction of both system-level and
application-level parameters, we have developed a tool
that can analyze a job in terms of map/shuffle/reduce
times; HDFS data distribution; task distribution between on-
premise and off-premise; and node statistics such as CPU,
I/O network, I/O disk, and memory utilization. Our tool
extracts information from a combination of Hadoop coun-
ters, Hadoop logs, Hadoop Rumen tool [30], and Systat [31]

5

to generate profiling information.
Note that while we illustrated the core idea of our pro-

posal in the context of Hadoop MapReduce, its applicability
can be extended to other big data analytics frameworks that
are based on the same fundamentals [28], [29], [32] (colocate
data storage with computations, split a computations into
subtasks, schedule subtasks close to the data). Also, the
generic aspect of the additional assumptions specific to
hybrid cloud bursting that our proposal is based on were
explained in Section 3.

In the rest of this section, we detail the three-step pro-
posal summarized above.

4.1 Theoretical Makespan Bounds for MapReduce
For completeness, we briefly introduce the theoretical
makespan bounds as applied in the context of MapReduce.
This presentation provides preliminary background needed
in order to understand the reasoning behind the parameters
extracted from the calibration and characterization steps.

Each of the map and reduce phases can be abstracted
as a series of n tasks of duration ti (where i refers to each
task) that need to be processed by k slots. The assignment
of tasks to slots is done dynamically by the MapReduce
runtime according to a simple greedy policy that assigns
each task to the slot with the earliest finishing time.

The best case is obtained when all slots are evenly
loaded, in which case each slot is busy for at least
(
∑n

i=1 ti)/k = (tavg × n)/k. Therefore, this is the lower
bound of the makespan.

The worst case is obtained when the longest task tmax is
scheduled last. This means that the k slots are busy with
the other tasks and take at most (tavg × (n − 1))/k to
process them. Once they finish with these tasks, one of them
needs to process tmax. Therefore, the upper bound of the
makespan is (tavg × (n− 1))/k + tmax.

We note that the lower bound can be expressed more
precisely as a function of the average task duration (rather
than the minimum). Consequently, several of the parameters
we extract from the calibration and characterization steps
are averages and maximum values.

4.2 Calibration Using Synthetic Benchmarking
We develop a synthetic benchmark that focuses on the
extraction of the I/O and communication overheads in a hy-
brid setup. Specifically, the goal is to extract these overheads
for each phase (map, shuffle, reduce) based on the quantity
of data involved: (1) the amount of data read from HDFS;
(2) the amount of data written to HDFS; and (3) the amount
of network traffic between map and reduce tasks. Using this
approach, we can cover all possible combinations of data
sizes in each phase.

To achieve this goal, we implement a collection of map,
combiner, and reduce functions that generate a synthetic
workload based on a series of configurable input parameters
used to specify the amounts of data. Both the map phase
and the reduce phase of the synthetic workload deliberately
avoid computational overhead (minimal load on the CPU)
in order to isolate the I/O and communication overheads.
The map phase is structured in two parts: it reads the input
chunk in the map function and writes a specified amount of

0 20 40 60 80 100 120
Shuffle (MB)

1

2

3

4

5

6

7

8

9

Ti
m

e
(s

)

Shuffle points
Maximum
Average

(a) 1 Gbps inter-cloud network
link

0 20 40 60 80 100 120
Shuffle (MB)

0

5

10

15

20

25

30

35

40

45

Ti
m

e
(s

)

Shuffle points
Maximum
Average

(b) 100 Mbps inter-cloud net-
work link

Fig. 2: Shuffle approximation in a 3-ON-3-OFF premise
hybrid architecture

0 20 40 60 80 100 120 140
Output HDFS (MB)

0

1

2

3

4

5

6

7

8

9

Ti
m

e
(s

)

Write HDFS points
Maximum
Average

(a) 1 Gbps inter-cloud network
link

0 20 40 60 80 100 120 140
Output HDFS (MB)

0

20

40

60

80

100

120

Ti
m

e
(s

)

Write HDFS points
Maximum
Average

(b) 100 Mbps inter-cloud net-
work link

Fig. 3: Reduce approximation in a 3-ON-3-OFF premise
hybrid architecture

intermediate data in the combiner function. The output of
the combiner is grouped by key, with each group collected
by the corresponding reducer. The reducer simply writes a
predefined amount of data as output in HDFS.

This synthetic benchmark is then executed for a variable
quantity of data in a hybrid setup comprising a fixed num-
ber of on-premise and off-premise VMs. To illustrate how
this calibration process works, we present an experimental
example based on a typical hybrid cloud setup (described in
more detail in Section 5.1), where we use two representative
configurations for the weak link: 100 Mbps and 1 Gbps.

Then, based on the profiling information, we define a
series of system-level parameters that quantify the hybrid-
specific overheads.

Hybrid map overhead stretch coefficient: Although
the scheduler forces the execution of mappers on the nodes
where the input data from HDFS is present, there are
some extra reads when the logical end of data does not
exactly match the HDFS end of a split (i.e., the input of
the mapper is covered by two different HDFS chunks).
Therefore, mappers will sometimes read remote data over
the weak link, creating extra overhead compared with the
on-premise-only case. We measure this overhead using the
synthetic benchmark and express it as a stretch coefficient
denoted α.

Hybrid approximation of shuffle overhead per re-
ducer: Once a sufficient number of mappers have finished
producing the intermediate data, reduce tasks are launched
and begin collecting the data. However, a reduce task cannot
start the aggregation at the same time as the intermediate

6

data is collected because it needs to sort the data first (which
cannot happen before all mappers have finished and their
intermediate data was collected). Therefore, each reducer
experiences a shuffle overhead that is proportional to the
amount shuffle data it needs to pull. Since the amount of
shuffle data per reducer (denoted dSh) is application depen-
dent, we express the shuffle overhead as an approximation
function (denoted fSh). To this end, we choose a set of
representative shuffle sizes, measure the shuffle overhead
per reducer using the synthetic benchmark, and then apply
linear regression to obtain two approximation functions:
one for the average (using all reducers) and one for the
maximum (using only the slowest reducer for each shuffle
size). Note that we have chosen linear regression because it
was confirmed by previous work as a good approximation
for shuffle behavior [22], [33], [34] for a variety of network
topologies with different performance characteristics. In our
case, we assume that the weak link will slow data transfers
uniformly, thus preserving the linear behavior. Neverthe-
less, our proposal is general enough to work with any
approximation function other than linear regression, should
the need arise (e.g., limited weak link or low QoS with
performance fluctuations). This aspect is also subject to a
trade-off: the more complex the approximation function and
the number of points needed to obtain it, the longer the
calibration will take.

Figure 2 illustrates this for a hybrid scenario with three
on-premise VMs and three off-premise VMs using 24 map-
pers and 12 reducer slots. The actual runtimes of the reducer
tasks are illustrated as clusters of points, while the approx-
imation function (average and maximum) is illustrated as a
line.

Hybrid approximation of write overhead per re-
ducer: In the reduce phase, the computational overhead of
each reducer does not depend on the weak link and repre-
sents a significant part of the runtime of the reduce phase.
Once the reducer has finished the computation, however,
it needs to write the output to the storage layer, thereby
stressing the weak link. Again, the amount of output per
reducer (denoted dR) is application dependent. Thus, we
need to express it as an approximation function (denoted
fRd) in a manner similar to the shuffle overhead. Using
linear regression, we obtain the corresponding approxima-
tion function. Figure 3 illustrates this for the same hybrid
scenario used above (both average and maximum). Again,
linear regression can be replaced with another approxima-
tion function if necessary.

Rebalancing bandwidth: In addition to the over-
heads related strictly to the MapReduce runtime, estimating
how long the off-premise rebalancing of the input data will
last is important because the process runs asynchronously in
the background while the iterative MapReduce application
is progressing, thereby creating interference and potentially
visible slowdown. To this end, we run a HDFS rebalancing
using a large HDFS input data size (e.g., 10 GB) and measure
its completion time. Then, we compute an average band-
width, denoted β, that is used in our performance model to
account for the effect of the rebalancing.

Table 1 summarizes all system-level parameters ex-
tracted by using the calibration step.

TABLE 1: Parameters obtained from the calibration and
characterization.

System-level parameters
Name Description
SM
on On-premise map slots
SM
off Off-premise map slots
SR Reduce slots
α Hybrid map phase stretch factor
β Rebalancing bandwidth
fSh(dSh) fmax

Sh (dSh) Shuffle time per reducer (avg and max)
fRd(dRd) fmax

Rd (dRd) Write time per reducer (avg and max)
Application-level parameters

Name Description
M Total number of mappers
R Total number of reducers
tMp and tmax

Mp Total runtime for mappers (avg and max)
tRc and tmax

Rc Sort and aggr. for reducers (avg and max)
dSh Amount of shuffle data per reducer
dRd Amount of output data per reducer

4.3 Application Characterization

In this section we show how to extract the necessary infor-
mation to characterize the iterative MapReduce application.
Note that this step is necessary only when the application-
level parameters introduced below (needed by the mathe-
matical expression) are not known in advance or cannot be
directly computed based on some existing knowledge about
the application.

Specifically, the user needs to run the actual application
on-premise only at reduced scale (both number of nodes and
number of iterations) and extract the following information

• Total number of mappers: M
• Total number of reducers: R
• Average and maximum time to run a mapper (refers

to the total time that includes both CPU and I/O):
tMp and, respectively, tmax

Mp

• Average and maximum time to run a reducer com-
putation (includes the time to sort and compute the
aggregation, but not the time to write the result to
HDFS): tRc and, respectively, tmax

Rc

• Amount of input data in the shuffle phase, dSh

• Amount of output data of the reduce phase, dRd

Note that the MapReduce framework incurs a schedul-
ing overhead, which is observable as a gap between the
tasks assigned to the mapper and reducer slots. For sim-
plification, we assume that tMp and tRc already include the
average gap duration, while tmax

Mp and tmax
Rc already include

the maximum gap duration.
Table 1 summarizes these application-level parameters.

4.4 Performance Model

In this section, we introduce a performance model that
enables users to estimate the runtime of iterative MapRe-
duce applications in hybrid cloud-bursting scenarios. The
performance model is a mathematical expression that uses
the application-level and system-level parameters described
in Table 1 as input and produces an estimation of the total
runtime as output.

7

The lower bound of the completion time Total of an
iterative map-reduce job with n iterations, can be expressed
as

Total =

n∑
i=1

T (i). (1)

T (i) is the lower bound of the ith iteration and can be
decomposed as

T (i) = TMp(i) + TSh(i) + TRd(i), (2)

where TMp is the lower bound for the map phase, TSh for
the shuffle phase, and TRd for the reduce phase.

Similarly, for the upper bound we obtain

Totalmax =

n∑
i=1

Tmax(i) (3)

Tmax(i) = Tmax
Mp (i) + Tmax

Sh (i) + Tmax
Rd (i). (4)

For the rest of this section, we detail how to obtain each
of TMp, TSh, and TRd.

4.4.1 Completion time of map phase
To obtain a mathematical expression to estimate the com-
pletion time of the map phase, one must understand how
this phase evolves during the successive iterations of the
MapReduce job. We force the execution of any map task
on a node where there is a copy of its input data, so for the
first iteration all the map tasks will be scheduled on-premise
only. In parallel with the execution of the first iteration, the
rebalancing of the input data to the off-premise infrastruc-
ture proceeds in the background. Thus, at the beginning of
the second iteration, some replicas of the input chunks have
already been migrated on the off-premise nodes, and the
scheduler will launch off-premise mappers to handle them.
As the rebalancing progresses, the number of map tasks that
will be executed off-premise will increase at each iteration
until it stabilizes (which is not necessarily the moment when
the rebalancing has finished, because the off-premise map
slots can be saturated even before a replica of each chunk
was transferred off-premise).

We express this intuition mathematically as follows: for
the first iteration, all map tasks (M) will be executed on-
premise. To simplify our equations, we use tMp and tmax

Mp

as a shortcut to denote tMp × α and tmax
Mp × α, respectively.

Since there are SM
on map slots on the on-premise nodes, the

lower bound of the map phase for the first iteration is

TMp(1) =
M

SM
on

× tMp. (5)

For the second iteration, Moff
1 input chunks will be

present off-premise, having been transferred during the pre-
vious iteration. Therefore, Moff

1 map tasks can be executed
off-premise. This number can be approximated by using the
rebalancing bandwidth (β), the size of the HDFS chunk s
and the runtime of the first iteration T (1) as follows:

Moff
1 =

β × T (1)
s

. (6)

If Moff
1 map tasks are scheduled off-premise, the rest

of map tasks, M − Moff
1 (which we assume is greater

than Moff
1), will be scheduled on-premise. Thus, the lower

bound of the map phase runtime of the second iteration is

TMp(2) =
M −Moff

1

SM
on

× tMp. (7)

Using the same reasoning for the third iteration, we
obtain for the lower bound of the map phase

TMp(3) =
M − ((β × (T (2) + T (1)))/s)

SM
on

× tMp. (8)

By generalization, for the i iteration we obtain the fol-
lowing:

TMp(i) =
M − ((β ×

∑i−1
j=1 T (j))/s)

SM
on

× tMp (9)

This formula is true as long as all on-premise map slots
are filled and there are off-premise idle map slots that
cannot be used because the rebalancing did not ship enough
chunk replicas off-premise. The moment when stabilization
happens can be expressed mathematically as follows:

Moff ≥
SM
off

(SM
on + SM

off)
×M. (10)

From this moment on, the time to process on-premise
scheduled maps is almost the same as the time to process
off-premise maps. In this situation, the number of map tasks
scheduled off-premise will be Moff and the number of map
tasks scheduled on-premise M −Moff . These numbers will
remain constant for the rest of the iterations, leading to the
following expressions for the remaining runtime:

TMp(i) =
M −Moff

SM
on

× tMp where

Moff =
SM
off

(SM
on + SM

off)
×M.

(11)

The expressions in Equations 9 and 11 can be joined into
a single expression that estimates the lower bound of the
map phase for any iteration:

TMp(i) =
M −Moff

i−1

SM
on

× tMp where

Moff
i−1 = min

(
β ×

∑i−1
j=1 T (j)

s
,

SM
off

SM
on + SM

off

×M

)
.

(12)

Upper bound for the map phase: By applying the
theoretical makespan results detailed in Section 4.1 to the
lower bound described in Equation 12, we obtain the fol-
lowing expression for the upper bound:

Tmax
Mp (i) =

(⌈
M −Moff

i−1

SM
on

⌉
− 1

)
× tMp + tmax

Mp . (13)

8

4.4.2 Completion time of the shuffle phase

The shuffle phase is entirely managed by the MapReduce
runtime and has no application-specific overhead. There-
fore, to estimate the lower bound of the shuffle phase
we simply need to apply the shuffle phase approximation
function fSh (obtained from the calibration step) to the
shuffle size per reducer dSh (obtained from the application
characterization). We obtain the following:

TSh(i) =
R

SR
× fSh(dSh),∀i = 1..n. (14)

Similarly, for the upper bound we apply the makespan
results to obtain

Tmax
Sh (i) =

(⌈
R

SR

⌉
− 1

)
×fSh(dSh)+f

max
Sh (dSh),∀i = 1..n.

(15)

4.4.3 Completion time of the reduce phase

The reduce phase consists of a number of reducers R that
compete for a number of parallel reducer slots SR. In this
case, the average completion time of a reducer tRd depends
on both the application-level parameters and the system-
level parameters. Specifically,

tRd = tRc + fRd(dRd). (16)

The explanation is the following. There is an application-
dependent computational (tRc) overhead (obtained through
characterization), in addition to the HDFS write overhead
(obtained by applying the application agnostic approxima-
tion function fRd to the application-specific output size per
reducer dRd).

Thus, the lower bound of the reduce phase can be
estimated as follows:

TRd(i) =
R

SR
× tRd,∀i = 1..n. (17)

Similarly, for the maximum, the following applies:

tmax
Rd = tmax

Rd + fmax
Rd (dRd). (18)

By applying the makespan results, we obtain the follow-
ing upper bound:

Tmax
Rd (i) =

(⌈
R

SR

⌉
− 1

)
× tRd + tmax

Rd ,∀i = 1..n. (19)

4.5 Complex Iterations

So far we have made an important assumption about the
applications: each iteration involves a single MapReduce job
that is computationally similar to the previous iterations. In
practice, however, iterations can be complex and involve a
series of steps expressed as separate MapReduce jobs (e.g.,
PageRank, as described in Section 5.4).

In this section we briefly show how to generalize our
approach to address such complex iterations. Let m be the
number of MapReduce jobs in a complex iteration i and
Tj(i) the runtime of the j-th MapReduce job in the sequence
of m jobs. Then, the runtime of each complex iteration i is
the sum of the durations of the m MapReduce jobs:

T (i) =

m∑
j=1

Tj(i). (20)

For n iterations, the following holds:

Total =

n∑
i=1

 m∑
j=1

Tj(i)

 =

m∑
j=1

(
n∑

i=1

Tj(i)

)
=

m∑
j=1

Totalj .

(21)
In other words, we can see an application with com-

plex iterations as the equivalent serialization of m sub-
applications with simple iterations. In this case, we can
simply characterize each of the m subapplications, apply
our mathematical expressions to estimate their individual
completion time, and sum up the estimations to obtain the
final estimation for the original application with complex
iterations. Since the system-level parameters are application
agnostic, the calibration needs to be performed only once
regardless of m.

As an example, we illustrate this process for an ap-
plication with four complex iterations, each of which is
composed of three MapReduce jobs.

1︷ ︸︸ ︷
A
1

B
2

C
3

2︷ ︸︸ ︷
A
4

B
5

C
6

3︷ ︸︸ ︷
A
7

B
8

C
9

4︷ ︸︸ ︷
A
10

B
11

C
12

Then, the equivalent serialization yields three subappli-
cations with four simple iterations (single-MapReduce jobs),
for which our approach can be individually applied.

1︷ ︸︸ ︷
A
1

A
2

A
3

A
4

2︷ ︸︸ ︷
B
5

B
6

B
7

B
8

3︷ ︸︸ ︷
C
9

C
10

C
11

C
12

5 EVALUATION

In this section we evaluate the effectiveness of our approach
experimentally, using a variety of scenarios and compar-
isons that involve multiple real-life iterative MapReduce
applications.

5.1 Experimental Setup
The experiments for this work were performed on the Kinton
testbed of the HPC&A group based at Universitat Jaume I.
It consists of eight nodes, all of which are interconnected
with 1 Gbps network links and split into two groups: four
nodes feature an Intel Xeon X3430 CPU (4 cores), HDD local
storage of 500 GB, and 4 GB of RAM. These less powerful
nodes (henceforth called thin) are used for management
tasks. The other four nodes feature two Intel Xeon E5-2630v3
(2 x 8 Cores), HDD local storage of 1 TB, and 64 GB of RAM.
These more powerful nodes (henceforth called fat) are used
to host the VMs.

We configure two separate IaaS clouds: on-premise and
off-premise, each running its separate OpenStack Icehouse in-
stance (QEMU/KVM as the hypervisor). The VM instances
of the same cloud are configured to directly communicate
with each other via the links of their compute node hosts.
However, all communication outside of the same cloud
is passing through a dedicated network node (Neutron)
that acts as a proxy and is part of the default OpenStack
distribution. Thus, in a hybrid OpenStack setup the weak

9

link is defined by the end-to-end bandwidth between the
two proxies. We control the available bandwidth to cover
two representative settings: 1 Gbps and 100 Mbps. These
correspond to the case when the user decides to buy pre-
mium access to the cloud (i.e., dedicated fast link) vs. regular
access.

5.2 Approaches
We compare four approaches throughout our evaluation.

On-Premise Actual: Corresponds to the case when
all VMs are on-premise and no weak link can cause an I/O
bottleneck. In this case, a standard Hadoop deployment is
used. We use it as a lower bound for comparison, showcas-
ing what would happen in an ideal scenario where the user
has no cost constraints and can afford to invest in additional
on-premise resources to achieve the highest performance
rather than adopt a hybrid solution.

ARIA (Automatic Resource Inference and Alloca-
tion): Is a state-of-the-art framework that estimates the
runtime of a single-site MapReduce application based on
its profile (application-level parameters) and then optimally
schedules it to meet a given soft deadline [19]. To our best
knowledge, no performance prediction approach specific
for hybrid cloud bursting is available, so ARIA would be
the closest estimation users can achieve with state of the
art. Therefore, a comparison with ARIA is highly relevant
to show that single-site techniques for estimating the run-
time of iterative MapReduce applications are not accurate
enough for use in a hybrid cloud-bursting scenario, thus
justifying the need for specialized models like our proposal.

Hybrid Actual Runtime: Corresponds to the real
measured runtime of an iterative MapReduce application
using a given on-premise and off-premise configuration
of VMs. The Hadoop deployment used to run application
is optimized for hybrid cloud bursting using the rack-
local scheduling and asynchronous rebalance techniques
described in Section 3.1. We use this approach for compar-
ison in order to showcase the accuracy of the estimations
provided by our approach.

Hybrid Estimated Runtime: Corresponds to the
estimated runtime of an iterative MapReduce job using
our proposal (Section 4), which is optimized for a hybrid
cloud-bursting scenario where the Hadoop deployment em-
ploys rack-local scheduling and asynchronous rebalance
(Section 3.1).

5.3 Methodology
For our experiments, we created a new VM flavor with 4
vCPUs, HDD local storage of 100 GB, and 16 GB of RAM.
Thus, each compute node has the capacity to host 4 VMs
simultaneously. Since some VMs are colocated on the same
node, the virtual network interface of all VMs is limited to
1 Gbps, in order to avoid differences between VMs hosted
on the same node vs. remote nodes. We use one fat node
to provision up to 4 VMs on the on-premise part and
three nodes to provision up to 12 VMs on the off-premise
part. We deploy Hadoop 2.6.0 initially on-premise only: one
VM is used as the Hadoop master (both MapReduce and
HDFS), the rest of the VMs are used as Hadoop slaves (both
MapReduce and HDFS). Each Hadoop slave is configured

with enough capacity to run four mappers and four reducers
simultaneously. Any initial input data is stored on-premise
only in the initial HDFS deployment.

First, we run the application on-premise only and record
the runtime, for the smallest case (3 VMs). We call this
the baseline case. An important premise for any other setup
(whether on-premise or hybrid) is to show speed-up with
respect to the baseline (otherwise it does not make sense to
commit more VMs).

Then, using the profiling information, we extract the
application-level parameters described in the characteriza-
tion step (Section 4.3). For completeness, we also run strong
scalability experiment (constant problem size) by increasing
number of VMs from 6 up to 15 in steps of 3. This exper-
iment is not involved in the extraction of the application-
level parameters but facilitates the study of the results and
corresponds to the on-premise actual case.

Second, we use the application-level parameters in order
to estimate the runtime with ARIA. Again, we apply ARIA
for an increasing number of VMs to show how the runtime
scales in comparison with the baseline.

Third, we run another strong-scalability experiment
where we keep the number of on-premise VMs fixed at
three, while adding an increasing number of off-premise
VMs: from 3 up to 12 in steps of 3. For each resulting hybrid
bursting scenario, we run (1) the calibration (using the
generic benchmark introduced in Section 4.2) to extract the
system-level parameters and (2) each application to obtain
the hybrid actual runtime.

We then use both the application-level and system-level
parameters to estimate the runtime using our proposal for
each hybrid cloud-bursting scenario, which yields the hybrid
estimated runtime. Note that many applications we study ex-
hibit complex iterations composed of multiple MapReduce
jobs. In this case, we apply the observations from Section 4.5
to compute the hybrid estimated runtime.

5.4 Applications

For this work, we use four representative iterative MapRe-
duce applications selected from industry-standard big data
benchmarks. We selected these applications to cover as
much diversity as possible, in terms of both application
domain and MapReduce behavior (map-intensive, reduce-
intensive, or both).

Iterative Grep (I-GREP): Is a popular analytics tool
for large unstructured text, where at each iteration a new set
of keywords is used to narrow the search in relevant text ob-
tained from previous iterations. For example, one may want
to count how many times a certain concept is present in the
Wikipedia articles and, depending on the result, prepare the
next regular expression in order to find correlations with
another concept. Since the regular expression is typically an
exact pattern, the output of the mappers simply consists of a
small number of key-value pairs that are reduced to a single
key-value pair. Thus, it can be classified as a typical map-
intensive job. The implementation is based on grep, which
is included with the Hadoop distribution.

KMeans: Is a widely used application for vector
quantization in signal processing, cluster analysis in data
mining, pattern classification, and feature extraction for

10

machine learning [35]. It is based on iterative refinement:
each iteration aims to improve the partitioning of a multidi-
mensional vector into k clusters such that sum of squares
of distances between all vectors of the same cluster and
their mean is minimized. This process repeats until the
improvement obtained during an iteration is smaller than
a predefined epsilon. K-Means was shown to be efficiently
parallelizable and scales well using MapReduce [36]. From
a data-management perspective, it is a good example of a
map-intensive application that reuses the initial input data
at each iteration. The implementation we use is part of the
Intel’s HiBench [37] big data benchmark.

PageRank: Is a link analysis algorithm [38] that
assigns a numerical weight to each element of a hyperlinked
set of documents, (e.g., WWW) with the purpose of quanti-
fying its relative importance within the set. It is widely used
in web search engines to calculate the ranks of web pages in
function of the number of reference links. Its iterative nature
is more complex and involves two successive MapReduce
jobs: (1) an output-intensive phase where the reduce phase
generates twice as much data as the input data read by
the map phase and (2) a shuffle-intensive phase where the
output of the mappers is equal in size to the input. Thus,
PageRank is a good example of a balanced application with
complex iterations that is both map intensive and reduce
intensive, while generating a lot of intermediate data that is
not reused. Again, the implementation we use is part of the
Intel’s HiBench big data benchmark.

Connected Components: Is a well-known graph
problem arising in a large number of applications including
data mining, analysis of social networks, image analysis,
and related problems. It aims at identifying groups of con-
nected vertices in a graph by iteratively assigning each ver-
tex to its smallest neighbor to form starlike subgraphs [39].
Connected Components is a good example of a reduce-
intensive application. The implementation we use is part
of Intel’s BigBench [40] benchmark, which also includes a
data generator.

5.5 Results

Using the methodology presented in Section 5.3, we perform
an experimental study for each of the real-world applica-
tions described in Section 5.4. For all runtime estimations,
we compute both the lower and upper bound and derive
the average from these bounds. In addition, we study the
accuracy of all average estimations (vs. the actual runtime)
at fine grain for both the map phase and the reduce phase
separately, which provides additional insight into the over-
all accuracy. For the rest of this section, we discuss the
results for each application individually.

The first application we study is I-GREP. We use as input
data 20 GB worth of Wikipedia articles, which are queried
successively in 50 iterations using 50 different keywords.
Each iteration is complex and is composed of two jobs
per iteration (search and sort stages). The shuffle data for
each iteration is less than 1 MB, which means the map
phase dominates the runtime. The baseline case (3 VMs on-
premise) has a runtime of 6483 s. Doubling the amount of
on-premise VMs leads to 60% less actual runtime, which
shows I-GREP has a good scalability potential.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 3 6 9 12 15

C
o
m

p
le

ti
o
n
 t
im

e
 (

s
)

Number of instances

On-premise-Actual
Hybrid-1G-Actual

Hybrid-1G-Avg-Pred
Hybrid-100Mbps-Actual

Hybrid-100Mbps-Avg-Pred
ARIA-Avg-Pred

Fig. 4: I-GREP average runtime estimation

Table 2a shows the actual runtimes and the estimations
for the upper and lower bounds. Because of high variability
between the map tasks, ARIA shows large differences: for
15 VMs it overestimates the upper bound by 30% and
underestimates the lower bound by 50% with respect to on-
premise actual. Despite this variability, our approach has
better accuracy: for 15 VMs and 100 Mbps weak link, it
overestimates the upper bound by 20% and underestimates
the lower bound by 10%. For 1 Gbps, it overestimates the
upper bound by 30% and underestimates the lower bound
by 13%.

In Figure 4 we depict the average estimations. As can
be observed, despite large difference between the ARIA
upper and lower bound, the average estimation is much
closer to the on-premise actual values. However, the average
ARIA estimation produces large errors against the hybrid
scenarios: up to 18.5% for 1 Gbps and up to 46.7% for
100 Mbps. These contrast with the errors produced by our
approach: up to 10.1% for 1 Gbps and 5.6% for 100 Mbps.
We note the increasing accuracy of our approach when the
weak link is of low capacity, whereas the opposite holds for
ARIA.

Table 2b shows finer-grained accuracy details about
the map and reduce phases. As can be observed, in the
100 Mbps weak link case, the ARIA average estimation has a
large error for both phases, which explains the overall error.
For the 1 Gbps weak link case, the map phase has a small
error, but the reduce phase exhibits a large error.

Second, we study the K-Means application. We generate
20 GB of input using the included data generator, which is
processed by K-Means in 30 simple iterations. The baseline
in this case (3 VMs on-premise) has a runtime of 6471 s.
Doubling the number of on-premise VMs leads to 70% less
actual runtime, which shows excellent scalability potential.

Table 3a shows the runtime estimations for the upper
and lower bound. Unlike the I-GREP case, K-Means exhibits
less variability between the map tasks, which improves the
accuracy of the ARIA upper and lower bound estimations
with respect to actual on-premise. By comparison, our ap-
proach has much closer upper and lower bound estimations
with respect to hybrid actual.

Figure 5 depicts the average estimations. The ARIA
estimation produces a large error for the hybrid 100 Mbps

11

Approach 6 VMs 9 VMs 12 VMs 15 VMs
On-premise Actual 3310 2569 2256 2035
ARIA Upper Bound 4226 3324 2892 2639
ARIA Lower Bound 2615 1692 1251 992

100 Mbps weak link (3 VMs on-premise)
Hybrid Actual 4528 3876 3705 3407

Hybrid Upper Bound 4795 4282 4345 4141
Hybrid Lower Bound 3877 3208 3093 3057

1 Gbps weak link (3 VMs on-premise)
Hybrid Actual 3474 2734 2422 2227

Hybrid Upper Bound 3953 3299 3087 2947
Hybrid Lower Bound 3144 2307 2038 1959

(a) Total actual runtime (s) vs. predicted runtime (s) ex-
pressed as upper bound and lower bound

Prediction Accuracy vs. Actual 6 VMs 9 VMs 12 VMs 15 VMs
100 Mpbs weak link (3 VMs on-premise)
(%) Map Error -18.2 -30.0 -40.0 -43.1

ARIA Avg. (%) Red. Error -56.3 -57.4 -59.4 -59.0
(%) Total Error -24.5 -35.3 -44.1 -46.7
(%) Map Error -2.6 1.9 5.1 13.4

Hybrid Avg. (%) Red. Error -12.4 -25.3 -17.2 -20.8
(%) Total Error -4.2 -3.4 0.4 5.6

1 Gbps weak link (3 VMs on-premise)
(%) Map Error 4.1 -1.8 -8.4 -12.8

ARIA Avg. (%) Red. Error -34.9 -36.5 -37.2 -37.5
(%) Total Error -1.5 -8.3 -14.5 -18.5
(%) Map Error 3.9 2.3 5.6 8.7

Hybrid Avg. (%) Red. Error -8.3 3.6 6.7 -15.3
(%) Total Error 2.1 2.5 5.8 10.1

(b) Accuracy of the average prediction (between lower and upper
bound) vs. the hybrid actual runtime broken down by phase

TABLE 2: I-GREP: Map-intensive example of an iterative MapReduce application

Approach 6 VMs 9 VMs 12 VMs 15 VMs
On-premise Actual 3024 2159 1786 1511
ARIA Upper Bound 3501 2499 2020 1739
ARIA Lower Bound 2870 1857 1372 1089

100 Mbps weak link (3 VMs on-premise)
Hybrid Actual 3872 3207 2893 2743

Hybrid Upper Bound 3900 3374 3266 3091
Hybrid Lower Bound 3649 2997 2799 2713

1 Gbps weak link (3 VMs on-premise)
Hybrid Actual 3175 2391 1992 1685

Hybrid Upper Bound 3282 2495 2168 1858
Hybrid Lower Bound 3098 2137 1741 1543

(a) Total actual runtime (s) vs. predicted runtime (s) ex-
pressed as upper bound and lower bound

Prediction Accuracy vs. Actual 6 VMs 9 VMs 12 VMs 15 VMs
100 Mpbs weak link (3 VMs on-premise)
(%) Map Error -14.7 -29.3 -38.9 -46.9

ARIA Avg. (%) Red. Error -61.6 -63.9 -65.1 -63.9
(%) Total Error -17.7 -32.1 -41.4 -48.5
(%) Map Error -1.6 1.8 7.5 8.6

Hybrid Avg. (%) Red. Error -15.7 -29.1 -20.8 -21.4
(%) Total Error -2.5 -0.7 4.8 5.8

1 Gbps weak link (3 VMs on-premise)
(%) Map Error 2.6 -6.3 -12.0 -12.9

ARIA Avg. (%) Red. Error -41.5 -43.5 -45.1 -45.2
(%) Total Error 0.3 -8.9 -14.9 -16.1
(%) Map Error 1.0 -3.5 -2.3 -0.2

Hybrid Avg. (%) Red. Error -8.8 1.4 2.6 11.0
(%) Total Error 0.5 -3.1 -1.9 0.9

(b) Accuracy of the average prediction (between lower and upper
bound) vs. the hybrid actual runtime broken down by phase

TABLE 3: KMeans: Map-intensive example of an iterative MapReduce application

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 3 6 9 12 15

C
o
m

p
le

ti
o
n
 t
im

e
 (

s
)

Number of instances

On-premise-Actual
Hybrid-1G-Actual

Hybrid-1G-Avg-Pred
Hybrid-100Mbps-Actual

Hybrid-100Mbps-Avg-Pred
ARIA-Avg-Pred

Fig. 5: K-Means average runtime estimation

weak link scenario, reaching almost 50%. For the 1 Gbps
case, the error is smaller but still significant at 16%. Our
approach reduces the error by an order of magnitude: 5%
for the 100 Mbps case and less than 1% for the 1 Gbps case.

Table 3b shows finer-grained details about the accuracy
of the map and reduce phases. As can be observed, ARIA
has low accuracy in the 100 Mbps case for both phases.
In the 1 Gbps case, ARIA has low accuracy for the reduce
phase. By contrast, our approach has good accuracy for both
phases regardless of the weak link capacity.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 3 6 9 12 15

C
o
m

p
le

ti
o
n
 t
im

e
 (

s
)

Number of instances

On-premise-Actual
Hybrid-1G-Actual

Hybrid-1G-Avg-Pred
Hybrid-100Mbps-Actual

Hybrid-100Mbps-Avg-Pred
ARIA-Avg-Pred

Fig. 6: PageRank average runtime estimation

Third, we study the PageRank application. We generate
2.8 GB of web data hyperlinks that is processed in 5 complex
iterations (2 jobs per iteration). Again, we can see a good
scalability potential: the baseline runtime of 3145 s (3 VMs
on-premise) is reduced by 51% when doubling the number
of on-premise VMs.

The runtime results are listed in Table 4a. In this case, the
accuracy of the ARIA estimations for the largest scenario (15
VMs) are as follows: the upper bound is overestimated by
16%, and the lower bound is underestimated by 34%. Our

12

Approach 6 VMs 9 VMs 12 VMs 15 VMs
On-premise Actual 1511 1053 981 796
ARIA Upper Bound 1765 1287 1059 924
ARIA Lower Bound 1379 892 660 523

100 Mbps weak link (3 VMs on-premise)
Hybrid Actual 4886 3764 3794 3330

Hybrid Upper Bound 5490 4006 4764 4064
Hybrid Lower Bound 4675 3607 3140 3102

1 Gbps weak link (3 VMs on-premise)
Hybrid Actual 1585 1130 1059 892

Hybrid Upper Bound 1831 1256 1351 1006
Hybrid Lower Bound 1509 1037 850 767

(a) Total actual runtime (s) vs. predicted runtime (s) ex-
pressed as upper bound and lower bound

Prediction Accuracy vs. Actual 6 VMs 9 VMs 12 VMs 15 VMs
100 Mpbs weak link (3 VMs on-premise)
(%) Map Error -1.2 -6.6 -16.1 -13.1

ARIA Avg. (%) Red. Error -77.3 -79.8 -84.5 -85.3
(%) Total Error -67.8 -71.0 -77.4 -78.3
(%) Map Error -0.1 -6.7 -7.4 -14.2

Hybrid Avg. (%) Red. Error 4.6 2.2 5.6 10.0
(%) Total Error 4.0 1.1 4.2 7.6

1 Gbps weak link (3 VMs on-premise)
(%) Map Error 8.6 2.5 -11.6 -8.6

ARIA Avg. (%) Red. Error -5.8 -6.9 -22.8 -24.2
(%) Total Error -0.8 -3.6 -18.9 -18.9
(%) Map Error 5.2 -4.0 -9.0 -14.0

Hybrid Avg. (%) Red. Error 5.4 4.7 11.2 6.7
(%) Total Error 5.4 1.5 3.9 -0.7

(b) Accuracy of the average prediction (between lower and upper
bound) vs. the hybrid actual runtime broken down by phase

TABLE 4: PageRank: Balanced example of an iterative MapReduce application with complex (multi-job) iterations

approach, on the other hand, has the following accuracy
with respect to hybrid actual: for 15 VMs and 100 Mbps
weak link, the upper bound is overestimated by 22%, and
the lower bound is underestimated by 7%. For the 1 Gbps
case, the upper bound is overestimated by 12%, and the
lower bound is underestimated by 16%.

The average estimations are depicted in Figure 6. As can
be observed, when the application is balanced and exhibits
both map-intensive and reduce-intensive behavior, the weak
link is under I/O pressure, especially in the 100 Mbps case.
Therefore, the average ARIA estimation has an error of
almost 80% with respect to hybrid actual. In the 1 Gbps
case, the error is smaller, at 18%. Nevertheless, our approach
exhibits again an error that is an order of magnitude smaller:
less than 8% for the 100 Mbps case and less than 1% for the
1 Gbps case.

Table 4b shows finer-grained details about the accuracy
of the map and reduce phases. For PageRank, the main
source of the overall error seems to the reduce phase es-
timation, which clearly overshadows the map phase error.
This holds for both 100 Mbps and 1 Gbps. Our approach has
a good accuracy for both phases regardless of the weak link
capacity.

The final application we study is Connected Compo-
nents, which emphasizes the reduce phase. For the scale of
our experiments, we generated 300 MB of input data (rep-
resenting interactions in a social network). The application
runs for 9 complex iterations, each of which is composed
by 3 MapReduce jobs and includes additionally one final
job. Connected Components runs in the baseline case (3
on-premise VMs) for 1621 s. Doubling the number of on-
premise VMs leads to an actual runtime that is 42% smaller,
thereby showing good scalability potential.

Table 5a shows the upper and lower bounds of the
estimations. As can be observed, there is a large error for
ARIA versus on-premise actual, especially for the lower
bound (more than 300%). In this case, our approach has
almost an order of magnitude better approximation (35%)
than does hybrid actual.

The average estimations depicted in Figure 7 exhibit a
similar trend: in the 100 Mbps case, ARIA has an error
of 64% compared with hybrid actual where our approach
reduces this to 11%. In the 1 Gbps case, ARIA has a 21%
error that our approach reduces to less than 2%.

 0

 400

 800

 1200

 1600

 2000

 3 6 9 12 15

C
o
m

p
le

ti
o
n
 t
im

e
 (

s
)

Number of instances

On-premise-Actual
Hybrid-1G-Actual

Hybrid-1G-Avg-Pred
Hybrid-100Mbps-Actual

Hybrid-100Mbps-Avg-Pred
ARIA-Avg-Pred

Fig. 7: Connected Components runtime estimation

Table 5b shows finer-grained details about the accuracy
of the map and reduce phases. Since the reduce phase
dominates, large errors in the reduce phase translate to
low overall accuracy. ARIA exhibits these large errors in
the reduce phase whereas our approach does not, thereby
explaining the better overall accuracy.

6 CONCLUSIONS

This paper addresses the problem of how to estimate the
runtime of iterative MapReduce applications in hybrid
cloud-bursting scenarios where on-premise and off-premise
VMs that host a MapReduce environment need to communi-
cate over a weak link. Such runtime estimations are a critical
tool in deciding whether the pay-as-you-go cost of cloud
bursting justifies the expected speed-up.

To address this problem, we proposed a methodology
that combines analytical modeling with synthetic bench-
marking to estimate the time to solution specifically for a
hybrid setup, where the weak link has a decisive impact
on both the map and reduce phases. We illustrated our
proposal for the MapReduce runtime; however, the prin-
ciples are generic and can be applied to other big data
analytics runtimes (e.g., Spark [28]) that support iterative
computations.

We have demonstrated the benefits for our proposal
from multiple angles using a mix of map-intensive, reduce-

13

Approach 6 VMs 9 VMs 12 VMs 15 VMs
On-premise Actual 928 757 686 647
ARIA Upper Bound 1178 972 883 810
ARIA Lower Bound 592 377 284 209

100 Mbps weak link (3 VMs on-premise)
Hybrid Actual 1833 1380 1451 1419

Hybrid Upper Bound 2131 1585 1878 1450
Hybrid Lower Bound 1356 1031 967 1056

1 Gbps weak link (3 VMs on-premise)
Hybrid Actual 947 758 714 650

Hybrid Upper Bound 1157 848 896 787
Hybrid Lower Bound 665 520 494 536

(a) Total actual runtime (s) vs. predicted runtime (s) ex-
pressed as upper bound and lower bound

Prediction Precision vs. Actual 6 VMs 9 VMs 12 VMs 15 VMs
100 Mpbs weak link (3 VMs on-premise)
(%) Map Error -12.9 -15.9 -29.0 -35.1

ARIA Avg. (%) Red. Error -66.8 -66.5 -72.9 -76.8
(%) Total Error -51.7 -51.1 -59.8 -64.1
(%) Map Error -6.0 -14.2 -11.8 -6.8

Hybrid Avg. (%) Red. Error -4.5 -1.3 2.2 -13.8
(%) Total Error -4.9 -5.2 -2.0 -11.7

1 Gbps weak link (3 VMs on-premise)
(%) Map Error -4.5 -8.0 -15.4 -21.6

ARIA Avg. (%) Red. Error -8.3 -13.6 -14.4 -21.9
(%) Total Error -6.5 -11.0 -18.3 -21.6
(%) Map Error -2.8 -13.7 -3.8 5.7

Hybrid Avg. (%) Red. Error -4.5 -5.2 7.0 -3.5
(%) Total Error -3.8 -9.8 -2.7 1.7

(b) Accuracy of the average prediction (between lower and upper
bound) vs. the hybrid actual runtime broken down by phase

TABLE 5: Connected Components: Reduce-intensive example of an iterative MapReduce application

intensive, and balanced real-world iterative applications
from standardized big data benchmarks that cover a broad
spectrum of use cases. Specifically, we have shown that (1)
the upper and lower estimation bounds of our approach
against the hybrid baseline are significantly more accurate
than the single-site counterparts against the on-premise
baseline; (2) the average estimation of our approach is
always within 1–10% error regardless of scale and up to
one order of magnitude more accurate than single-site state-
of-art against the hybrid baseline; (3) our approach shows
consistent behavior and accurately estimates both the map
and the reduce phases, indicating that the overall estimation
was not obtained by accident through the accumulation of
large errors during the map and reduce phases that cancel
each other out. The trade-off for using our approach is the
need for a one-time calibration phase; however, the results
can cached and reused for all subsequent applications, even
by different users. Such an overhead is small considering
that accurate estimations can bring such large benefits.

Encouraged by these results, we plan to explore an
elastic approach where the number of off-premise VMs is
not fixed but fluctuates to accommodate changing goals
(e.g., results needed faster). Elastic performance is not yet
well understood but is of critical practical importance for
hybrid clouds. Furthermore, we plan to extend our proposal
beyond MapReduce to predict performance for iterative
computations using other big data analytics frameworks.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, under contract
DE-AC02-06CH11357, and the Spanish CICYT projects
TIN2014-53495-R and TIN2017-82972-R.

REFERENCES

[1] Cisco, “White paper: Cisco vni forecast and methodology, 2016.”
[2] T. Guo, U. Sharma, T. Wood, S. Sahu, and P. Shenoy, “Seagull:

Intelligent cloud bursting for enterprise applications,” in USENIX
ATC ’12: Conference on Annual Technical Conference, Berkeley, CA,
USA, 2012, pp. 33–33.

[3] F. J. Clemente-Castelló, B. Nicolae, R. Mayo, J. C. Fernández, and
M. M. Rafique, “On exploiting data locality for iterative mapre-
duce applications in hybrid clouds,” in BDCAT ’16: 3rd IEEE/ACM
International Conference on Big Data Computing, Applications and
Technologies, Shanghai, China, 2016, pp. 118–122.

[4] F. J. Clemente-Castelló, B. Nicolae, K. Katrinis, M. M. Rafique,
R. Mayo, J. C. Fernández, and D. Loreti, “Enabling big data
analytics in the hybrid cloud using iterative MapReduce,” in UCC
’15: 8th IEEE/ACM International Conference on Utility and Cloud
Computing, Limassol, Cyprus, 2015, pp. 290–299.

[5] T. White, Hadoop: The Definitive Guide. USA: Yahoo! Press, 2010.
[6] F. J. Clemente-Castello, B. Nicolae, M. M. Rafique, R. Mayo,

and J. C. Fernandez, “Evaluation of data locality strategies for
hybrid cloud bursting of iterative mapreduce,” in CCGrid’17:
17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, Madrid, Spain, 2017, pp. 181–185.

[7] T. Gunarathne, T.-L. Wu, J. Qiu, and G. Fox, “MapReduce in the
clouds for science,” in CloudCom ’10: 2on IEEE Conference on Cloud
Computing Technology and Science, 2010, pp. 565–572.

[8] X. Zhang, L. T. Yang, C. Liu, and J. Chen, “A scalable two-phase
top-down specialization approach for data anonymization using
MapReduce on cloud,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 2, pp. 363–373, 2014.

[9] B. Nicolae, P. Riteau, and K. Keahey, “Bursting the cloud data
bubble: Towards transparent storage elasticity in IaaS clouds,” in
IPDPS ’14: 28th IEEE International Parallel and Distributed Processing
Symposium, Phoenix, USA, 2014, pp. 135–144.

[10] ——, “Transparent Throughput Elasticity for IaaS Cloud Storage
Using Guest-Side Block-Level Caching,” in UCC’14: 7th IEEE/ACM
International Conference on Utility and Cloud Computing, London,
UK, 2014.

[11] B. Nicolae, C. Costa, C. Misale, K. Katrinis, and Y. Park, “Lever-
aging adaptive I/O to optimize collective data shuffling patterns
for big data analytics,” IEEE Transactions on Parallel and Distributed
Systems, 2017, to appear.

[12] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “HaLoop: Efficient
iterative data processing on large clusters,” Proc. VLDB Endow.,
vol. 3, no. 1-2, pp. 285–296, 2010.

[13] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “iMapReduce: A dis-
tributed computing framework for iterative computation,” Journal
of Grid Computing, vol. 10, no. 1, pp. 47–68, 2012.

[14] B. Nicolae, P. Riteau, and K. Keahey, “Towards transparent
throughput elasticity for IaaS cloud storage: Exploring the benefits
of adaptive block-level caching,” International Journal of Distributed
Systems and Technologies, vol. 6, no. 4, pp. 21–44, 2015.

[15] F. Tian and K. Chen, “Towards optimal resource provisioning for
running MapReduce programs in public clouds,” in CLOUD ’11:
IEEE International Conference on Cloud Computing, Washington, DC,
USA, 2011, pp. 155–162.

[16] K. Chen, J. Powers, S. Guo, and F. Tian, “CRESP: Towards op-
timal resource provisioning for MapReduce computing in pub-
lic clouds,” IEEE Transactions on Parallel and Distributed Systems,
vol. 25, no. 6, pp. 1403–1412, 2014.

[17] P. Lama and X. Zhou, “AROMA: Automated resource allocation
and configuration of MapReduce environment in the cloud,” in
ICAC ’12: 9th International Conference on Autonomic Computing, New
York, NY, USA, 2012, pp. 63–72.

[18] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and
S. Babu, “Starfish: A self-tuning system for big data analytics,”
in CRID ’11: 5th Biennial Conference on Innovative Data Systems
Research, California, USA, 2011, pp. 261–272.

14

[19] A. Verma, L. Cherkasova, and R. H. Campbell, “ARIA: Automatic
Resource Inference and Allocation for Mapreduce Environments,”
in ICAC ’11: 8th ACM International Conference on Autonomic Com-
puting, Karlsruhe, Germany, 2011.

[20] A. Verma and R. H. Cherkasova, Ludmilaand Campbell, “Re-
source provisioning framework for MapReduce jobs with perfor-
mance goals,” in Middleware ’11: 12th ACM/IFIP/USENIX Interna-
tional Middleware Conference, Lisbon, Portugal, 2011, pp. 165–186.

[21] H. Herodotou, “Hadoop Performance Models,” CS-2011-05, Com-
puter Science Department Duke University, Tech. Rep., 2011.

[22] Z. Zhang, L. Cherkasova, and B. T. Loo, “Benchmarking approach
for designing a mapreduce performance model,” in ICPE ’13:
4th ACM/SPEC International Conference on Performance Engineering,
2013, pp. 253–258.

[23] ——, “Performance modeling of mapreduce jobs in heterogeneous
cloud environments,” in CLOUD ’13: 6th IEEE International Confer-
ence on Cloud Computing, Washington, DC, USA, 2013, pp. 839–846.

[24] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
“Improving mapreduce performance in heterogeneous environ-
ments,” in OSDI ’08: 8th USENIX Conference on Operating Systems
Design and Implementation, 2008, pp. 29–42.

[25] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. N. Vijayku-
mar, “Tarazu: Optimizing mapreduce on heterogeneous clusters,”
in ASPLOS ’12: 17th International Conference on Architectural Support
for Programming Languages and Operating Systems, 2012, pp. 61–74.

[26] J. Polo, D. Carrera, Y. Becerra, V. Beltran, J. Torres, and E. Ayguadé,
“Performance management of accelerated MapReduce workloads
in heterogeneous clusters,” 2010.

[27] K. Shvachko, H. Huang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” in MSST ’10: 26th IEEE Symposium on
Massive Storage Systems and Technologies, 2010.

[28] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster com-
puting,” in NSDI’12: 9th USENIX Conference on Networked Systems
Design and Implementation, San Jose, USA, 2012, pp. 2:1–2:14.

[29] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-scale
graph processing,” in SIGMOD’10: The 2010 ACM SIGMOD Inter-
national Conference on Management of Data, Indianapolis, IN, USA,
2010, pp. 135–146.

[30] Apache, “Apache hadoop rumen,” https://hadoop.apache.org/
docs/r1.2.1/rumen.html, accessed: 13-02-2018.

[31] S. Godard, “Sysstat utilities for the Linux OS,” http://sebastien.
godard.pagesperso-orange.fr/, accessed: 13-02-2018.

[32] A. Alexandrov, R. Bergmann, S. Ewen, J. Freytag, F. Hueske,
A. Heise, O. Kao, M. Leich, U. Leser, V. Markl, F. Naumann,
M. Peters, A. Rheinländer, M. J. Sax, S. Schelter, M. Höger,
K. Tzoumas, and D. Warneke, “The stratosphere platform for big
data analytics,” VLDB J., vol. 23, no. 6, pp. 939–964, 2014.

[33] S. Ahn and S. Park, “An analytical approach to evaluation of ssd
effects under mapreduce workloads,” in Journal of Semiconductor
Technology and Science, vol. 15, 10 2015, pp. 511–518.

[34] S. H. Mohamed, T. E. H. El-Gorashi, and J. M. H. Elmirghani, “On
the energy efficiency of mapreduce shuffling operations in data
centers,” in ICTON’17: 19th International Conference on Transparent
Optical Networks, Girona, Spain, 2017, pp. 1–5.

[35] H.-H. Bock, “Clustering methods: A history of K-Means algo-
rithms,” in Selected Contributions in Data Analysis and Classification,
2007, pp. 161–172.

[36] W. Zhao, H. Ma, and Q. He, “Parallel K-Means clustering based
on MapReduce,” in CloudCom ’09: 1st International Conference on
Cloud Computing, Beijing, China, 2009.

[37] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The HiBench
benchmark suite: Characterization of the MapReduce-based data
analysis,” in ICDEW ’10: 26th IEEE International Conference on Data
Engineering Workshops, 2010, pp. 41–51.

[38] S. Brin and L. Page, “The anatomy of a large-scale hypertextual
web search engine,” Comput. Netw. ISDN Syst., vol. 30, no. 1-7, pp.
107–117, 1998.

[39] T. Seidl, B. Boden, and S. Fries, CC-MR – Finding Connected
Components in Huge Graphs with MapReduce. Berlin, Heidelberg:
Springer, 2012, pp. 458–473.

[40] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia,
Y. Shi, S. Zhang et al., “BigDataBench: A big data benchmark
suite from internet services,” in HPCA ’14: 20th IEEE International

Symposium on High Performance Computer Architecture, 2014, pp.
488–499.

Francisco J. Clemente-Castelló received his
B.Sc. in computer science in 2011, M.Sc. in
intelligent systems in 2012, and Ph.D. in 2017
from the Department of Computer Science
and Engineering, Jaume I University, Castellón,
Spain. His main research interests include high-
performance computing platforms, virtualization,
cloud computing technologies, and big data
analysis.

Bogdan Nicolae is a computer scientist at Ar-
gonne National Laboratory. He specializes in
scalable storage, data management, and fault
tolerance for large-scale distributed systems,
with a focus on cloud computing and high-
performance architectures. He holds a Ph.D.
from the University of Rennes 1, France and
a Dipl. Eng. degree from Politehnica Univer-
sity Bucharest, Romania. He has (co)authored
numerous papers in the areas of scalable I/O,
storage elasticity and virtualization, data and

metadata decentralization and availability, multiversioning, checkpoint-
restart, and live migration.

Rafael Mayo is an associate professor in the
Computer Science and Engineering Department
in Jaume I University, Spain. He received his
B.Sc. and Ph.D. from Polytechnic Valencia Uni-
versity, Spain. His research interests include the
optimization of numerical algorithms for gen-
eral processors as well as for specific hard-
ware (GPUs) and their parallelization on both
message-passing parallel systems and shared-
memory multiprocessors (SMPs, CCNUMA mul-
tiprocessors, and multicore processors). More

recently, he has been involved in several research efforts on high-
performance computing energy-aware systems and cloud computing.

Juan Carlos Fernández is an associate profes-
sor at Jaume I University of Castellón, Spain.
He received his B.Sc. and Ph.D. from Polytech-
nic Valencia University, Spain. His research in-
terests include the following topics: control al-
gorithms in robot manipulators using parallel
computing, parallel implementations of video en-
coder, energy saving on high-performance com-
puting platforms, and cloud computing.

